Переход клубок — блоб в пленках атактического полистирола

© А.Н. Красовский, В.К. Лаврентьев*, Д.В. Новиков, Н.А. Осмоловская

Санкт-Петербургский государственный университет кино и телевидения, Санкт-Петербург, Россия * Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия

E-mail: alex-krasovski@yandex.ru

(Поступила в Редакцию 28 апреля 2009 г. В окончательной редакции 30 сентября 2009 г.)

Методами малоуглового рассеяния рентгеновских лучей и электронной микроскопии изучена структура атактического полистирола (at-PS) в пленках, полученных из растворов в хлороформе. Показано, что флуктуации плотности в пленках, соответствующих разбавленным растворам PS, обусловлены агрегатами частиц, радиус R_0 которых близок к гидродинамическому радиусу клубка. Величина R_0 в пленках падает с ростом концентрации PS из-за перепутывания клубков и образования блобов. Переход клубок (фрактальная размерность клубка D = 2) \rightarrow блоб (D = 3) приводит к росту плотности, а также температуры стеклования пленок, что связано с усилением меж- и внутрицепных взаимодействий сегментов в твердом состоянии at-PS.

1. Введение

В работе [1] методом электронной микроскопии исследованы флуктуации плотности в пленках атактического полистирола (at-PS), полученных из растворов полимера в хлороформе (Chl) и декалине. Установлено, что корреляционный радиус ξ флуктуаций плотности в пленках PS, сформированных из раствора в Chl, по порядку величины соответствует радиусу макромолекулярного клубка в разбавленном растворе PS и увеличивается с ростом концентрации *с* полимера в растворе. Увеличение корреляционного радиуса ξ с ростом *с* можно объяснить образованием ассоциатов макромолекул в умеренно концентрированных растворах PS, которые выявляются, например, методом квазиупругого рассеяния света в растворах полимера при концентрации выше некоторого критического значения *c** [2].

В работе [1] показано, что флуктуациям плотности в аморфных полимерах отвечают фрактальные кластеры или агрегаты "простых" частиц, которые также являются самоподобными кластерами [3]. Исследование таких частиц представляет самостоятельный интерес и базируется на представлениях о состоянии макромолекул [4,5]. Представления [3–5] о строении гибкоцепных аморфных полимеров как совокупности случайно упакованных невозмущенных гауссовых клубков приводят к единственному корреляционному радиусу ξ флуктуации плотности [6,7], соответствующему расстоянию между точками переплетения цепей или размеру блоба. Термин "блоб" общепринят для аморфных полимеров [3] и обозначает область случайного перепутывания цепей с повышенной локальной плотностью упаковки макромолекул [4].

Отметим, что при переплетении макроцепей пространственное распределение плотности сегментов должно быть неоднородным [5]. Согласно представлениям [3–5], в аморфных полимерах можно выделить фазу плотных блобов и области, включающие участки цепей, которые связывают блобы между собой, а также хвосты и петли цепей, которые не входят в блобы [8].

В продолжение [1] в настоящей работе методом малоуглового рассеяния рентгеновских лучей (SAXS) определены топологические характеристики (радиус инерции и фрактальная размерность) "простых" частиц в аморфных пленках at-PS, полученных при вариации концентрации *с* полимера в растворе в Chl. Размер "простых" частиц, полученный с помощью метода SAXS, сопоставлен с размерами, рассчитанными по данным электронной микроскопии и плотности пленок. Цель работы — обоснование закономерностей фрактальных переходов при изменении масштабноинвариантной кластерной структуры PS в твердотельном состоянии.

2. Методика эксперимента

В работе изучен фракционированный образец линейного at-PS ("Aldrich") с узким молекулярно-массовым распределением (молекулярная масса $M_n = 9.1 \cdot 10^6$, $M_w/M_n = 1.1$, характеристическая вязкость $[\eta]$ в растворе в Chl — 8.3 dl · g⁻¹ (при 298 K). Пленки толщиной 7–12 μ m получены на плоском стекле из растворов PS в Chl при 298 K в области концентрации $c = 0.1-0.9 \text{ g} \cdot \text{dl}^{-1}$ или значений безразмерного параметра $[\eta] c = 1.7-7.5$ [3] (табл. 1).

