Низкоэнергетические решеточные возбуждения в декагональном AI—Ni—Fe и икосаэдрическом AI—Cu—Fe квазикристаллах и кубической фазе (AI, Si)—Cu—Fe

© Г.Х. Панова, М.Г. Землянов, П.П. Паршин, А.А. Шиков, R.A. Brand*

Российский научный центр "Курчатовский институт", Mocквa, Рoccия * INT, Forschungszentrum Karlsruhe, Eggenstein–Leopoldshafen, Germany E-mail: shikov@isssph.kiae.ru

(Поступила в Редакцию 3 августа 2009 г.)

В области температур 4.2–40 К исследована теплоемкость декагонального $Al_{71.3}Ni_{24.0}Fe_{4.7}$, икосаэдрического $Al_{62}Cu_{25.5}Fe_{12.5}$ квазикристаллов и кубической фазы $Al_{55.0}Si_{7.0}Cu_{25.5}Fe_{12.5}$, аппроксимирующей структуру икосаэдрического сплава. Для всех трех соединений наблюдаются низкие значения коэффициента электронной теплоемкости и значительные отклонения низкотемпературной решеточной теплоемкости от кубического температурного закона в области 5–10 К. Проведены сравнение и совместный анализ результатов, полученных термодинамическим методом и методом неупругого рассеяния нейтронов. Установлено, что в области энергий ε < 14 meV спектральная плотность тепловых колебаний в икосаэдрическом квазикристалле заметно выше, чем в кубическом аппроксиманте и в декагональном квазикристалле.

Работа поддержана инициативным проектом РНЦ. КИ № 18.

1. Введение

Атомное строение квазикристаллических сплавов отличается как от обычных кристаллов, поскольку структура квазикристалла принципиально не имеет периодичности одновременно по всем трем пространственным измерениям, так и от аморфных тел. По данным электронной, рентгеновской и нейтронной дифракции [1–3] строение квазикристаллов характеризуется наличием дальнего порядка в расположении атомов. Этот дальний порядок, который называют квазипериодичностью, допускает наличие осей симметрии, несовместимых с пространственной периодичностью и запрещенных в классической трехмерной кристаллографии.

В частности, икосаэдрические квазикристаллы имеют ось симметрии пятого порядка, а их структуру можно представить как систему взаимопроникающих кластеров, диаметр которых составляет несколько межатомных расстояний, упакованных квазипериодически во всех трех пространственных измерениях. Типичным представителем этого класса квазикристаллов является сплав с составом $Al_{62}Cu_{25.5}Fe_{12.5}$ (*i*-AlCuFe), строение и свойства которого достаточно хорошо исследованы [3–5].

Для декагональных квазикристаллов характерно наличие оси симметрии десятого порядка и пространственной периодичности вдоль этой оси. В плоскостях, перпендикулярных оси десятого порядка, реализуется двумерный квазипериодический порядок в расположении атомов [4]. Таким образом, эти сплавы демонстрируют смешанный периодический и квазипериодический способ пространственного расположения атомов, а представителем этого класса квазикристаллов является сплав с составом Al_{71.3}Ni₂₄Fe_{4.7} (*d*-AlNiFe). Для приближенного описания строения квазикристаллов часто используют структуры периодических кристаллических сплавов, аппроксимирующих строение квазикристалла в ограниченной области пространства [6]. Эти сплавы, которые принято называть кристаллическими аппроксимантами, по химическому составу близки к соответствующим квазикристаллам, а в структурном отношении представляют собой обычный трехмерный кристалл, построенный из таких же атомных кластеров, как и квазикристалл, но упакованных периодически. В частности, для икосаэдрического квазикристалла *i*-AlCuFe существует простейший кубический аппроксимант с составом $Al_{55}Si_7Cu_{25.5}Fe_{12.5}$, в котором для стабилизации кристаллической структуры часть атомов алюминия замещена кремнием [7].

