Атомная структура нанокластеров Pd_n (4 $\leq n \leq$ 15)

© Е.А. Михайлов, А.Т. Косилов

Воронежский государственный технический университет,

Воронеж, Россия

E-mail: mikhaylovea@mail.ru

(Поступила в Редакцию 6 мая 2009 г.)

Представлены результаты молекулярно-динамического моделирования процесса поатомного роста наночастицы палладия. Полученные структуры для кластеров Pd_n хорошо согласуются с результатами расчетов из первых принципов. Впервые с использованием полуэмпирических потенциалов межатомного взаимодействия получены низкосимметричные атомные конфигурации для структуры кластеров Pd_4 и Pd_{13} .

1. Введение

Нанокластеры размером $4 \le n \le 15$ (n — число атомов) в отличие от массивных кристаллов состоят в основном только из поверхностных атомов, поэтому их геометрические конфигурации и симметрия связаны непосредственно со структурой электронной подсистемы. Связь эта носит самосогласованный характер. Атомная структура наноразмерных металлических кластеров может быть как кристаллической, т.е. совместимой с трансляционной симметрией, так и икосаэдрической или декаэдрической, содержащей оси симметрии пятого порядка [1]. Уникальные магнитные и каталитические свойства указанных объектов [2] вызывают повышенный интерес к их структурной организации, морфологии, вопросам влияния размеров кластеров на их функциональные свойства. В этой связи установление однозначного соответствия между свойствами нанокристаллов и их геометрическими параметрами (расстояниями между атомами, угловыми корреляционными функциями) становится одной из важнейших задач физики наноразмерных кластеров.

Современные экспериментальные методы изучения нанокластеров (EXAFS, HREM) позволяют определить лишь их симметрию и некоторые усредненные характеристики (среднее межатомное расстояние, координационное число) [1,3–7]. Поэтому для изучения геометрической структуры кластеров, расчета их энергетических характеристик широко применяются теоретические подходы, основанные на расчете из первых принципов [8–18]. Эти методы требут значительных компьютерных ресурсов.

Применение полуэмпирических потенциалов межатомного взаимодействия, в частности, потенциала, рассчитанного в рамках метода погруженного атома (ЕАМ) [19,20], позволяет значительно снизить время компьютерного расчета. Однако при параметризации ЕАМ-потенциала используют характеристики, найденные для массивных кристаллов (параметр решетки, упругие константы, энергия сублимации и т.д.). Кроме того, энергия погружения атома в фоновую электронную плотность в малом кластере может отличаться от энергии погружения в объеме материала. Поэтому возникает вопрос о правомерности применения данного метода

для исследования металлических систем, содержащих от нескольких атомов до нескольких сотен атомов. Так, в работе [21] на основе лишь сравнения энергетических характеристик, полученных разными полуэмпирическими методами, с результатами теоретического расчета, основанного на теории функционала плотности (DFT) для кластеров переходных металлов, указывается, что результаты, полученные с помощью ЕАМ, плохо согласуются с теоретическими, полученными в рамках DFT. Однако сопоставление структурных характеристик в работе не приводится. В настоящее время накоплено значительное количество теоретической информации, свидетельствующей о том, что результаты расчетов из первых принципов также нередко сильно различаются между собой [8–18]. Далее мы покажем, что применение ЕАМ-потенциала при изучении геометрической структуры даже самых малых металлических кластеров зачастую оправдано, а полученные результаты находятся в удовлетворительном соответствии с теоретическими расчетами.

В настоящей работе проведено молекулярно-динамическое моделирование процесса поатомного роста наночастицы палладия. Межатомное взаимодействие рассчитывалось в рамках метода погруженного атома. Полученная нами геометрическая форма кластеров Pd_n , $4 \le n \le 15$, находится в хорошем согласии со многими DFT-расчетами [10,13,14]. Нами обнаружены низкосимметричные атомные конфигурации для структуры кластеров Pd_4 и Pd_{13} , в то время как в предыдущих исследованиях [22–25], выполненных с использованием полуэмпирических потенциалов межатомного взаимодействия, было установлено, что структура кластеров M_4 и M_{13} (M — переходный металл) является тетраэдрической и икосаэдрической соответственно.

