Перетекание электронов между эллипсоидами в магнитном поле в области квантового предела в сплавах *n*-Bi–Sb

© Н.А. Редько*,**, В.Д. Каган*, М.П. Волков*,**

 * Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ** International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland

E-mail: nikolaj.a.redko@mail.ioffe.ru

(Поступила в Редакцию 6 мая 2009 г.)

Проведены измерения магнетосопротивлений $\rho_{22}(H)$, $\rho_{32}(H)$ и коэффициента Холла $R_{32.1}$ на монокристаллических образцах полупроводникового сплава $\operatorname{Bi}_{0.93}\operatorname{Sb}_{0.07}$ при низких температурах в магнитном поле до H = 14 T при $H \parallel C_2$. Исследованы образцы с тремя концентрациями электронов $n_1 = 1.25 \cdot 10^{16} \, \mathrm{cm}^{-3}$, $n_2 = 3.5 \cdot 10^{16} \, \mathrm{cm}^{-3}$, $n_3 = 1.6 \cdot 10^{17} \, \mathrm{cm}^{-3}$. Сильная анизотропия электронного спектра сплавов позволила наблюдать квантовые осцилляции магнетосопротивления $\rho_{22}(H)$ при $H \parallel C_2$ для электронов побочных эллипсоидов с переходом в квантовый предел в больших магнитных полях. В то же время в этих магнитных полях условие квантования для электронов главного эллипсоида не выполнялось. Рост энергии электронов побочных эллипсоидов в магнитных полях квантового предела приводил к перетеканию их в главный эллипсоид. После полного перетекания в образцах сплава с концентрациями n_1 , n_2 и n_3 энергия Ферми увеличилась с 7 до 11.3, с 11 до 17.1, с 20.2 до 30.6 meV соответственно. После перетекания и вблизи H = 10 T наблюдаются особенности в поведении кинетических коэффициентов. Таким образом, при $H \parallel C_2$ в монокристаллах $\operatorname{Bi}_{0.93}\operatorname{Sb}_{0.07}$ при низких температурах в области магнитных полей квантового предела наблюдается электронный топологический переход от трехдолинного электронного спектра к однодолинному.

Работа выполнена при частичной финансовой поддержке гранта ведущих научных школ РФ № НШ-2184.2008.2 и гранта Президиума РАН.

1. Введение

Энергетический спектр полупроводниковых сплавов $n-{\rm Bi}_{1-x}{\rm Sb}_x$ (0.07 < x < 0.15) определяется тремя эквивалентными долинами в точках L зоны Бриллюэна (рис. 1), отделенными от соответствующих долин L_i валентной зоны прямой энергетической щелью E_{gL}. Легирование сплавов донорной примесью теллура приводит к заполнению долин L_i зоны проводимости электронами до концентрации п. Для полупроводниковых сплавов *n*-Bi-Sb на рис. 1 представлена поверхность Ферми, состоящая из трех электронных эллипсоидов с центрами в точках L зоны Бриллюэна, которые находятся в плоскостях отражения. Эллипсоиды эквивалентны между собой и повернуты относительно друг друга на угол $\pm 120^{\circ}$ (рис. 1, *a*). Одна из меньших осей эллипсоида совпадает с бинарной осью С2 кристалла, а две другие оси эллипсоида составляют угол φ с кристаллографическими осями: тригональной С₃ и биссекторной C_1 (рис. 1, *b*). О сильной анизотропии электронного спектра этих полупроводниковых сплавов свидетельствуют значения эффективных масс электронов на дне зоны проводимости: $m_1 \sim 1 \cdot 10^{-3} m_0$, $m_2 \sim 5 \cdot 10^{-1} m_0$, $m_3 \sim 2 \cdot 10^{-3} m_0$ [1,2].

Сильная анизотропия электронного спектра в сплавах *n*-Bi-Sb приводит к неэквивалентному смещению по энергии экстремумов L друг относительно друга при одноосной деформации [3]. Н.Б. Брандтом с сотрудниками МГУ был разработан оригинальный способ одноосной упругой деформации, состоящий в том, что в кольцо с ушками для растяжения помещался монокристаллический образец в виде кружка. Одноосная деформация образца-кружка производилась в результате растяжения кольца за ушки, а перпендикулярно к направлению растяжения происходило сжатие образца [4,5]. К сплавам Bi-Sb в одном случае прикладывалось одновременно одноосное растяжение вдоль биссекторной оси С1 и одноосное сжатие вдоль бинарной оси C_2 . Электроны с большей энергией для одного из эллипсоидов, например, L₁, перетекали в другие два эллипсоида L₂ и L₃ с меньшей энергией, что приводило к выравниванию энергий электронов в эллипсоидах. В другом случае к образцу прикладывалось одновременно одноосное растяжение вдоль бинарной оси С2 и одноосное сжатие вдоль биссекторной оси С1. Электроны с большей энергией для двух эллипсоидов, например, L2 и L3, перетекали в эллипсоид L_1 с меньшей энергией, и в результате энергия электронов в эллипсоидах выравнивалась. При критическом значении одноосной деформации наблюдается электронный топологический переход, в первом случае все электроны в сплавах после перетекания находятся в двух эллипсоидах L₂ и L₃, а во втором случае — в эллипсоиде L₁.

