Нецентросимметричные кубические геликоидальные ферромагнетики $Mn_{1-y}Fe_ySi$ и $Fe_{1-x}Co_xSi$

© С.В. Григорьев, В.А. Дядькин, С.В. Малеев, D. Menzel*, J. Schoenes*, D. Lamago**, Е.В. Москвин, Н. Eckerlebe***

Петербургский институт ядерной физики им. Б.П. Константинова РАН, Гатчина, Ленинградская обл., Россия * Technische Universität Braunschweig, Braunschweig, Germany ** Laboratoire Léon Brillouin, Saclay, Franse *** GKSS Forschungszentrum, Geesthacht, Germany E-mail: dyadkin@lns.pnpi.spb.ru

> Сравниваются две системы кубических нецентросимметричных геликоидальных магнетиков $Mn_{1-y}Fe_ySi$ (y = 0, 0.06, 0.08, 0.1) и $Fe_{1-x}Co_xSi$ (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.5). С помощью малоуглового рассеяния поляризованных нейтронов получены концентрационные зависимости значений критических температур и магнитных полей, которые проанализированы в рамках модели Бака-Йенсена. Установлено, что из двух взаимодействий, играющих главную роль в этих системах, изотропного симметричного ферромагнитного обмена и изотропного антисимметричного взаимодействия Дзялошинского-Мория, первое определяет критическую температуру в $Mn_{1-y}Fe_ySi$, а второе — в $Fe_{1-x}Co_xSi$.

Работа выполнена при поддержке РФФИ (грант № 07-02-01318-а).

Магнитные и транспортные свойства нецентросимметричного кубического магнетика MnSi являются предметом активных исследований в течение последних сорока лет благодаря своим исключительным свойствам. Магнитная структура силицида марганца ($T_c = 29 \, {\rm K}$) представляет собой левую геликоидальную спиновую структуру, имеющую волновой вектор $k = 0.36 \, \mathrm{nm}^{-1}$ (при T = 4 K) вдоль направлений (111) [1–3]. Как было показано [4–7], спиновые спирали являются результатом баланса между ферромагнитным обменным взаимодействием (ФОВ) и антисимметричным обменным взаимодествием Дзялошинского-Мория (ДМ), возникающего из-за отсутствия центра инверсии в кубическом кристалле с пространственной группой P2₁3. В дополнение к этим двум изотропным взаимодействиям существует также слабое анизотропное обменное взаимодействие, которое фиксирует направление геликоида вдоль одной из кубических пространственных диагоналей [5].

Исследованная ранее магнитная структура соединения MnSi [8,9] и схожей системы $Fe_{1-x}Co_xSi$ [10,11] была проанализирована в рамках теории [12], которая включает указанные выше взаимодействия. Эксперименты по нейтронной дифракции позволяют определить важные параметры подобных систем: волновой вектор **k**, критическое магнитное поле, энергия которого превалирует над энергией кубической анизотропии H_{C1} , критическое магнитное поле перехода системы из геликоидальной фазы в ферромагнитную H_{C2} , а также поле H_{gap} , при котором на фазовой диаграмме магнитное поле — температура (H-T) появляется A-фаза (см. далее в тексте, подробное объяснение дано в [8,10]).

Автор [12] разработал микроскопическую теорию для кубических магнетиков без центра инверсии в магнит-

ном поле. Система находится в геликоидальном равновесии, если волновой вектор спирали [5]

$$k = S|D|/A. \tag{1}$$

Здесь D — константа взаимодействия Дзялошинского-Мория. A — жесткость спиновых волн (CB) на расстояниях, много меньших периода спирали (т. е. данный параметр характеризует силу ФОВ), а S — средний спин на элементурную ячейку. Там же было показано, что данная система нестабильная относительно малого магнитного поля, приложенного в направлении, перпендикулярном **k**, если дополнительно не постулировать энегетическую щель в спектре спиновых волн Δ , которая вызвана наличием в системе ДМ. Для таких систем всегда следует ожидать наличия положительной щели $\Delta^2 \sim (D^2/2A)^2$, которое объясняет существование на фазовой диаграмме A-фазы [8]. Необорот, существование A-фазы может рассматриваться как косвенное подтверждение наличия щели, предсказанной теорией [12].