2. Компьютерный эксперимент

Согласно ЕАМ, полная потенциальная энергия системы аппроксимируется выражением

$$U = \sum_{i} F_{i}(\rho_{h,i}) + \frac{1}{2} \sum_{i \neq i} \phi_{ij}(r_{ij}), \tag{1}$$

где $F_i(\rho_{h,i})$ — энергия, необходимая для погружения атома i в фоновую электронную систему плотности $\rho_{h,i}$,

а $\phi_{ij}(r_{ij})$ — энергия электростатического отталкивания атомов i и j, находящихся на расстоянии r_{ij} . Плотность электронной системы в окрестности атома i описывается суперпозицией электронных плотностей ρ^a_j соседних атомов j

$$\rho_{h,i} = \sum_{j,j \neq i} \rho_j^a(r_{ij}). \tag{2}$$

Парный потенциал ϕ_{ij} взаимодействия атомов i и j равен

$$\phi_{ij}(r) = \frac{Z_i(r_{ij})Z_j(r_{ij})}{r_{ij}},\tag{3}$$

где $Z_i(r_{ij}), Z_i(r_{ij})$ — эффективные заряды атомов.

Электронные плотности s- и d-орбиталей для атома палладия, рассчитанные методом Харти-Фока, приведены в работе [26]. Параметры, использованные для определения функций F_i и ϕ_{ij} , взяты нами из работы [27].

Для минимизации влияния окружающей среды объектом изучения была выбрана свободная наночастица, не взаимодействующая с подложкой. Исходная модель кластера Pd₄ состояла из четырех атомов, расположенных в вершинах тетраэдра. Кластер имел нулевые начальные импульс и момент импульса. Каждый новый атом добавлялся на поверхность наночастицы случайным образом. Начальный импульс добавляемого атома также был равен нулю. Все кластеры подвергались изотермическому отжигу при температуре $T = 300 \, \mathrm{K}$ в течение t = 30 ps. Для численного интегрирования ньютоновских уравнений движения применялась скоростная форма алгоритма Верле [28] с временным шагом $\Delta t = 1.5 \, \text{fs.}$ После каждого молекулярно-динамического цикла систему методом статической релаксации переводили в состояние с T = 0 K. Такая процедура позволяла провести детальный анализ формирующихся атомных конфигураций без теплового фона.

3. Результаты и обсуждение

Кластеры, полученные путем последовательного присоединения атомов, в процессе отжига могут образовывать не только стабильные, но и метастабильные конфигурации, число которых растет с увеличением количества атомов. Мы не проводили полной оптимизации структуры, однако использование метода молекулярной динамики при исследовании кластеров с малым числом атомов позволяет надеяться, что полученные нами структуры отвечают глобальному минимуму потенциальной энергии.

На рисунке проиллюстрированы равновесные структуры кластеров, полученные в результате отжига. Основные геометрические характеристики кластеров представлены в таблице. Для обозначения структуры кластеров Pd_{13} , Pd_{14} , Pd_{15} мы использовали наборы целых чисел, идентифицирующие многогранники Вороного для данных кластеров. При расчете среднего координационного

Геометрические структуры кластеров Pd_n ($4 \leq n \leq 15$), полученные в результате молекулярно-динамического отжига.

числа ближайшими соседями считались атомы, расстояние между которыми не превышало 0.3 nm (1.09*d*, где *d* — межатомное расстояние в массивном кристалле палладия). Вычисленные значения средней энергии связи для всех кластеров оказались выше значений, полученных с помощью расчетов из первых принципов [8,9,12–16,18]. Как отмечено в работе [29], ЕАМ имеет свойство систематически завышать значения энергии связи для малых кластеров, поэтому при обсуждении результатов мы будем рассматривать не абсолютные, а относительные величины энергий. Точечные группы симметрии кластеров мы будет обозначать, используя символику Шенфлиса.