Плотность ρ пленок, предварительно прогретых в течение 1–1.5 h при 313 K, определяли в системе водаглицерин при 293 K с относительной погрешностью, равной $\pm 1 \cdot 10^{-3}$ g · cm⁻³. Температуру стеклования T_g пленок измеряли стандартным способом [8] методом дифференциальной сканирующей калориметрии на приборе "Shimadzu FTIR-8300" с погрешностью ± 0.5 C°. Скорость нагревания образцов составляла 10° C · min⁻¹.

Краевые углы φ смачивания воздушной поверхности пленок водой и глицерином измеряли гониометриче**Таблица 1.** Гидродинамический радиус R_g клубков в растворе в Chl, плотность ρ (10³ kg · m⁻³) и краевые углы смачивания водой φ_1 и глицерином φ_2 , полярная γ^p и дисперсионная γ^d компоненты поверхностной энергии γ (mJ · m⁻²) пленок, полученных из растворов PS в Chl

Параметр	$c, \mathbf{g} \cdot \mathbf{dl}^{-1}$									
	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
$[\eta]c$	1.7	2.5	3.3	4.2	5.0	5.8	6.6	7.5		
R_g , nm [1]	95	94	92	78	68	67	66	66		
ρ	1.052	1.053	1.052	1.047	1.050	1.057	1.071	1.052		
φ_1 , deg	50.4	50.0	50.2	51.4	56.9	58.1	63.0	61.3		
φ_2 , deg	52.0	52.5	53.0	56.0	56.5	56.0	57.0	60.0		
γ^{p}	0.2	0.04	0.1	0.2	0.4	1.6	4.4	1.2		
γ^d	17.0	17.4	17.2	16.6	16.5	16.4	16.1	14.7		

Примечание. Относительная погрешность измерений краевого угла φ смачивания пленок ± 1 deg. При $c = 0.5 \text{ g} \cdot \text{dl}^{-1}$ гидродинамический радиус R_g клубка в растворе близок к θ -размерам [1].

ским методом [9]. Полярную γ^p и дисперсионную γ^d компоненты полной поверхностной энергии $\gamma = \gamma^p + \gamma^d$ пленок при их смачивании водой (поверхностное натяжение воды на границе с воздухом $\sigma = 72 \text{ mN} \cdot \text{m}^{-1}$) и глицерином ($\sigma = 59.4 \text{ mN} \cdot \text{m}^{-1}$, 293 K) рассчитывали способом [10] (табл. 1). Величина поверхностного натяжения σ на границе пленок at-PS с воздухом была принята равной 42 mN $\cdot \text{m}^{-1}$ [11].

ИК-спектры поглощения пленок PS регистрировали на однолучевом Фурье-спектрометре "Perkin Elmer 1720X" в области $600-1700 \text{ cm}^{-1}$ с разрешением 1 cm^{-1} (рис. 1).

Кривые малоуглового рассеяния рентгеновских (МУРР) лучей получены с помощью малоугловой рентгеновской камеры Kratki в области углов рассеяния $2\theta = 3 - 20'$. Использовали рентгеновскую трубку с мед-

Рис. 1. ИК-спектры поглощения пленок в области $600-1700 \text{ cm}^{-1}$. Пленки толщиной $7\,\mu\text{m}$ получены из растворов at-PS с Chl с концентрацией c = 0.4 (1), 0.5 (2) и $0.8 \text{ g} \cdot \text{dl}^{-1}$ (3).

