Электростатическая стабилизация упорядоченной фазы в монооксиде титана

© М.Г. Костенко*,**, А.А. Ремпель*,**

 * Институт химии твердого тела УрО РАН, Екатеринбург, Россия
 ** Уральский государственный технический университет (УПИ), Екатеринбург, Россия
 E-mail: rempel@ihim.uran.ru

(Поступила в Редакцию 14 мая 2009 г.)

Методом компьютерного моделирования исследовано влияние упорядочения атомов титана и кислорода на энергию Маделунга. Впервые получена зависимость постоянной Маделунга от размера кристалла для монооксида титана в случае упорядоченного и неупорядоченного распределения атомов и вакансий. Показано, что энергия Маделунга в упорядоченном монооксиде титана значительно меньше (на 6%), чем в неупорядоченном. Электростатическое взаимодействие между ионами титана и кислорода стабилизирует упорядоченную фазу в монооксиде титана вплоть до высоких температур и должно существенно влиять на процессы разупорядочения, происходящие в этом соединении при повышенных температурах.

Работа поддержана РФФИ (грант № 10-03-00035а), грантом МК-2922.2010.3 Президента РФ, совместным проектом № 09-С-3-1014 Уральского и Сибирского отделений РАН и междисциплинарным проектом № 09-М-23-2001 Уральского отделения РАН.

1. Введение

Кубический монооксид титана TiO_y обладает базисной структурой типа B1 и принадлежит к группе сильно нестехиометрических соединений [1]. Широкая область гомогенности этого соединения лежит в пределах от y = 0.80 до y = 1.25 [2]. Нестехиометрия монооксида титана, т.е. отклонение состава от эквиатомного, реализуется за счет различного содержания структурных вакансий (узлов кристаллической решетки B1, не занятых атомами) в подрешетке титана и в подрешетке кислорода. Для стехиометрического состава монооксида TiO_{1.00} количество структурных вакансий в подрешетке титана совпадает с количеством структурных вакансий в подрешетке кислорода и составляет по результатам многочисленных экспериментов [2,3] в каждой из подрешеток около 1/6 от всех позиций.

Чтобы показать, что структурные вакансии имеются в обеих подрешетках монооксида титана, его состав можно записать в виде $\text{Ti}_x O_z$ или $\text{Ti}_x \blacksquare_{1-x} O_z \square_{1-z}$, где *x* и *z* — доля атомных позиций в подрешетке титана и кислорода соответственно. \blacksquare , \square — структурные вакансии в этих подрешетках [4]. Таким образом, состав *y*, который указывают в формуле $\text{Ti}O_y$, равен y = z/x. Если учесть, что в монооксиде титана стехиометрического состава $\text{Ti}O_{1.0}$ 1/6 всех позиций вакантна, это можно представить формулой $\text{Ti}_{0.83}O_{0.83}$.

Эксперименты показывают [5], что структурные вакансии могут располагаться в кристаллической решетке как случайным образом, так и упорядоченно. Случайное расположение вакансий характеризуется степенью заполнения узлов подрешетки или решеткой вероятностей. Каждому узлу подрешетки ставится в соответствии одно и то же число, равное вероятности нахождения в этом узле атома или, что то же самое, доле атомных позиций в данной подрешетке. Симметрия кристаллической решетки при случайном расположении вакансий не нарушается и совпадает с симметрией кубической структуры *B*1. При упорядочении структурных вакансий происходит перераспределение атомов и вакансий по узлам решетки *B*1. Вероятности заполнения позиций в каждой из подрешеток становятся не равными друг другу, некоторые узлы кристаллической решетки перестают быть кристаллографически эквивалентными, и симметрия кристалла понижается до моноклинной.

Неупорядоченное состояние монооксида титана термодинамически стабильно при температуре выше температуры фазового превращения порядок—беспорядок, которая составляет для стехиометрического состава около 1600 К [5,6]. При понижении температуры в зависимости от содержания кислорода и температурного интервала образуется несколько упорядоченных фаз [5]. Как показывают эксперименты [4], неупорядоченное состояние при комнатной температуре можно сохранить с помощью закалки от температур выше температуры фазового перехода порядок—беспорядок.