В процессе отжига все кластеры приняли трехмерные конфигурации. Ранее во многих теоретических исследованиях [10,12–15] было показано, что трехмерные малые кластеры палладия обладают более низкой потециальной энергией по сравнению с планарными. С ростом количества атомов повышались среднее межатомное расстояние $\langle r \rangle$ и среднее координационное число наночастицы $\langle Z \rangle$ (для массивных кристаллов палладия $\langle r \rangle = 0.275$ nm, $\langle Z \rangle = 12$). Единственное существенное

Число атомов n, структура, средняя энергия связи E_b , среднее межатомное расстояние $\langle r \rangle$, среднее координационное число $\langle Z \rangle$ и точечная группа симметрии кластеров палладия

n	Структура	E_b , eV/atom	$\langle r \rangle$, nm	$\langle Z \rangle$	Точечная группа симметрии
4	Искаженный тетраэдр	2.271	0.243	3.00	S_4
5	Тригональная бипирамида	2.401	0.238	3.60	D_{3h}
6	Октаэдр	2.556	0.242	4.00	O_h
7	Пентагональная бипирамида	2.634	0.246	4.57	D_{5h}
8	Октаэдр, накрытый двумя	2.685	0.246	4.50	C_{2v}
9	тетраэдрами Тетрагональная антипризма, накрытая полуоктаэдром	2.720	0.247	4.67	C_{4v}
10	Пентагональная бипирамида, накрытая тремя тетраэдрами	2.783	0.250	5.40	C_s
11	Пентагональная бипирамида, накрытая четырьмя тетраэдрами	2.818	0.253	5.64	C_s
12	Икосаэдр без атома в вершине	2.838	0.252	6.00	C_{5v}
13	0-2-8-2	2.876	0.257	6.00	C_s
14	0-1-10-2	2.910	0.262	6.43	C_s
15	0-0-12-2	2.978	0/262	6.67	C_{6v}

отклонение от этой тенденции наблюдалось при переходе от Pd₄ к Pd₅. Завышенное значение $\langle r \rangle$ в Pd₄ можно объяснить, обратившись к структуре кластера. Кластер Pd₄ претерпел существенные искажения в процессе отжига, не сохранив тетраэдрическую симметрию, при этом его потенциальная энергия уменьшилась на 1.5%. Атомы разделились на две пары, межатомное расстояние внутри пар составило 0.192 nm, расстояние между атомами, находящимися в разных парах, оказалось очень высоким — 0.269 nm, поэтому рассчитанное $\langle r \rangle$ в Pd₄ оказалось выше не только, чем в Pd₅, но и чем в Pd₆. В рамках метода DFT [10,14] расширенным методом Хюккеля [15] проводилась полная оптимизация структуры кластеров Pd_n. Искаженный тетраэдр был определен авторами как структура, отвечающая глобальному минимуму энергии. Атомную перестройку в малых металлических кластерах, приводящую к понижению симметрии, принято объяснять либо проявлением эффекта Яна-Теллера [30] либо магнитоструктурными эффектами.

Рост наночастицы от n=5 до 7 атомов проходил с образованием бипирамидальных конфигураций. Добавление каждого нового атома сопровождалось незначительной реорганизацией структуры кластера. Pd_5 , Pd_6 , Pd_7 — тригональная бипирамида, октаэдр, пентагональная бипирамида соответственно. При этом искажений, характерных для Pd_4 , не наблюдалось. Pd_7 является наименьшим кластером, имеющим ось симметрии пятого порядка, характерную для икосаэдрической структуры. Хотя икосаэдрическая симметрия, как отмечается во многих теоретических и экспериментальных работах (см. [3,4]), предпочтительна для малых кла-

стеров, добавление восьмого атома ликвидировало ось симметрии пятого порядка. Продолжение икосаэдрического роста, подразумевающего политетраэдрическую упаковку, потребовало бы появления в кластере Pd_8 атома с координационным числом Z=3. Энергия такого атома была бы сильно завышена по сравнению с остальными атомами кластера. В структуре наночастицы снова появился октаэдр, на поверхности которого в соседних тетраэдрических позициях расположились еще два атома. Перестройка более плотной икосаэдрической упаковки атомов в менее плотную кубоктаэдрическую (кластер Pd_8 представляет собой часть Γ КЦ-ячейки) объясняет небольшое уменьшение $\langle Z \rangle$ при переходе от Pd_7 к Pd_8 .