Описанная теория [12] позволяет установить соответствие между полученными в эксперименте значениями полей H_{C1} , H_{C2} , H_{gap} и константой анизотропии F, CB-жесткостью A, CB-щелью Δ с помощью следующих выражений:

$$g\mu_{\rm B}H_{C1}\simeq\frac{SFk^2}{2},\qquad(2)$$

$$g\mu_{\rm B}H_{C2} = Ak^2, \qquad (3)$$

$$\Delta \simeq \frac{g\mu_{\rm B}H_{\rm gap}}{\sqrt{2}},\tag{4}$$

где g — фактор Ланде, а $\mu_{\rm B}$ — магнетон Бора. Комбинируя эти уравнения с определением k (1), можно вычислить основные взаимодействия данной системы из

Рис. 1. Концентрационная зависимость критической температуры T_c для $Fe_{1-x}Co_xSi(a)$ и $Mn_{1-y}Fe_ySi(b)$.

критических полей $(H_{C1}, H_{C2}, H_{gap})$ и волнового вектора, измеряемых в дифракционном эксперименте.

Целью настоящей работы является количественная оценка и сравнение основных взаимодействий в системе $Fe_{1-x}Co_xSi$ и MnSi, легированном Fe. Монокристаллические образцы $Fe_{1-x}Co_xSi$ (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.5) и $Mn_{1-y}Fe_ySi$ (y = 0, 0.06, 0.08, 0.1) диаметром 30 mm и толщиной 3 mm были выращены методом Чохральского. Известно, что все образцы имеют одну и ту же пространственную группу $P2_13$ и кристаллическую мозаичность порядка 0.5° . Структура и однородность образцов подтверждены с помощью Лауэ-дифракции рентгеновских лучей.

Эксперименты по малоугловому рассеянию поляризованных нейтронов проводились на установке SANS-2 на исследовательском реакторе FRG-1 в GKSS (Гестахт, Германия). Поляризация падающего пучка нейтронов $P_0 = 0.93$ (поле порядка 1 mT, ведущее поляризацию, направлено горизонтально), длина волны $\lambda = 0.58$ nm⁻¹ ($\Delta\lambda/\lambda = 0.1$) и расходимость 2.5 mrad. Рассеянные нейтроны детектировались двухкоординатным позиционно-чувствительным детектором, содержащим 256 × 256 ячеек. Дистанция детектор—образец выбиралась таким образом, чтобы интервал переданных импульсов q составлял от $1 \cdot 10^{-2}$ до 1 nm^{-1} . Магнитное поле в диапазоне от 0 до 800 mT прикладывалось вдоль одной из осей $\langle 111 \rangle$ для Mn_{1-y} Fe_ySi и вдоль $\langle 100 \rangle$ для Fe_{1-x}Co_xSi. Интенсивность рассеянных нейтронов измерялась в температурном интервале $0 \leq T \leq 60 K$.

Дифракция нейтронов на геликоидальных спиновых структурах наблюдается при значении переданных импульсов q = k, когда обеспечивается выполнение брэгговского условия $2d \sin(\theta_{\rm B}/2) = \lambda$, где $d = 2\pi/k$ — период спиновой спирали, $\theta_{\rm B}$ — угол Брэгга. Очевидно, что если $d \sim 100$ Å, а $\lambda = 5.8$ Å, то все дифракционные пики

Рис. 2. Фазовые диаграммы для образцов Fe_{0.8}Co_{0.2}Si (*a*) и Mn_{0.94}Fe_{0.06}Si (*b*). Ниже критической температуры упорядочения система не реагирует на приложенное внешнее магнитное поле, если его величина меньше первого критического значения H_{c1} . В интервале $H_{C1} < H < H_{C2}$ спирали ориентируются вдоль направления магнитного поля и при этом становятся коническими. Выше H_{C2} образец становится ферромагнитным. H_{f1} — границы *A*-фазы (**k**-флоп перехода), в которой спирали поворачиваются из параллельного в перпендикулярное полю направление, при этом H_{gap} — верхняя граница *A*-фазы.