Прямой фазовый переход порядок-беспорядок, который происходит в монооксиде титана при повышении температуры системы, является равновесным, а значит реверсивным, т.е. при понижении температуры происходит обратный фазовый переход беспорядок-порядок. Причиной как прямого фазового перехода (порядок-беспорядок), так и обратного фазового перехода (беспорядок-порядок) является стремление системы иметь наименьшую свободную энергию при данной температуре. Выражение для свободной энергии имеет вид

$$F = E - TS, \tag{1}$$

где *E* — внутренняя энергия системы, *S* — энтропия. При низких температурах вклад энтропии невелик, по-

скольку энтропийный член пропорционален температуре, и достижение минимума свободной энергии осуществляется в основном за счет уменьшения внутренней энергии *E*. При достаточно высоких температурах вклад энтропии становится существенным, и система может пожертвовать малостью внутренней энергии в пользу увеличения энтропии. Как известно, энтропия определяется выражением

$$S = k_B \ln \Omega, \tag{2}$$

где k_B — постоянная Больцмана, Ω — вес состояния (число микросостояний термодинамической системы, с помощью которых достигается данное макросостояние). Очевидно, что при упорядочении структурных вакансий энтропия понижается, так как вакансии могут располагаться только в строго определенных позициях кристаллических подрешеток, и вес состояния становится малым. Следовательно, при упорядочении внутренняя энергия кристалла должна уменьшаться, причем это уменьшение должно компенсировать увеличение отрицательного слагаемого (-TS) в выражении для свободной энергии.

В монооксиде титана значительную долю составляет ионный тип связи [7,8], поэтому при анализе изменения внутренней энергии этого соединения при упорядочении прежде всего необходимо учитывать энергию электростатического взаимодействия в системе, состоящей из ионов титана и кислорода. Полная энергия U_{tot} кристалла, составленного из ионов двух сортов с зарядами +qи -q, выражается формулой [9]

$$U_{\rm tot} = N z \lambda e^{-R/\rho} - N \alpha q^2/R.$$
(3)

Здесь N — число ионов одного знака, z — число ближайших соседей какого-либо иона, R — расстояние между двумя ближайшими ионами, λ и ρ — константы, характеризующие силы отталкивания между двумя ближайшими ионами, α — постоянная Маделунга. Как показано в [9], член $Nz\lambda e^{-R/\rho}$ мал и энергию связи в ионном кристалле можно с большой степенью точности представить в виде энергии кулоновского взаимодействия ионов (энергией Маделунга), т.е. величиной $-N\alpha q^2/R$.

Постоянная Маделунга α учитывает только взаимное расположение ионов в пространстве по отношению друг к другу, т.е. тип кристаллической структуры, и определяется формулой

$$\alpha = \sum_{j} \frac{(\pm)}{\rho_{i,j}},\tag{4}$$

где $\rho_{i,j} = r_{i,j}/R$ — расстояние между ионами *i* и *j*, выраженное в единицах *R*. Знак "минус" берется, если заряды ионов *i* и *j* одинакового знака, "плюс" — если заряды противоположных знаков.

В связи с важностью энергии Маделунга для процесса упорядочения, в настоящей работе поставлена задача рассчитать энергию Маделунга для упорядоченной и неупорядоченной структур монооксида титана и выявить ее влияние на стабильность упорядоченной фазы, а также на возможность фазовых переходов порядок—беспорядок при повышении температуры.

2. Метод исследования

В качестве объекта исследования в настоящей работе выбран монооксид титана стехиометрического состава. В этом случае из соображений электронейтральности и отсутствия переноса заряда на вакансии следует, что заряд иона титана равен по абсолютной величине заряду иона кислорода $q_{\text{Ti}} = q_{\text{O}}$, а заряд вакансий в обеих подрешетках равен нулю.

Прецизионные рентгено-дифракционные исследования [2,4,10] показали, что расстояние между ближайшими атомами R = 0.418 nm, входящее в выражение (3), при упорядочении изменяется незначительно, не более чем на 0.3%. Такое изменение расстояния слабо влияет на энергию Маделунга, поэтому изменением межатомного расстояния при упорядочении в дальнейшем пренебрегаем.

Таким образом, единственной величиной, определяющей изменение энергии электростатического взаимодействия при упорядочении кристалла, остается постоянная Маделунга α . Найти сумму (4) для трехмерной решетки довольно сложно. Эффективные методы расчета для упорядоченных кристаллических структур были предложены Эвальдом [11] и Эвьеном [12]. Например, найденное значение α для идеальной структуры B1 оказалось равным 1.748. Поскольку использовать эти методы для расчета α в случае разупорядоченного кристалла невозможно, в настоящей работе использован метод компьютерного моделирования.