Симметрия кластеров Pd_n , $5 \le n \le 8$, полностью согласуется с результатами большинства предыдущих теоретических исследований [10–15]. Для кластера Рф мы получили структуру тетрагональной антипризмы, накрытой полуоктаэдром (обозначим ее Pd_{9-a}). Теоретические расчеты предсказывают для структуры Pd9 либо двойную тригональную антипризму (Pd_{9-b}) [13,14], либо пентагональную бипирамиду, накрытую двумя тетраэдрами (Pd_{9-c}) [12,15]. В работе [13] было показано, что структура Pd_{9-b} стабильнее структуры Pd_{9-a} всего на 0.01 eV/atom (0.4%). В работе [25] авторы, используя метод молекулярной динамики, получили структуру Рф9-а. Учитывая наши данные, а также данные работ [12-15,25], можно предположить, что при 0 К наиболее низкой потенциальной энергией обладают кластеры со структурой Pd_{9-b} или Pd_{9-c}, тогда как при повышенных температурах стабильной становится конфигурация Pd_{9-a} .

Кластер Pd₁₀ имел политетраэдрическую структуру, и в диапазоне от n = 10 до n = 12 атомов происходило достраивание второго пентагонального кольца икосаэдра. Таким образом, кластер Pd₁₂ представлял собой икосаэдр без атома в одной из вершин. Результаты многих экспериментальных исследований (см. [3,4]) показали, что икосаэдрическая структура предпочтительна для кластеров в нанометровом диапазоне. Принцип максимизации координационного числа является важным структурообразующим фактором. Среднее координационное число кластера со структурой икосаэдра равно 6.50, для сравнения в кубоктаэдрическом кластере $\langle Z \rangle = 5.54$. Однако добавление атома к кластеру Pd₁₂ привело к образованию неожиданной атомной конфигурации. Тринадцатый атом занял положение не в вершине икосаэдра, а вклинился в только что достроенное пентагональное кольцо. Рассчитанная энергия такого кластера меньше энергии икосаэдрического кластера Pd₁₃ всего на 0.06%. Сложившаяся структура представляет компромисс между максимизацией среднего координационного числа $(\langle Z \rangle = 6.00)$ и минимизацией среднего межатомного расстояния ($\langle r \rangle = 0.257$ nm, в икосаэдрическом кластере $\langle Z \rangle = 6.00, \ \langle r \rangle = 0.266 \, \text{nm}$). Необходимо отметить, что во многих предыдущих работах для тринадцатиатомных металлических кластеров были найдены неикосаэдрические атомные конфигурации, отвечающие глобальному минимуму потенциальной энергии. Так, Futchek c соавторами [13] предсказали, что для кластера Рd₁₃ стабильной является полиоктаэдрическая структура, в работе [14] атомы кластера Рd₁₃ образуют политетраэдрическую (но не икосаэдрическую) упаковку, Kabir с коллегами [31] для структуры Си₁₃ нашли искаженный вследствие эффекта Яна-Теллера икосаэдр. Chang с соавторами [16] в рамках теории псевдопотенциала рассчитали, что для тринадцатиатомных кластеров переходных 4*d*-металлов предпочтительной является бипланарная структура, имеющая меньшее $\langle r \rangle$ по сравнению с икосаэдрической. Интересно, что если икосаэдрическую структуру характеризует хотя бы локальный минимум потенциальной энергии, то кубоктаэдрический кластер уже в ходе статической релаксации трансформируется в икосаэдрический. Каждая из шести квадратных граней кубоктаэдра, перегибаясь вдоль одной из своих диагоналей, образует два равносторонних треугольника. Такое преобразование дает выигрыш в энергии $\sim 17\%$.

Кластеры Pd_{14} и Pd_{15} имели структуру икосаэдрического типа, в которой одно или два пентагональных кольца заменены на одно или два гексагональных кольца соответственно. Икосаэдр представляет собой фигуру, в которой расстояние между двумя вершинами в 1.05 раз больше, чем расстояние между центром и любой из вершин. Внедрение дополнительных атомов на поверхность кластера выравнивает межатомные расстояния.

4. Заключение

Результаты исследований геометрических конфигураций нанокластеров Pd_n ($4 \leq n \leq 15$) методом молекулярной динамики с использованием EAM-потенциалом межчастичного взаимодействия находятся в удовлетворительном согласии с результатами теоретических исследований. Небольшие расхождения между EAM- и DFT-расчетами можно объяснить либо малой по величине ($\sim 0.01\,\mathrm{eV/atom}$) разницей между энергиями связи стабильного и метастабильного структурных изомеров, либо изменением знака разности энергий при повышении температуры.