Рис. 3. Концентрационные зависимости k (a), H_{C2} (b), H_{C1} (c) и H_{gap} (d) для $Mn_{1-y}Fe_ySi$.

наблюдаются только в диапазоне малых углов. Критическя температура перехода из парамагнитного состояния в геликоидальное T_c определялась как температура, при которой исчезают брэгтовские пики. Концентрационные зависимости T_c для $Fe_{1-x}Co_xSi$ и $Mn_{1-y}Fe_ySi$ приведены на рис. 1, *а* и *b* соответственно. Видно, что для $Mn_{1-y}Fe_ySi$ T_c линейно падает с концентрацией Fe и достигает нуля при $y \approx 0.13$. Для $Fe_{1-x}Co_xSi$ зависимость коренным образом иная: спиновое магнитное упорядочение наблюдается в интервале $x \in [0.05, 0.8]$ [13–16] и имеет максимальное значение при x = 0.35.

Эксперименты по малоугловому рассеянию нейтронов показывают, что спиральный волновой вектор k для силицида марганца MnSi направлен вдоль осей (111) [1-3,8,9], тем самым образуя четыре типа спиральных доменов. Однако с увеличением концентрации легирующей примеси Fe в Mn_{0.94}Fe_{0.06}Si появляются дополнительные пики вдоль направлений (110). Дальнейшее легирование ведет ко все большему размытию дифракционых пиков, так что при у = 0.1 брэгговские пики превращаются в сферу рассеяния без выделения какого-либо направления. Магнитное упорядочение полностью пропадает при $y \approx 0.13$ [17,18]. Объяснить данное поведение можно, если предположить, что с увеличением концентрации железа кубическая анизотропия в системе уменьшается, что сначала приводит к появлению дополнительных типов доменов со спиралями, параллельными (110), а при высоких концентрациях Fe распределение направлений спиралей становится полностью изотропным.

Схожая ситуация наблюдается в Fe_{1-x}Co_xSi: при малых концентрациях Co (x = 0.1, 0.15) обнаруживается явная тендеция к упорядочению вдоль (100), однако уже начиная с x = 0.2 направление спирального волнового вектора **k** может быть любым, а при x = 0.5 анизотропия исчезает полностью [10,11].

Поведение спиновой структуры в магнитном поле хорошо изучено и является однотипным для всех подобных соединений [8-11]. При приложении внешнего магнитного поля спиновая структура перестраивается, т.е. волновой вектор k поворачивается вдоль направления магнитного поля и образец становится однодоменным. Данный процесс начинается с порогового значения поля H_{C1} , энергия которого преобладает над энергией кубической анизотропии. На дифракционной картине перестройка структуры выглядит как плавный переход нескольких брэгговских пиков в один с $\mathbf{q} = \mathbf{k} \parallel \mathbf{H}$. В полях $H > H_{C1}$ спиновая структура переходит в коническую фазу, т.е. возникает компонента спина, параллельная полю, образуя конус. Угол между единичным спином и k продолжает уменьшаться с увеличением поля вплоть до $H = H_{C2}$, где становится равным нулю, т.е. спиральная структура разрушается и образец переходит в ферромагнитную фазу. В картине рассеяния этот процесс сопровождается исчезновением малоугловых брэгговских пиков. Температурные зависимости критических полей H_{C1} и H_{C2} для образцов Fe_{0.8}Co_{0.2}Si и Mn_{0.94}Fe_{0.06}Si построены на H-T-фазовых диаграммах (рис. 2).

Важной особенностью фазовых диаграмм является существование так называемой *А*-фазы (или **k**-флоп-пере-

Рис. 4. То же, что на рис. 3, для $Fe_{1-x}Co_xSi$.

хода) вблизи T_c . В дифракционном эксперименте она выглядит как 90° скачок волнового вектора от $\mathbf{k} \parallel \mathbf{H}$ к $\mathbf{K} \perp \mathbf{H}$. Это сопровождается уменьшением интенсивности при $\mathbf{q} = \mathbf{k} \parallel \mathbf{H}$ и появлением новых брэгговских пиков с $\mathbf{k} \perp \mathbf{H}$. Значения поля H_{fl} , характеризующего границы \mathbf{k} -флоп-фазы, показаны на рис. 2. Верхняя полевая граница *A*-фазы обозначена H_{gap} [8,10].