Не исключено, что необычные свойства квазикристаллов связаны с особенностями их строения и, в частности, с отсутствием пространственной периодичности расположения атомов. В свою очередь необычное строение этих сплавов обусловлено особенностями межатомного взаимодействия, которые, как известно, находят свое отражение в спектрах тепловых колебаний атомов.

Следует ожидать, что разные способы формирования дальнего порядка — квазипериодического в случае икосаэдрического квазикристалла, периодического в случае кристалла аппроксиманта и смешанного в случае декагонального квазикристалла — находят свое отражение в атомной динамике и низкотемпературной термодинамике этих сплавов. Причем в первую очередь различия будут проявляться в области низкочастотных длинноволновых тепловых колебаний, отражающих коррелированное движение тяжелых атомных кластеров и специфику дальнего порядка. Наиболее полная информация о динамике квазикристаллических систем может быть получена с помощью комплементарных методов, основанных на применении неупругого рассеяния нейтронов и термодинамических исследований.

Поскольку существенный вклад в колебательную теплоемкость при температуре T вносят колебания в той области энергии E, где E < 5kT (k — постоянная Больцмана), низкотемпературная теплоемкость содержит информацию о низкочастотной части спектра колебаний. По результатам измерений теплоемкости в широком интервале температур можно судить о характеристиках колебательных и электронных спектров возбуждений. При этом следует особо отметить, что экспериментальные данные по низкотемпературной теплоемкости дают возможность проанализировать низкочастотный участок спектра тепловых колебаний ($\hbar\omega < 2 \text{ meV}$), труднодоступный для методов неупругого рассеяния нейтронов.

Исследования низкочастотных решеточных возбуждений в квазикристаллах термодинамическими методами проводились в ряде работ [8–12]. В частности, результаты [10], полученные для икосаэдрического квазикристалла AlCuFe, указывают на сложное поведение решеточного вклада в теплоемкость C_{latt} в области низких температур. С учетом этих данных представляется исключительно важным сравнительное исследование низкочастотной динамики сплавов, в которых реализованы различные способы формирования дальнего порядка.

Целью настоящей работы является изучение влияния различий дальнего порядка на характеристики спектров колебательных и электронных возбуждений декагонального Al–Ni–Fe и икосаэдрического Al–Cu–Fe квазикристаллов, а также кубического аппроксиманта (Al, Si)–Cu–Fe.

2. Методика эксперимента

Измерения теплоемкости выполнялись на образцах декагонального $Al_{71.3}Ni_{24.0}Fe_{4.7}$ и икосаэдрического $Al_{62.0}Cu_{25.5}Fe_{12.5}$ квазикристаллов, а также аппроксиманта $Al_{55.0}Si_{7.0}Cu_{25.5}Fe_{12.5}$ с естественной смесью изотопов всех элементов. Эти же образцы наряду с образцами, изотопически обогащенными по меди, железу и никелю, использовались в экспериментах по неупругому рассеянию нейтронов [13–15]. Процедуры синтеза и аттестации образцов, используемых в данном исследовании, описаны в работах [5,7,16].

Теплоемкость образцов измерялась адиабатическим методом с импульсным нагревом в микрокалориметре в области температур 4.2–40 К с экспериментальной ошибкой 1–2%.

В работе [13] опубликованы результаты исследования атомной динамики икосаэдрического квазикристалла *i*-AlCuFe методом неупругого рассеяния нейтронов с применением техники изотопического контраста, там же приведены подробности проведения эксперимента и обработки данных. Идея метода изотопического контраста в неупругом рассеянии нейтронов [17] основана на том факте, что в ряде случаев разные изотопы одного и того же химического элемента имеют заметно различающиеся сечения рассеяния нейтронов [18]. В этом случае возникает возможность экспериментального восстановления парциальных спектров тепловых колебаний атомов различных химических элементов, составляющих многоатомное соединение, и спектра тепловых колебаний соединения в целом. В рамках настоящей работы такие исследования были проведены нами при комнатной температуре на изотопически обогащенных образцах декагонального квазикристалла d-AlNiFe и кубического аппроксиманта (Al, Si)-Сu-Fe для икосаэдрической фазы *i*-AlCuFe.