Список литературы

- M. José-Yacamán, M. Marín-Almazo. J. A. Ascencio. J. Mol. Catal. A: Chem. 173, 61 (2001).
- [2] А.И. Гусев. Нанокристаллические материалы: методы получения и свойства. УрО РАН. Екатеринбург. (1998). 199 с.
- [3] K. Koga, T. Ikeshoji, K. Sugawara. Phys. Rev. Lett. 92, 115 507 (2004).
- [4] J.-M. Pénisson, A. Renou. J. Cryst. Growth 102, 585 (1990).
- [5] R. Lamber, S. Wetjen, N.I. Jaeger. Phys. Rev. B 51, 10968 (1995).
- [6] C.-M. Lin, T.-L. Hung, Y.-H. Huang, K.-T. Wu, M.-T. Tang, C.H. Lee, C.T. Chen, Y.Y. Chen. Phys. Rev. B 75, 125 426 (2007).
- [7] Y. Sun, A. Frenkel, R. Isseroff, C. Shonbrun, M. Forman, K. Shin, T. Koga, H. White, L. Zhang, Y. Zhu, M. Rafailovich, J. Sokolov. Langmuir 22, 807 (2006).
- [8] S. Krüger, S. Vent, F. Nörtemann, M. Staufer, N. Rösch. J. Chem. Phys. 115, 2082 (2001).
- [9] G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, R. Ferrando. Phys. Rev. Lett. 93, 105 503 (2004).
- [10] I. Efremenko, M. Sheintuch. Chem. Phys. Lett. 401, 232 (2005).
- [11] D.R. Jennison, P.A. Schultz, M.P. Sears. J. Chem. Phys. 106, 1856 (1997).
- [12] F. Aguilera-Granja, A. Vega, J. Rogan, G. García. Nanotechnology 18, 365 706 (2007).
- [13] T. Futschek, M. Marsman, J. Hafner. J.Phys.: Cond. Matter 17, 5927 (2005).
- [14] C. Luo, C. Zhou, J. Wu, T.J.D. Kumar, N. Balakrishnan, R.C. Forrey, H. Cheng. Int. J. Quantum Chem. 107, 1632 (2007).
- [15] I. Efremenko, M. Sheintuch. Surf. Sci. 414, 148 (1998).
- [16] C.M. Chang, M.Y. Chou. Phys. Rev. Lett. 93, 133 401 (2004).
- [17] И.В. Бажин, О.А. Лещева, И.Я. Никифоров. ФТТ **48**, 726 (2006).
- [18] V. Kumar, Y. Kawazoe. Phys. Rev. B 66, 144413 (2002).
- [19] M. Daw, M. Baskes. Phys. Rev. Lett. 50, 1285 (1983).
- [20] M. Daw, M. Baskes. Phys. Rev. B 29, 6443 (1984).
- [21] C. Rey, L.J. Gallego, J. García-Rodeja, J.A. Alonso, M.P. Iñiguez. Phys. Rev. B 48, 8253 (1993).

- [22] L. García-González, J.M. Montejano-Carrizales. Phys. Status Solidi A 220, 357 (2000).
- [23] V. Grigoryan, M. Springborg. Phys. Rev. B 70, 205 415 (2004).
- [24] J. García-Rodeja, C. Rey, L.J. Gallego, J.A. Alonso. Phys. Rev. B 49, 8495 (1994).
- [25] M. Karabacak, A. Özçelik, Z.B. Güvenç. Surf. Sci. 507–510, 636 (2002).
- [26] E. Clementi, C. Roetti. At. Data Nucl. Data Tables 14, 177 (1974).
- [27] S. Foiles. Phys. Rev. B 32, 3409 (1985).
- [28] L. Verlet. Phys. Rev. 159, 98 (1967).
- [29] P.J. Feibelman, J.S. Nelson, G.L. Kellogg. Phys. Rev. B 49, 10 548 (1994).
- [30] H.A. Jahn, E. Teller. Proc. R. Soc. A 161, 220 (1937).
- [31] M. Kabir, A. Mookerjee, A.K. Bhattacharya. Phys. Rev. A 69, 043 203 (2004).