Фазовые диаграммы, показанные на рис. 2, являются характерными для всех нецентросимметричных кубических гелимагнетиков. Схожесть фазовых диаграмм подразумевает, что все подобные системы управляются одим и тем же набором взаимодействий, которые в свою очередь определяют такие параметры, как критические поля H_{C1} , H_{C2} и H_{gap} , а также волновой вектор k (см. выражения (1)-(4)).

Концентрационные зависимости этих параметров для обеих систем изображены на рис. 3 и 4. Значения критических полей H_{C1} и H_{C2} берутся из экстраполяции температурной зависимости H_{C1} и H_{C2} при T = 0 К. Как видно из рис. 3, в $Mn_{1-y}Fe_ySi H_{C1}$, H_{C2} и H_{gap} меняются значительно меньше, чем в $Fe_{1-x}Co_xSi$ (рис. 4, b-d).

Значения волнового вектора k изменяются с концентрацией достаточно сильно в обоих случаях. В $Mn_{1-y}Fe_ySi k$ возрастает линейно почти в 2 раза с 0.36 до 0.65 nm⁻¹ (рис. 3), т.е. период спиновой спирали *d* уменьшается с 200 до 100 Å. В Fe_{1-x}Co_xSi *k* является колоколообразной функцией концентрации кобальта *x* (рис. 4, *a*) и принимает минимальное значение $k = 0.025 \text{ nm}^{-1}$ при x = 0.5 ($d \approx 2500 \text{ Å}$), а максимальное $k = 0.23 \text{ nm}^{-1}$ при x = 0.3 ($d \approx 270 \text{ Å}$).

Используя теорию [12] и выражения (1), (3) и (4), можно вычислить параметры основных взаимодействий системы, такие как ферромагнитный обмен (характеризуемый жесткостью спиновых волн *A*), константу Дзялошинского *D*, константу анизотропии *F* и щель в спектре спиновых волн Δ . Полученные концентрационные зависимости для $Mn_{1-y}Fe_ySi$ и $Fe_{1-x}Co_xSi$ изображены на рис. 5 и 6 соответственно. Все зависимости нормированы на параметр ячейки *a* для получения размерности энергии.

Из рис. 5 видно, что в $Mn_{1-y}Fe_ySi$ энергия ФОВ линейно уменьшается с концентрацией Fe и при экстраполяции достигает нуля в районе $y \approx 0.15$. Энергия взаимодействия Дзялошинского-Мория также уменьшается с 9 до 6 meV, а величина щели Δ возрастает с 10 до $30 \,\mu$ eV. Энергия анизотропии SF/a^2 , как и предполагалось выше, падает с ростом концентрации.

Совершенно иная ситуация наблюдается в $Fe_{1-x}Co_xSi$ (рис. 6). Видно, что ФОВ линейно растет с концентрацией, а D качественно повторяет ход k и H_{C2} .

Рис. 5. Концентрационные зависимости основных взаимодействий в системе $Mn_{1-y}Fe_ySi: a$ — жесткости спиновых волн A, b — константы Дзялошинского SD, c — спин-волновой щели Δ, d — константы анизотропии SF (S — средний спин на элементарную ячейку). Для удобства сравнения энергий этих взаимодействий все величины номированы на постоянную ячейки a.

Величина щели Δ , как и *D*, имеет вид колоколообразной функции. Энергия анизотропии, как и в Mn_{1-y}Fe_ySi, падает, достигая нуля при x = 0.5.