3. Экспериментальные результаты

Результаты измерений теплоемкости декагонального Al_{71.3}Ni_{24.0}Fe_{4.7} и икосаэдрического Al₆₂Cu_{25.5}Fe_{12.5} квазикристаллов и аппроксиманта Al₅₅Si₇Cu_{25.5}Fe_{12.5} в области низких температур представлены на рис. 1–3.

На рис. 1 показано поведение теплоемкости исследованных сплавов в координатах $C/T-T^2$. В диапазоне температур 4.2 < T < 5.5 К полученные экспериментальные данные хорошо описываются зависимостью вида $C = \gamma T + \beta T^3$, где первый член учитывает электронный вклад в теплоемкость, а второй — решеточный вклад в дебаевском приближении (см. штриховые линии). Это означает, что для всех исследованных сплавов в области энергий $\varepsilon < 3$ meV и при T < 5.5 К спектральная плотность тепловых колебаний $g(\varepsilon)$ пропорциональ-

Рис. 1. Теплоемкости декагонального Al–Ni–Fe (1), икосаэдрического Al–Cu–Fe (2) квазикристаллов и аппроксиманта (Al, Si)–Cu–Fe (3) в области низких температур в координатах $C/T-T^2$. Штриховые линии — результат экстраполяции экспериментальных данных методом наименьших квадратов. Сплошные линии проведены через экспериментальные точки для удобства зрительного восприятия.

на квадрату энергии. Значения коэффициентов электронной γ и решеточной β теплоемкости, полученных линейной аппроксимацией экспериментальных данных по методу наименьших квадратов, а также предельные низкотемпературные значения характеристической температуры Дебая $\Theta_D(0) = \sqrt[3]{12\pi^4 R/5\beta}$ (где R — универсальная газовая постоянная) представлены в таблице.

Сравнение коэффициентов электронной теплоемкости для исследуемых систем показывает, что элек-

Рис. 2. Решеточные теплоемкости для Al–Ni–Fe (1), Al–Cu–Fe (2) и (Al,Si)–Cu–Fe (3). Штриховые линии представляют степенной закон T^n , который выполняется для исследованных систем в интервале температур ~ 5.5–11 К, как это следует из рис. 3. Значения *n* приведены в тексте. На вставке представлены температурные зависимости $\Theta_D(T)$ для тех же систем.

Рис. 3. Решеточные теплоемкости для Al–Ni–Fe (1), Al–Cu–Fe (2) и (Al,Si)–Cu–Fe (3), представленные в двойных логарифмических координатах в интервале температур 4.2–40 К. Прямые линии, полученные методом наименыших квадратов, определяют показатель степени в температурной зависимости решеточной теплоемкости $C_{\text{lat}} = \beta T^n$ в области отклонения от акустического закона T^3 .

Параметры, характеризующие декагональный $Al_{71.3}Ni_{24.0}Fe_{4.7}$, икосаэдрический $Al_{62}Cu_{25.5}Fe_{12.5}$ квазикристаллы и аппроксимант $Al_{55.0}Si_{7.0}Cu_{25.5}Fe_{12.5}$

Система	γ , mJ/g-at · K ²	eta, mJ/g-at · K ⁴	$\Theta_D(0), K$
$\begin{array}{c} Al_{62.0}Cu_{25.5}Fe_{12.5}\\ Al_{55.0}Si_{7.0}Cu_{25.5}Fe_{12.5}\\ Al_{71.3}Ni_{24.0}Fe_{4.7} \end{array}$	0.40 0.64 0.80	$\begin{array}{c} 0.025 \\ 0.005_4 \\ 0.006_5 \end{array}$	425 710 670

тронная теплоемкость икосаэдрического квазикристалла Al-Cu-Fe вдвое меньше, чем у декагонального квазикристалла Al-Ni-Fe, и на 60% меньше электронной теплоемкости аппроксиманта (Al, Si)-Cu-Fe. Во всех исследованных сплавах коэффициенты γ существенно меньше величин, характерных для кристаллических металлов и их сплавов, что свидетельствует о низкой плотности электронных состояний на уровне Ферми.