№ Номер образца	$n,$ $10^{16} \mathrm{cm}^{-3}$	$E_{\rm F}(H=0),$ meV	$E_{\rm F}(H>H_0),$ meV	$\Delta_i(1/H),$ $10^{-4}{ m Oe}^{-1}$ Эксперимент	$\Delta_i(1/H),$ $10^{-4}{ m Oe}^{-1}$ Pacчет	<i>Н</i> 0, Т
1	1.2	7	11.3	7.2	7	0.2
2	3.5	11	17.1	4.5	3.6	0.4
3	16	20.2	30.6	1.35	1.3	1

Параметры исследованных образцов полупроводникового сплава Bi0.93Sb0.07

Примечание. n — концентрация электронов, $E_{\rm F}(H=0)$ — энергия Ферми электронов в нулевом поле, $E_{\rm F}(H > H_0)$ — энергия Ферми электронов главного эллипсоида после перетекания, $\Delta_i(1/H)$ — период квантовых осцилляций по обратному полю, H_0 — магнитное поле перехода к квантовому пределу.

В пленках многодолинных полупроводников могут возникать напряжения, вызванные деформацией при низких температурах в результате различных коэффициентов линейного расширения пленки и подложки. Это в свою очередь приводит к расщеплению экстремумов по энергии, а выравнивание энергии электронов в системе происходит путем перетекания электронов из долин, где энергия больше, в те долины, где энергия электронов меньше. В работе [6] на основе такого перетекания электронов обсуждались гальваномагнитные эффекты в пленках PbTe.

Рис. 1. a) Зона Бриллюэна для вырожденных полупроводниковых сплавов n-Bi-Sb с тремя электронными эллипсоидами, центры которых находятся в точках L на плоскостях отражения. b) Одно из трех сечений зоны Бриллюэна плоскостью отражения.

В настоящей работе приводятся результаты исследования магнетосопротивления $\rho_{22}(H)$, $\rho_{32}(H)$ и коэффициента Холла $R_{32.1}(H)$ полупроводникового сплава $Bi_{0.93}Sb_{0.07}$ при $j \parallel C_1$ с различной концентрацией электронов при низких температурах $1.8 \le T \le 4.2$ К в магнитном поле $0 \le H \le 14$ Т при $H \parallel C_2$, в том числе и в области квантового предела, где наблюдается перетекание электронов между эллипсоидами.

2. Экспериментальные данные и их обсуждение

Для полупроводникового сплава n-Bi_{0.93}Sb_{0.07} с тремя различными концентрациями носителей заряда проводились измерения гальваномагнитных эффектов: удельного магнетосопротивления $\rho_{22}(H)$, $\rho_{32}(H)$ и коэффициента Холла $R_{32.1}$ при $j \parallel C_1$ в магнитном поле при $H \parallel C_2$. Объектом исследования являлись монокристаллические образцы в форме прямоугольных параллелепипедов размером $2.5 \times 2.5 \times 18$ mm, грани которых были перпендикулярны кристаллографическим осям C_1 , C_2 , C_3 . Наибольший размер образца по направлению совпадал с биссекторной осью C_1 . Измерения проводились при низких температурах $1.8 \le T \le 4.2$ К и в стационарных магнитных полях до 14 Т. Основные параметры исследованных образцов приведены в таблице. Энергия Ферми для образцов находилась по формуле [7]

$$E_{\rm F} = \frac{E_g}{2} \left[\left(1 + \frac{2\hbar^2 (3\pi^2 n)^{2/3}}{m_d(0)E_g} \right)^{1/2} - 1 \right],\tag{1}$$

где $E_g = 7.5 \text{ meV}$ — энергия запрещенной зоны в сплаве $\text{Bi}_{0.93}\text{Sb}_{0.07}$, $m_d(0) = 1.442 \cdot 10^{-2}m_0$ — масса плотности состояния электронов на дне зоны в сплаве $\text{Bi}_{0.93}\text{Sb}_{0.07}$. Для вычисления $m_d(0) = N^{2/3}(m_1m_2m_3)^{1/3}m_0$ использовались эффективные массы электронов на дне зоны в осях эллипсоида: $m_1/m_0 = 9 \cdot 10^{-4}$, $m_2/m_0 = 0.31$, $m_3/m_0 = 1.2 \cdot 10^{-3}$. Здесь N = 3 — число долин в зоне проводимости полупроводниковых сплавов *n*-Bi-Sb.