Из сравнения концентрационных зависмостей принципиальных параметров (рис. 5, 6) и критических температур T_c (рис. 1, *a* и *b*) видно, что в Mn_{1-v}Fe_vSi T_c повторяет ход A и довольно слабо соотносится с D. В то же время в $\operatorname{Fe}_{1-x}\operatorname{Co}_x\operatorname{Si} T_c$ очевидным образом связана с D, так как А имеет линейную зависимость от х. Все это позволяет сделать вывод, что взаимодействием, определяющим критическую температуру в $Mn_{1-v}Fe_vSi$, является простой ферромагнитный обмен, а в $Fe_{1-x}Co_xSi$ слабое взаимодействие Дзялошинского-Мория. Механизмы, лежащие в основе этого явления не совсем ясны. Однако можно предположить их возможную связь с тем фактом, что фактор Стонера, характеризующий величину вклада коллективизированных электронов в магнетизм, в $Fe_{1-x}Co_xSi$ больше, чем в $Mn_{1-y}Fe_ySi$. Данное предположение подкрепляется тем, что в $Fe_{1-x}Co_xSi$ наблюдаются положительное магнитосопротивление и аномальный эффект Холла в отличие от отрицательного магнитосопротивления в Mn_{1-y}Fe_ySi и отсутствия аномального эффекта Холла [17,19]. Дальнейший анализ и сравнение магнитных и транспортных свойств данных геликоидальных ферромагнетиков в рамках теории зонного магнетизма должны выявить природу столь различного поведения таких схожих систем.

Список литературы

- [1] Y. Ishikawa, K. Tajima, D. Bloch, M. Roth. Solid State Cammum. **19**, 525 (1976).
- [2] Y. Ishikawa, G. Shirane, J.A. Tarvin, M. Kohgi. Phys. Rev. B 16, 4956 (1977).
- [3] G. Shirane, R. Cowley, C. Majkrzak, J.B. Sokoloff, B. Pagonis, C.H. Perry, Y. Ishikawa. Phys. Rev. B 28, 6251 (1983).
- [4] И.Е. Дзялошинский. ЖЭТФ 46, 1420 (1964).
- [5] P. Bak, M.H. Jensen. J. Phys. C 13, L 881 (1980).
- [6] D. Nakamishi, A. Janase, A. Hasejawa, M. Kitaoka. Solid State Commun. 35, 995 (1980).
- [7] M. Kataoka, O. Nakanishi. J. Phys. Soc. Jpn. 50, 3888 (1981).
- [8] S.V. Grigoriev, S.V. Maleyev, A.I. Okorokov, Yu.O. Chetverikov, H. Eckerlebe. Phys. Rev. B 73, 224 440 (2006).
- [9] S.V. Grigoriev, S.V. Maleyev, A.I. Okorokov, Yu.O. Chetverikov, P. Böni, R. Georgii, D. Lamago, H. Eckerlebe, K. Pranzas. Phys. Rev. B 74, 214414 (2006).
- [10] S.V. Grigoriev, V.A. Dyadkin, D. Menzel, J. Schoenes, Yu.O. Chetverikov, A.I. Okorokov, H. Eckerlebe, S.V. Maleyev. Phys. Rev. B 76, 224 424 (2007).
- [11] S.V. Grigoriev, S.V. Maleyev, V.A. Dyadkin, D. Menzel, J. Schoenes, H. Eckerlebe. Phys. Rev. B 76, 092 407 (2007).
- [12] S.V. Maleyev. Phys. Rev. B 73, 174402 (2006).
- [13] J. Beille, J. Voiron, M. Roth. Solid State Commun. 47, 399 (1983).
- [14] J. Beille, J. Voiron, F. Towfiq, M. Roth, Z.Y. Zhang. J. Phys. F 11, 2153 (1981).
- [15] K. Ishimoto, H. Yamaguchi, J. Suzuki, M. Arai, M. Furusaka, Y. Endoh. J. Magn. Magn. Mater. **90–91**, 163 (1990).
- [16] K. Ishimoto, H. Yamaguchi, J. Suzuli, M. Arai, M. Furusaka, Y. Endoh. Physica B 213–214, 381 (1995).
- Физика твердого тела, 2010, том 52, вып. 5

- [17] N. Manyala, Y. Sidis, J.F. DiTusa, G. Aeppli, D.P. Young, Z. Fisk. Nature (London) 404, 581 (2000).
- [18] Y. Nishihara, S. Waki, S. Ogawa. Phys. Rev. B 30, 32 (1984).
- [19] N. Manyala, Y. Sidis, J.F. DiTusa, G. Aeppli, D.P. Young, Z. Fisk. Nature Mater. 3, 255 (2004).