Из сравнения $\Theta_D(0)$ для исследованных систем следует, что дебаевский параметр для *d*-Al–Ni–Fe больше, чем для *i*-Al–Cu–Fe, и наибольшее значение $\Theta_D(0)$ наблюдается для аппроксиманта (Al, Si)–Cu–Fe. Следовательно, для икосаэдрической фазы Al–Cu–Fe спектральная плотность колебательных состояний выше, чем для декагонального квазикристалла Al–Ni–Fe. В свою очередь плотность колебательных состояний для декагонального квазикристалла Al–Ni–Fe выше, чем для кубического аппроксиманта (Al, Si)–Cu–Fe.

При T > 5.5 К наблюдается заметное отклонение температурных зависимостей теплоемкости от дебаевского закона. Анализ колебательной компоненты теплоемкости в этой области температур удобно проводить, представив температурную зависимость теплоемкости в координатах $C_{\text{lat}}/T^3 - T$. Решеточный вклад в теплоемкость C_{lat} получен в результате вычитания электронного вклада γT из общей теплоемкости C.

Как видно из рис. 2, в области температур T > 5.5 K величины $C_{\rm lat}(T)/T^3$ для всех исследованных сплавов резко возрастают, проходят через широкий максимум и далее плавно спадают с ростом температуры. Рост величины $C_{\text{lat}}(T)/T^3$ с температурой и наличие наблюдаемых максимумов свидетельствуют об увеличении колебательной теплоемкости по отношению к закону T^3 и соответственно об отклонении плотности колебательных состояний во всех трех сплавах от дебаевского закона. Не исключено, что это отклонение связано с наличием в спектре колебаний низколежащих оптических ветвей, предсказанных на основе теоретических расчетов динамики двумерных квазикристаллов [19] и наблюдавшихся экспериментально в икосаэдрическом квазикристалле Al-Pd-Mn [20]. Далее, из рис. 2 следует, что теплоемкость икосаэдрического сплава лежит выше теплоемкости кубического аппроксиманта и декагонального сплава, а следовательно, таким же образом должны соотноситься между собой и плотности колебательных

Рис. 4. Низкоэнергетическая часть спектров тепловых колебаний для икосаэдрического квазикристалла Al–Cu–Fe (1), кубического аппроксиманта (Al, Si)–Cu–Fe (2), декагонального квазикристалла Al–Ni–Fe (3).

состояний. Кроме того, наблюдаются различные наклоны прямых, аппроксимирующих зависимости $C(T)/T^3$ в области температур 5.5 < T < 10 K.

 $C_{\rm lat}(T)/T^3$ Резкое возрастание в интервале 5.5 < T < 10 K указывает на существенное увеличение показателя степени при Т в температурной зависимости $C_{\text{lat}} = \beta T^n$. При анализе температурной зависимости решеточной теплоемкости в логарифмическом масштабе (рис. 3) установлено, что для исследуемых сплавов в области 5.5-10 К эти показатели степени составляют соответственно n_d = 5.8 для декагонального квазикристалла Al-Ni-Fe, n_i = 4.6 для икосаэдрического квазикристалла Al–Cu–Fe и $n_a = 7.1$ для аппроксиманта Al-Si-Cu-Fe. Полученные значения показателей степени при Т для решеточной теплоемкости служат еще одним доказательством того, что для исследованных систем с увеличением энергии ε плотность тепловых колебаний $g(\varepsilon)$ растет быстрее, чем в дебаевской модели.

Из экспериментальных данных по неупругому рассеянию нейтронов на изотопически обогащенных образцах декагонального квазикристалла *d*-AlNiFe и кубического аппроксиманта Al(Si)CuFe без каких-либо модельных представлений удалось восстановить спектры тепловых колебаний этих сплавов. Подробный анализ полученных результатов будет опубликован в отдельных работах, а здесь приводятся только данные о низкоэнергетической части спектров колебательных возбуждений в сплавах *d*-AlNiFe и Al(Si)CuFe (рис. 4) в сравнении с опубликованными данными для *i*-AlCuFe [13].