ным анодом, монохроматизацию излучения проводили Ni-фильтром. Размерность величины I соответствует количеству импульсов при экспозиции в 100 s (imp/100 s). Фрактальную размерность \mathcal{D} рассеивающих частиц в пленках определяли из степенной зависимости интенсивности рассеяния I от длины вектора рассеяния $s = 4\pi \sin \theta / \lambda$ (2θ — угол рассеяния, $\lambda = 0.154$ nm) по выражению $I(s) \sim s^{-\alpha}$ [12], где индекс α непосредственно связан с величиной фрактальной размерности \mathcal{D} частиц [3,7,13].

3. Результаты и их обсуждение

В работе [1] при электронно-микроскопическом исследовании "воздушной" поверхности полимерных пленок применяли методику декорирования с помощью вакуумного термического напыления золота. Показано, что флуктуациям повышенной плотности упаковки макромолекул на поверхности пленок топологически соответствуют области с повышенной локальной плотностью декорирующих частиц золота. Эти области формируют бесконечный фрактальный кластер, в полостях которого находятся крупные частицы золота [1].

В табл. 2 представлены основные топологические параметры флуктуаций плотности фрактальных кластеров частиц на поверхности пленок, полученных из растворов PS: локальная плотность ω , корреляционный радидус ξ , фрактальная размерность \mathcal{D} , а также эффективный радиус R_0 "простых" частиц, плотность упаковки которых флуктуирует вдоль поверхности пленки.

Согласно данным табл. 2, локальная плотность ω кластеров частиц падает с ростом концентрации *с* PS, причем изменение масштабно-инвариантной кластерной структуры пленок обусловлено флуктуациями плотности. Корреляционный радиус ξ флуктуаций плотности в пленках увеличивается с ростом *с* аналогично гидродинамическому радиусу ассоциатов макромолекул в растворе [1].

Радиус R_0 "простых частиц" в пленках асимптотически уменьшается с ростом концентрации c PS в растворе (табл. 2). Величина R_0 в пленках, полученных из разбавленных растворов PS в Chl в области $c \leq c^*$, где c^* — так называемая первая критическая концентрация PS, соответствующая перекрыванию набухших клубков ($\mathscr{D} = 1.66, c^* \approx 0.3 \text{ g} \cdot \text{dl}^{-1}$) [1,4], близка к гидродинамическому радиусу θ -клубка в растворе ($R_g \approx 80 \text{ nm}$, табл. 1). Это означает, что клубки PS сохраняют свою индивидуальность и практически не перекрываются, поэтому в пленках в области $c \leq c^*$ блобы не формируются. Причиной этого является чрезвычайно низкая подвижность клубков при переходе от раствора PS к пленке.

Резкое снижение радиуса R_0 частиц в пленках в области $c > c^*$ (табл. 2) связано с перекрыванием клубков и образованием блобов, обнаруживаемых в экспериментах

			Ø (EM)		D nm	Ø	
$c, d1^{-1}$	ω	ξ , nm $\pm 10\%$	$\frac{\mathcal{D}(\mathrm{EW})}{(R \leq \xi)}$	R_0, nm (EM)	(SAXS)	(SAXS)	s, nm ⁻¹
g · ui		10/0	± 0.02	(LIVI)	$\pm 3\text{nm}$	± 0.2	
0.1	0.57	220	1.90	92	_	_	_
0.3	0.52	250	1.85	59	_	—	_
0.4	0.49	360	1.70	41	52	2.0	0.03 - 0.06
0.5	_	_	_	_	35	2.0	0.03 - 0.13
0.6	_	_	-	_	30	2.9	0.03-0.13
					9	1.7	0.13-0.23
0.7	_	_	_	_	27	3.0	0.03 - 0.1
					14	1.5	0.1-0.23
0.8	0.53	400	1.62	13	28	3.0	0.03 - 0.1
					11	1.5	0.1-0.23
0.9	—	—	—	_	27	3.0	0.03 - 0.1
					12	1.5	0.1-0.23

Таблица 2. Топологические параметры флуктуаций плотности в пленках PS

Примечание. ω — степень заполнения поверхности кластерами ($R = \xi$), ξ — корреляционный радиус кластеров, \mathscr{D} (EM) — фрактальная размерность кластеров (флуктуаций плотности) на масштабе $R \le \xi$ (E = 2) по данным электронной микроскопии; \mathscr{D} (SAXS, E = 3) — фрактальная размерность рассеивающих частиц по данным МУРР в указанном диапазоне значений вектора рассеяния *s*.