Рис. 1. Непрерывная нумерация узлов кубической решетки. Изображен куб размером $N \times N \times N$ с разрывом по всем осям. Показаны только узлы, находящиеся на ребрах куба, номера узлов меняются от 0 до (N - 1) по оси X, от 0 до $(N^2 - 1)$ в плоскости XY, от 0 до $(N^3 - 1)$ в выбранном кубе. Номеру каждого узла поставлены в соответствие координаты (X_i, Y_j, Z_k) . В зависимости от содержания вакансий и параметров порядка в узле могут размещаться атом титана, атом кислорода или вакансия. Поверхности разрыва заштрихованы.

Кристаллическая решетка была представлена в виде массива из координат узлов, которые заданы так, как показано на рис. 1. Каждому узлу решетки поставлена в соответствие либо атомная позиция (ион титана или кислорода), либо вакантная. Для всех узлов с координатами (X_i, Y_j, Z_k) организовано суммирование с помощью компьютерной программы. Из-за ограниченного объема памяти и конечной скорости счета компьютера, используя описанный метод, можно рассчитать постоянную Маделунга лишь для кристалла с размерами в несколько нанометров. В связи с этим в работе рассмотрены наночастицы монооксида титана кубической формы, содержащие N^3 узлов решетки B1, где N — число узлов в ребре куба — не превышало 32. Такой кристалл имеет размеры около 15 пт.

3. Зависимость постоянной Маделунга от размера частицы

Кристаллы конечных размеров имеют существенный дефект, это их поверхности. Действительно, сумма $\sum_{i=0}^{N^3-2} \frac{(\pm)}{\rho_i}$, рассчитанная для какого-либо иона, находящегося в центре кристалла, будет отличаться от этой суммы, рассчитанной для атома на поверхности. Поэтому постоянную Маделунга следует искать по более общему выражению

$$\alpha = \frac{\sum_{j=0}^{N^{3}-1} \sum_{i=0,\ i\neq j}^{N^{3}-1} \frac{(\pm)}{\rho_{ij}}}{N^{3}},$$
(5)

которое учитывает окружение каждого конкретного иона в частице вещества.

Логично предположить, что при увеличении размера кристалла сокращается доля узлов на поверхности, и значение постоянной Маделунга, возрастая, непрерывно и монотонно стремится к значению для бесконечного кристалла. Это предположение подтверждено расчетами, проведенными в работе методом компьютерного моделирования. Результаты расчетов постоянной Маделунга в зависимости от размера кристалла для структуры B1, не содержащей вакансий, показаны на рис. 2. Аппроксимация рассчитанной зависимости показывает, что в пределах ошибки расчета зависимость удовлетворительно описывается функцией, асимптота которой с необходимой точностью совпадает с истинным значением постоянной Маделунга для бесконечной идеальной структуры B1

$$\alpha = 1.748 - \frac{0.403}{N} - \frac{0.144}{N^2} - \frac{-0.571}{N^3}.$$
 (6)

Результаты расчетов представлены на рис. 2.

Многочлен типа (6) использовался в настоящей работе и для нахождения постоянной Маделунга для бесконечного кристалла с упорядоченной структурой Ti₅O₅. Результаты расчета для кристаллов различного размера

Рис. 2. Зависимость постоянной Маделунга от размера кристалла TiO_{1.0} с неупорядоченной структурой *B*1.

Рис. 3. Зависимость постоянной Маделунга от размера кристалла $TiO_{1.0}$ с упорядоченной структурой Ti_5O_5 .

представлены на рис. З. Аппроксимация методом наименьших квадратов показала, что в случае упорядоченной структуры зависимость постоянной Маделунга от числа узлов в работе *N* модельной наночастицы имеет вид

$$\alpha = 1.286 - \frac{0.516}{N} + \frac{1.162}{N^2} - \frac{5.310}{N^3}.$$
 (7)

Необходимо отметить, что для кристалла с 27 000 узлами отклонение рассчитанного значения $\alpha = 1.270$ от полученного значения α для бесконечного кристалла с той же структурой Ti₅O₅ составляет всего лишь 1.2%. Будем считать это отклонение приемлемым и вести расчеты для кристалла, содержащего структурные вакансии при числе узлов 27 000, т.е. при N = 30, предполагая, что отклонение не сильно изменяется при изменении других переменных, например параметра дальнего порядка.