При сравнении экспериментальных данных, полученных для исследованных сплавов различными методами, необходимо учитывать следующие обстоятельства. Спектры тепловых колебаний восстановлены из данных экспериментов по неупругому рассеянию нейтронов при комнатной температуре, в то время как теплоемкость измерялась в диапазоне 4.2–40 К. Точность восстановления низкоэнергетической части спектра из данных по неупругому рассеянию нейтронов на образцах с преимущественно когерентно рассеивающими атомами существенно ограничена. Это связано с малой величиной объема фазового пространства, по которому проводится усреднение, в процессе реализации некогерентного приближения [21]. Кроме того, при малых передачах энергии (ε < 3 meV) возникают проблемы с корректным учетом вкладов упругого и квазиупругого рассеяний нейтронов в экспериментально измеряемые спектры, тем более что квазиупругое рассеяние нейтронов на фазонных степенях свободы в квазикристаллах может быть довольно заметным [22]. Оценки показывают, что в этих условиях надежное восстановление спектра тепловых колебаний при энергии $\varepsilon < 2 \,\mathrm{meV}$ практически невозможно, а погрешность восстановления спектра тепловых колебаний в области энергий 2 < ε < 8 meV изменяется в диапазоне 15–10%, в то время как при энергии 70 meV она не превышает 5%.

Сравнение спектров, приведенных на рис. 4, показывает, что при энергиях $\varepsilon < 14 \,\mathrm{meV}$ плотность колебательных состояний икосаэдрического квазикристалла лежит выше плотности колебательных состояний кубического аппроксиманта, которая в свою очередь в диапазоне $8 < \varepsilon < 14 \, {\rm meV}$ выше, чем спектр декагонального квазикристалла. Эти наблюдения в качественном согласии с данными, полученными из измерений низкотемпературной теплоемкости, и свидетельствуют о наличии в икосаэдрическом квазикристалле низкочастотных решеточных возбуждений, отсутствующих в случае периодического кристалла. Что же касается спектра тепловых колебаний декагонального квазикристалла, то имеются основания предполагать, что он заметно жестче спектра икосаэдрического. По-видимому, это связано с более сильным межатомным взаимодействием и наличием трансляционной симметрии вдоль оси десятого порядка.

4. Заключение

В интервале температур 4.2-40 K экспериментально исследована теплоемкость декагонального $Al_{71.3}Ni_{24}Fe_{4.7}$ и икосаэдрического $Al_{62}Cu_{25.5}Fe_{12.5}$ квазикристаллов, а также кристаллического сплава $Al_{55}Si_7Cu_{25.5}Fe_{12.5}$, аппроксимирующего структуру икосаэдрического квазикристалла. Установлено следующее.

1) Дебаевская зависимость теплоемкости от температуры во всех трех сплавах наблюдается только в интервале температур 4.2–5 К.

2) При температурах выше 5.5 К для всех исследованных сплавов решеточная теплоемкость растет заметно быстрее, чем это имеет место в дебаевской модели. Причем практически во всем исследованном диапазоне температур теплоемкость для икосаэдрического квазикристалла больше, чем для кубического аппроксиманта, которая в свою очередь больше, чем для декагонального сплава. 3) Коэффициенты электронной теплоемкости существенно меньше величин, характерных для чистых металлов. Отсюда следует, что также меньше и плотность электронных состояний на уровне Ферми.

4) Экспериментальные данные по низкотемпературной теплоемкости качественно согласуются с результатами экспериментов по неупругому рассеянию нейтронов, из которых следует, что в области малых энергий ($\varepsilon < 14 \text{ meV}$) плотность колебательных состояний для икосаэдрического сплава заметно больше, чем для кубического аппроксиманта и декагонального квазикристалла.