по квазиупругому рассеянию света или нейтронов в растворах полимеров [2,3,11,12].

На рис. 2 представлены зависимости интенсивности *I* малоутлового рассеяния рентгеновских лучей от длины *s* вектора рассеяния для пленок PS. Отметим, что исследование пленок с помощью метода SAXS в интервале значений вектора рассеяния $s = 0.04-0.2 \text{ nm}^{-1} (2\theta = 3-20')$ позволяет получить достоверную информацию об изменении радиуса R_0 частиц в области 10–50 nm при условии, что $R_0 < \pi/s$ [12]. В этом случае можно определить радиусы инерции "простых частиц" и сравнить полученные значения R_0 с величинами, рассчитанными по данным электронной микроскопии.

Методом SAXS в изученной области значений углов рассеяния 2θ не удается определить структурные параметры "простых частиц" в пленках, полученных из растворов PS в области концентрации $c < 0.4 \text{ g} \cdot \text{dl}^{-1}$, поскольку в этом случае эффективный радиус частиц R_0 не удовлетворяет условию $R_0 < \pi/s$ [12] (табл. 2).

Зависимости I(s) в двойных логарифмических координатах для пленок, соответствующих $c \ge 0.4 \, \mathrm{g} \cdot \mathrm{dl}^{-1}$, прямолинейны (рис. 2). Это подтверждает степенной закон рассеяния $I(s) \sim s^{-\alpha}$. Переход θ -клубок — блоб в пленках связан с изменением характера рассеяния, что выражается в уменьшении индекса рассеяния α от 4.0 до 3.0 и росте фрактальной размерности \mathcal{D} рассеивающих частиц [2,3,12].

Для пленок, полученных из растворов PS с концентрацией c = 0.4 и $0.5 \text{ g} \cdot \text{dl}^{-1}$, в области значений $s \approx 0.04 - 0.1 \text{ nm}^{-1}$ выполняется закон рассеяния $I(s) \sim s^{-4}$ (рис. 2, *a*). Индекс $\alpha = 4$ относится к случаю рассеяния от поверхностного слоя непрозрачных частиц с фрактальной размерностью $\mathcal{D} = 6 - \alpha$ [2,12], причем значение D = 2 соответствует θ -клубку [13]. Определенный по способу Гинье с помощью соотношения $\ln I(s) \approx \text{const} - s^2 R_0^2/3$ [12] (рис. 3) радиус инерции R_0 рассеивающих частиц из-за частичного перекрывания клубков, для которых справедливо условие самоподобия ($\mathcal{D} = 2$, табл. 2), меньше радиуса R_g одиночного θ -клубка в растворе (табл. 1). Величины R_0 , рассчитанные с помощью методов SAXS и электронной микроскопии, удовлетворительно согласуются между собой.

Для пленки, полученной из раствора PS в Chl при $c = 0.6 \,\mathrm{g} \cdot \mathrm{dl}^{-1}$, кривая рассеяния в области $s \approx 0.06 - 0.1 \,\mathrm{nm}^{-1}$ подчиняется закону $I(s) \sim s^{-3}$ (рис. 2, b), что соответствует рассеянию от блоба ($\mathcal{D} = 3$), радиус инерции которого составляет ~ 30 nm (табл. 2).

В случае пленок, соответствующих c = 0.7и 0.8 g · dl⁻¹, кривые рассеяния в двойных логарифмических координатах в области $s \approx 0.06 - 0.24$ nm⁻¹ аналогичны и состоят из двух прямолинейных участков (рис. 2, *c*, табл. 2). Первый участок кривой рассеяния в области $s \approx 0.06 - 0.1$ mm⁻¹, для которого $\alpha = 3$, соответствует рассеянию от блоба ($\mathcal{D} = 3$).