Зависимость постоянной Маделунга от параметра дальнего порядка

Расположение вакансий в моноклинном монооксиде титана Ti_5O_5 определяется с помощью функции рас-

пределения атомов [4]. С учетом системы координат, использованной в расчетах, эта функция для подрешеток титана и кислорода будет иметь вид

$$n_{\text{Ti}}(x_1, y_1, z_1) = x - (\eta^{\text{Ti}}/6) \cos \pi z_1$$
$$- (\eta^{\text{Ti}}/3) \cos[2\pi(x_1 + z_1)/3]$$
$$- (\eta^{\text{Ti}}/3) \cos[2\pi(x_1 + z_1/2)/3], \quad (8)$$
$$n_{\text{O}}(x_1, y_1, z_1) = z + (\eta^{\text{O}}/6) \cos \pi z_1$$

$$-(\eta^{O}/3)\cos[2\pi(x_{1}+z_{1})/3]$$
$$-(\eta^{O}/3)\cos[2\pi(x_{1}+z_{1}/2)/3].$$
(9)

Здесь $n_{\rm O}$ и $n_{\rm Ti}$ — вероятности обнаружения атома кислорода или титана соответственно в узле с координатами (x_1, y_1, z_1) , x и z — доли атомных позиций в подрешетках, $\eta_{\rm Ti}$ и $\eta_{\rm O}$ — параметры дальнего порядка для подрешеток титана и кислорода. В расчетах использовано условие, что $\eta_{\rm Ti} = \eta_{\rm O} = \eta$.

Параметры дальнего порядка, равные нулю, отвечают полностью разупорядоченной структуре. В этом случае при x = z = 5/6 получим, что $n_{\text{Ti}} = 5/6$ и $n_{\text{O}} = 5/6$ для любых координат (x_1 , y_1 , z_1). Рассчитать постоянную Маделунга в этом случае можно следующим образом:

$$\alpha = 1.748 \left(\frac{5}{6}\right)^2 = 1.214.$$

Если параметры дальнего порядка отличаются от нуля, то образуется моноклинная сверхструктура Ti_5O_5 . Значение α для полностью упорядоченной сверхструктуры, как следует из формулы (7), составляет 1.286, что на 6% выше, чем для неупорядоченного состояния. Неупорядоченная и упорядоченная структуры монооксида титана представлены на рис. 4 и 5.

Если параметры дальнего порядка меньше единицы, то вероятность обнаружения атомов и вакансий нарушается. Рассчитанная в работе зависимость постоянной Маделунга от параметра дальнего порядка η_{Ti} для кристалла с 27 000 узлами решетки *B*1 представлена на графике (рис. 6).

Расчет постоянной Маделунга для кристалла конечных размеров с параметром дальнего порядка, отличным от единицы, сильно затруднен, так как рассчитываемая величина зависит от конкретного расположения вакансий, задаваемого программой случайным образом. Необходимо брать среднее значение α в серии вычислительных экспериментов, проведенной для каждого значения η . Аппроксимация по методу наименьших квадратов показала, что расчетные данные удовлетворительно описываются параболой

$$\alpha = 0.056\eta^2 + 1.206. \tag{10}$$

Для того чтобы оценить температуру, до которой электростатическое взаимодействие будет удерживать

•	$^{\circ}$	•	\bigcirc	•	\circ	•	\bigcirc	•	\bigcirc	igodot	•	\circ	•	\bigcirc	•	0	•	igodot	•
	\bigcirc	0	•	igodot	\bigcirc	igodot	٠	0	•	\bigcirc	igodot	\bigcirc	\bigcirc	•	۲	٠		•	
•	\bigcirc	•	\bigcirc	•	igodol	•	igodot	•	\bigcirc	\circ	٠	igodol	٠	\bigcirc	•	igodot	•	igodot	0
	•	0	\bigcirc	igodot	٠		\bigcirc	igodot	\bigcirc	\bigcirc		٠	\bigcirc	٠	igodot	٠	0	٠	igodol
•	igodot	•	igodol	•	\bigcirc	•	igodot	•	\bigcirc	\bigcirc	•	igodol	•	igodot	\bigcirc	igodot	٠	igodol	Ο
	•	0	•	\bigcirc	٠	igodot	٠	igodot	٠	٠	igodot	\bigcirc	igodot	٠	igodot	٠	igodot	٠	igodot
\bigcirc	0	•	igodot	•	igodol	•	\bigcirc	•	\bigcirc	igodot	•	igodol	•	igodot	٠	•	•	•	٠
igodot	٠		٠	igodot	\bigcirc	\bigcirc	٠	igodot	٠	\bigcirc	0	\bigcirc	0	٠	0	0	igodot	Ο	igodot
•	\bigcirc	•	igodot	•	\circ	•	igodol	•	igodol	igodol	•	igodol	•	\bigcirc	•	igodol	•	igodol	•
				\bigcirc			•		\bigcirc	\bigcirc				•		\cap		•	\odot

Рис. 4. Две соседние атомные плоскости неупорядоченного кубического монооксида титана, перпендикулярные направлению $[010]_{B1}$. Черными кружками обозначены атомы титана, серыми — атомы кислорода, белыми — вакансии.