На основе анализа всей совокупности экспериментальных данных можно сделать вывод о том, что при реализации квазипериодического дальнего порядка в икосаэдрическом квазикристалле возникают дополнительные по сравнению с кристаллическим аппроксимантом низкочастотные колебательные возбуждения, которые можно отождествить с низколежащими оптическими ветвями.

Экспериментальные данные по низкотемпературной теплоемкости и низкоэнергетической части колебательного спектра икосаэдрического и декагонального квазикристалла указывают на то, что спектр тепловых колебаний декагонального квазикристалла в области малых энергий жестче спектра икосаэдрического.

Авторы выражают благодарность Б. Грушко и Д. Павлюченкову за приготовление и аттестацию образцов, а также помощь в проведении измерений.

Список литературы

- D. Shechtman, I. Blech, D. Gratias, J.W. Cahn. Phys. Rev. Lett. 53, 1951 (1984).
- [2] P.A. Bansel, P.A. Heiney, P.W. Stephens, A.I. Goldman, P.M. Horn. Phys. Rev. Lett. 54, 2422 (1985).
- [3] M. Quiquandon, A. Quivy, S. Lefebre, E. Elkaim, G. Heger, A. Katz, D. Gratias. Phys. Rev. B 44, 2071 (1991).
- [4] E. Huttunen-Saarivirta. J. Alloys Comp. 363, 150 (2004).
- [5] R.A. Brand, J. Pelloth, F. Hippert, Y. Calvayrac. J. Phys.: Cond. Matter 11, 39, 7523 (1999).
- [6] C.L. Henley, V. Elser. Phil. Mag. B 53, L 59 (1986).
- [7] A. Quivy, M. Quiquandon, Y. Calvayrac, F. Faudot, D. Gratias, C. Berger, R.A. Brand, V. Simonet, F. Hippert. J. Phys.: Cond. Matter 8, 23, 4223 (1996).
- [8] T. Klein, C. Berger, G. Fourcaudot, J.C. Grieco, J.C. Lasjaunias. J. Non-Cryst. Solids 153–154, 312 (1993).
- [9] K. Wang, C. Scheidt, P. Garoche, Y. Calvayrac. J. Non-Cryst. Solids 153–154, 357 (1993).
- [10] J.C. Lasjaunias, Y. Calvayrac, H. Yang. J. Phys. I (France) 7, 959 (1997).
- [11] A. Inaba, R. Lortz, C. Meingast, J.Q. Guo, A.-P. Tsai. J. Alloys Comp. 342, 302 (2002).
- [12] C.A. Swenson, T.A. Lograsso, A.R. Ross, N.E. Anderson. Phys. Rev. B 66, 184 206 (2002).
- [13] П.П. Паршин, М.Г. Землянов, А.В. Машков, Р.А. Бранд, А.-Ж. Диано, И. Кальвайрак. ФТТ 46, 3, 510 (2004).

- [14] П.П. Паршин, М.Г. Землянов, Р.А. Бранд. ЖЭТФ 123, 4(10), 785 (2005).
- [15] П.П. Паршин, М.Г. Землянов, Р.А. Бранд. Кристаллография 52, 3, 458 (2007).
- [16] V. Simonet, F. Hippert, R.A. Brand, Y. Calvayrac, J. Rodriguez-Carvajal, A. Sadoc. Phys. Rev. B 72, 024214 (2005).
- [17] Ю. Каган. ЖЭТФ 42, 1375 (1962).
- [18] V.F. Sears. Neutron News 3, 26 (1992).
- [19] J.A. Ashraff, J.-M. Luck. Phys. Rev. B 41, 4314 (1990).
- [20] M. de Boissieu, K. Shibata, R. Currat, A.Q.R. Baron, S. Tsutsui, A.-P. Tsai. J. Non-Cryst. Solids 334–335, 303 (2004).
- [21] В.С. Оскотский. ФТТ 9, 550 (1967).
- [22] S. Lyonnard, G. Coddens, Y. Calvayrac, D. Gratias. Phys. Rev. B 53, 3150 (1996).