В области $s \approx 0.1-0.24 \,\mathrm{nm}^{-1}$ на втором участке кривой I(s) для пленок, соответствующих c = 0.7и $0.8 \,\mathrm{g} \cdot \mathrm{dl}^{-1}$, выполняется закон рассеяния $I(s) \sim s^{-1.5}$ (рис. 2, c). В этом случае фрактальная размерность $\mathscr{D} = \alpha = 1.5 \pm 0.1$, а рассеяние обусловлено всем объемом образца [12]. По аналогии с проходными цепями в аморфно-кристаллических полимерах [8] значение $\mathscr{D} = 1.5$ можно отнести [3] к агрегатам сегментов на участках переплетения проходных цепей, которые связывают блобы между собой.

Отметим, что блобы формируются в результате случайного переплетения цепей в пленках, полученных из растворов вблизи так называемой второй критической концентрации c^{**} [1,3], которая соответствует плотному заполнению объема раствора θ -клубками. По данным капиллярной вискозиметрии [1] для растворов at-PS

в Chl критическое значение c^{**} составляет $0.8 \text{ g} \cdot \text{dl}^{-1}$ ([η]c = 6.6).

Следовательно, с учетом флуктуаций локальной плотности на надмолекулярном масштабе порядка ξ структура пленок, полученных из растворов at-PS в термодинамически "хорошем" [3] растворителе (Chl), определяется структурой ассоциатов PS в растворе [1]. Эти флуктуации имеют фрактальную кластерную природу

Рис. 2. Зависимости интенсивности SAXS от длины вектора рассеяния *s* в обычных и двойных логарифмических (на вставках) координатах для пленок, полученных из растворов PS с концентрацией c = 0.5 (*a*), 0.6 (*b*) и 0.8 g · dl⁻¹ (*c*).

Рис. 3. Зависимости интенсивности SAXS в координатах Гинье для пленок PS, полученных из растворов с концентрацией c = 0.5 (1), 0.6 (2) и $0.8 \text{ g} \cdot \text{dl}^{-1}$ (3). Прямой линией показана линейная аппроксимация.

Рис. 4. Зависимости плотности $\rho(1)$ и температуры стеклования $T_{e}(2)$ пленок PS от безразмерного параметра $[\eta]c$.

и по порядку величины ξ соответствуют ассоциатам макромолекул в растворе [1].

На масштабе, менышем характерного размера надмолекулярных флуктуаций (кластеров), структуру пленок можно рассматривать в рамках модели агрегированных "простых частиц", радиус R_0 которых зависит от концентрации PS. В пленках, полученных из разбавленных растворов PS, "простой" частицей является θ -клубок. θ -клубки с ростом концентрации PS перекрываются и полностью теряют свою индивидуальность, что и приводит к формированию блобов [3].

Переход θ -клубок ($\mathscr{D} = 2$) \rightarrow блоб ($\mathscr{D} = 3$) является целочисленным фрактальным переходом [13]. Согласно [3–5], этот переход должен приводить к увеличению плотности ρ , температуры стеклования T_g (рис. 4), полной поверхностной энергии γ пленок (рис. 5) и усилению меж- и внутрицепных взаимодействий сегментов в полимере [8].

В ИК-спектрах пленок наряду с полосой 1069 cm^{-1} смешанных колебаний скелета цепи и плоскостных колебаний ароматического кольца at-PS [14] обнаружены заметные изменения интенсивности полосы 699 cm^{-1} неплоских колебаний метиновых групп ароматических колец [15], которые зависят от концентрации *с* PS (рис. 1).