Рис. 5. Две соседние атомные плоскости структуры Ti_5O_5 , перпендикулярные направлению $[010]_{B1}$. Показаны границы элементарных ячеек. Обозначения те же, что на рис. 4.

Рис. 6. Зависимость постоянной Маделунга стехиометрического монооксида титана с концентрацией вакансий в титановой и кислородной подрешетках, равной 1/6, от параметра дальнего порядка упорядоченной фазы Ti_5O_5 . Для каждой точки проведено десять вычислительных экспериментов. Показаны интервалы, в которые попадает истинное значение рассчитываемой величины с вероятностью 0.95. Параметру дальнего порядка, равному единице, соответствует единственно возможное расположение вакансий в кристалле, поэтому значение константы Маделунга известно точно и интервал ошибок отсутствует.

систему в упорядоченном состоянии, необходимо сравнить энтропию в упорядоченном и неупорядоченном состояниях. В случае полного упорядочения конфигурационная энтропия кристалла равна нулю. Оценим энтропию неупорядоченной фазы. Все состояния кристалла из N³ узлов, в котором 1/6 часть узлов занята структурными вакансиями, составит

$$\Omega = \left(\frac{(N^3/2)!}{(1/6N^3/2)!(5/6N^3/2)!}\right)^2.$$
 (11)

Используя определение (2) и формулу Стирлинга, получим, что энтропия равна $S = k_B \ln \Omega = 0.451 k_B N^3$. Таким образом, изменение энтропии ΔS при переходе от полностью неупорядоченного к полностью упорядоченному состоянию составит $\Delta S = -3.893 \cdot 10^{-5} N^3 \text{ eV/K}.$ С другой стороны, изменение энергии Маделунга составит $\Delta E = -0.827 N^3$ eV. Разница в энергии Маделунга упорядоченного и неупорядоченного состояний значительно превышает по абсолютной величине разницу в энтропийном слагаемом. В связи с этим при комнатной температуре упорядочение может быть выгодно именно за счет минимизации энергии электростатического взаимодействия. Используя уравнение (1), можно оценить максимальную температуру фазового перехода. Она составляет $T_p = \Delta E / \Delta S = 21236$ K, что свидетельствует об очень сильной стабилизации упорядоченной фазы за счет электростатического взаимодействия в монооксиде титана. Однако, согласно эксперименту, фазовый переход порядок-беспорядок в монооксиде титана происходит уже при температуре около 1600 К [1]. Такая большая разница между температурой фазового перехода, рассчитанной в настоящей работе при учете только электростатического взаимодействия в монооксиде титана, и экспериментально измеренной температурой перехода свидетельствует о том, что на фазовый переход влияют и другие взаимодействия.

В заключение необходимо отметить, что электростатическое взаимодействие существенно стабилизует упорядоченную фазу Ti_5O_5 . Его влияние сохраняется вплоть до температуры плавления монооксида титана.

Список литературы

- A.I. Gusev, A.A. Rempel, A. Magerl. Disorder and order in strongly non-stoichiometric compounds. Transition metal carbides, nitrides and oxides. Springer, Berlin (2001). 607 p.
- [2] S. Anderson, B. Collen, U. Kuylenstierna, A. Magneli. Acta Chem. Scand. 11, 10, 1641 (1957).
- [3] S.P. Denker. J. Phys. Chem. Solids 25, 1397 (1964).
- [4] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Неорган. материалы 37, 6, 716 (2001).
- [5] А.И. Гусев, А.А. Ремпель. Нестехиометрия, беспорядок и порядок в твердом виде. УрО РАН, Екатеринбург (2001). 580 с.
- [6] Б.В. Хаенко, Э.Т. Качковская. Порошковая металлургия 6, 52 (1986).
- [7] А.Х. Брегер. ЖФХ 15, 7-8, 927 (1941).

- [8] А.В. Губанов, А.Л. Ивановский, М.В. Рыжков. Квантовая химия в материаловедении. Наука, М. (1987). 336 с.
- [9] C. Kittel. Introduction to solid state physics. 7th ed. Wiley &Sons, N.Y. (1996). 673 p.
- [10] M.D. Banus, T.B. Reed. Phys. Rev. B 5, 8, 2775 (1972).
- [11] P.P. Ewald. Ann. Phys. 64, 253 (1921).
- [12] H.M. Evjen. Phys. Rev. 39, 675 (1932).