Концентрационная зависимость оптической плотности *D* полосы 699 сm⁻¹, приведенная на рис. 5, свидетельствует об увеличении вклада ароматических колец во взаимодействие сегментов PS [14,15] в пленках в области $c = 0.5-0.8 \text{ g} \cdot \text{dl}^{-1}$, что связано с ростом плотности упаковки клубков. Плотность ρ пленок минимальна при $c = 0.5 \text{ g} \cdot \text{dl}^{-1}$. В этом случае интенсивность поло-

Рис. 5. Зависимости полной поверхностной энергии γ пленок (1) и приведенной оптической плотности D_{699}/D_{1602} полосы поглощения 699 сm⁻¹ (1602 сm⁻¹ — реперная полоса [14]) в ИК-спектрах пленок (2) от безразмерного параметра [η]c.

Рис. 6. Линейные корреляции между полной поверхностной энергией γ (1), температурой стеклования T_g (2) и плотностью ρ пленок.

сы 699 ст⁻¹ в ИК-спектрах пленок, температура стеклования T_g и полная поверхностная энергия γ пленок также минимальны. Плотность ρ пленок максимальна вблизи критической концентрации $c^{**} = 0.8 \text{ g} \cdot \text{dl}^{-1}$. Вблизи c^{**} интенсивность полосы 699 ст⁻¹ в ИК-спектрах пленок заметно увеличивается, а величины T_g и γ достигают максимального значения (табл. 1, рис. 4, 5).

Полная поверхностная энергия $\gamma = \gamma^p + \gamma^d$, рассчитанная из краевых углов φ смачивания пленок водой и глицерином, изменяется симбатно с плотностью ρ пленок (рис. 5). Дисперсионная энергия γ^d приблизительно на порядок превышает полярную компоненту γ^p , при этом максимумы полярной компоненты γ^p и полной поверхностной энергии γ совпадают с максимумом плотности ρ пленок (табл. 1).

Ранее в работе [16] было получено скейлинговое выражение, связывающее поверхностную энергию γ с плотностью ρ пленок,

$$\gamma = \gamma_0 [\rho(\xi) / \rho_0(\xi_0)]^\beta, \tag{1}$$

где γ_0 и ξ_0 — полная поверхностная энергия и корреляционный радиус кластеров, соответствующие пленке минимальной плотности ρ_0 , $\beta = \mathscr{D}/(E - \mathscr{D})$, E — эвклидова мерность пространства [7].

Приведенная на рис. 6 корреляция между величиной γ и плотностью ρ пленок удовлетворяет выражению (1). Рассчитанная из этой корреляции фрактальная размерность \mathcal{D} кластеров частиц равна 2.5 ± 0.2 (E = 3), а индекс $\beta = 5.0 \pm 0.5$ близок к значению $\beta = 4.4 \pm 0.4$, полученному для пленок, сформированных из расплава at-PS [11].

Связь между температурой слеклования T_g и плотностью пленок ρ можно представить в виде: $\Delta T_g = T_g(\infty) - T_g = K \rho^{\mathscr{D}/(3-\mathscr{D})}$, где $T_g(\infty)$ — температура стеклования для бесконечной цепи. K — константа [5]. На рис. 6 приведена корреляция между величинами T_g и ρ , из которой следует, что фрактальная размерность кластеров частиц $\mathscr{D} = 2.8 \pm 0.2$.

Критические размеры ξ самоподобных кластеров в области $c = 0.5 - 0.8 \text{ g} \cdot \text{dl}^{-1}$ можно определить из плотности ρ пленок с помощью выражения $\xi/\xi_0 = (\rho/\rho_0)^{1/(\mathscr{D}-3)}$ [7,17]. Согласно полученным данным, корреляционный радиус ξ минимален при максимальной плотности ρ пленок вблизи $c^{**} = 0.8 \text{ g} \cdot \text{dl}^{-1}$ и отношение $\xi/\xi_0 \approx 0.8$ для $\mathscr{D} = 2.8$. Тогда радиус R_0 клубков, пропорциональный величине ξ [3], уменьшается на ~ 20% с ростом плотности ρ пленок в области $c = 0.5 - 0.8 \text{ g} \cdot \text{dl}^{-1}$, что подтверждается данными SAXS (табл. 2).

Следовательно, рост температуры стеклования и поверхностной энергии пленок в области $c = 0.5 - 0.8 \text{ g} \cdot \text{dl}^{-1}$ объясняется увеличением плотности упаковки клубков в результате образования блобов. Этот вывод согласуется с данными электронной микроскопии [1] и SAXS, полученными в настоящей работе, а также с представлениями теории о фазовых переходах в полимерах [3,8,11,17].

4. Заключение

Переход клубок \rightarrow блоб в пленках at-PS, контролируемый концентрацией "простых" частиц, связан с изменением закона малоуглового рассения рентгеновских лучей и выражается в снижении индекса рассеяния α и целочисленном росте фрактальной размерности \mathcal{D} рассеивающих частиц от 2 (θ -клубок) до 3 (блоб). Этот переход приводит к увеличению плотности, температуры стеклования пленок и усилению взаимодействия сегментов в твердом состоянии at-PS.

Список литературы

- [1] Д.В. Новиков, А.Н. Красовский, Н.А. Осмоловская, В.И. Ефремов. ФТТ **49**, 364 (2007).
- [2] О.В. Каллистов, И.Г. Силинская, Г.Б. Кузнецова, В.П. Склизкова, В.В. Кудрявцев, А.В. Сидорович, М.М. Котон. Высокомолекуляр. соединения Б 29, 67 (1987).
- [3] П. Де Женн. Идеи скейлинга в физике полимеров / Пер. с англ. под ред. И.М. Лифшица. Мир, М. (1982). 368 с.
- [4] А.Ю. Гросберг, А.Р. Хохлов. Статистическая физика макромолекул. Наука, М. (1989). 328 с.
- [5] П. Флори. Статистическая механика цепных молекул. Мир, М. (1971). 440 с.
- [6] Б.М. Смирнов. Физика фрактальных кластеров. Наука, М. (1991). 134 с.
- [7] Е. Феред. Фраклаты / Пер. с англ. Ю.А. Данилова, А.М. Шукурова. Мир, М. (1991). 254 с.
- [8] R.F. Boyer. In: Polymer yearbook. Michigan Molecular Institute, Michigan (1984). P. 234.
- [9] П.П. Пугачевич, Э.М. Бегляров, И.А. Лавыгин. Поверхностные явления в полимерах. Химия, М. (1982). 200 с.
- [10] S. Wu. Polymer interfaces and adhesion. Marcel Dekker, N.Y. (1982). 580 p.
- [11] Полимерные смеси / Под ред. Д. Пола, С. Ньюмена. Пер. с англ. Мир, М. (1981). Т. 1. 550 с.
- [12] Д.И. Свергун, Л.А. Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. Наука, М. (1986). 280 с.
- [13] В.Г. Баранов, С.Я. Френкель, Ю.В. Бресткин. ДАН СССР 290, 369 (1986).
- [14] П. Пейнтер, М. Коулмен, Дж. Кёниг. Теория колебательной спектроскопии. Приложение к полимерным материалам / Пер. с англ. под ред. Э.Ф. Олейника, Н.С. Ениколопова. Мир, М. (1986). 580 с.
- [15] J.B. Enns, R.F. Boyer, K. Ishida, J.L. Koenig. Polym. Eng. Sci. 19, 7567 (1979).
- [16] А.Н. Красовский, Н.А. Осмоловская, С.В. Мякин, И.В. Васильева, Д.В. Новиков. Химия высоких энергий 43, 134 (2009).
- [17] А.М. Ельяшевич. Современное состояние теории протекания и перспективы ее использования в теории полимеров в твердой фазе. Препринт докл. на совещ. "Проблемы теории полимеров в твердой фазе" ИХФ АН СССР, Черноголовка (1985). 21 с.