На рис. 2–4 представлены экспериментальные данные магнетосопротивления $\rho_{22}(H)$, $\rho_{32}(H)$ и коэффициента Холла $R_{32,1}(H)$ в зависимости от магнитного поля при $H \parallel C_2$ при низких температурах для монокристаллических образцов полупроводникового сплава

210

Рис. 2. Зависимость удельного сопротивления $\rho_{22}(H)$ (1), $\rho_{32}(H)$ (2) и коэффициента Холла $R_{32.1}(H)$ (3) от магнитного поля при $H \parallel C_2$ и $j \parallel C_1$ для образца с $n_1 = 1.25 \cdot 10^{16}$ сm⁻³ полупроводникового сплава n-Bi_{0.93}Sb_{0.07} при T = 1.8 K.

Рис. 3. Зависимость удельного сопротивления $\rho_{22}(H)$ (1), $\rho_{32}(H)$ (2) и коэффициента Холла $R_{32.1}(H)$ (3) от магнитного поля при $H \parallel C_2$ и $j \parallel C_1$ для образца с $n_2 = 3.5 \cdot 10^{16} \,\mathrm{cm^{-3}}$ полупроводникового сплава n-Bi_{0.93}Sb_{0.07} при T = 1.8 K.

Рис. 4. Зависимость удельного сопротивления $\rho_{22}(H)$ (1), $\rho_{32}(H)$ (2) и коэффициента Холла $R_{32.1}(H)$ (3) от магнитного поля при $H \parallel C_2$ и $j \parallel C_1$ для образца с $n_3 = 1.6 \cdot 10^{17}$ сm⁻³ полупроводникового сплава n-Bi_{0.93}Sb_{0.07} при T = 4.2 K.

1* Физика твердого тела, 2010, том 52, вып. 2

электронов Bi_{0.93}Sb_{0.07} концентрацией с $n_1 =$ $= 1.25 \cdot 10^{16} \text{ cm}^{-3}$ (рис. 2), $n_2 = 3.5 \cdot 10^{16} \text{ cm}^{-3}$ (рис. 3) и $n_3 = 1.6 \cdot 10^{17} \,\mathrm{cm}^{-3}$ (рис. 4). Для полупроводникового сплава Ві $_{0.93}$ Sb $_{0.07}$ эффективные массы $m_{||}$ и m_{\perp} в осях эллипсоида различаются приблизительно в 300 раз. Этим и объясняется, что на эксперименте (рис. 2–4) наблюдаются квантовые осцилляции удельного сопротивления для электронов побочных эллипсоидов 2 и 3, у которых одинаковые экстремальные сечения, но величина их намного меньше экстремального сечения для главного эллипсоида (рис. 5). На рис. 6 схематично представлена энергия электронов в сплавах в магнитном поле при Н || С2 для электронов главного эллипсоида (*a*) и для электронов побочных эллипсоидов (*b*).

Рис. 5. Проекция на базисную плоскость C_1C_2 изоэнергетической поверхности Ферми в *k*-пространстве, состоящей из трех квазиэллипсоидов, для полупроводникового сплава *n*-Bi-Sb. Жирные линии — экстремальные сечения плоскостью, перпендикулярной направлению магнитного поля для главного (1) и побочных (2, 3) эллипсоидов. Магнитное поле направлено вдоль кристаллографической оси C_2 .

Рис. 6. Энергетический спектр электронов в сплаве *n*-Ві_{0.93}Sb_{0.07} в магнитном поле $H \parallel C_2$ в зависимости от импульса *p. а* — для главного эллипсоида $E_1(p)$ при невыполнении условия квантования для электронов, *b* — для побочных эллипсоидов $E_2(p)$ при выполнении условия квантования. $N = 0, 1, 2, 3, \ldots$ — уровни Ландау, отстоящие друг от друга на величину $\hbar\omega$.

Период квантовых осцилляций $\Delta_i(1/H)$, найденный из эксперимента для образцов сплава с различной концентрацией, приведен в таблице.

Найдено выражение периода квантовых осцилляций в зависимости от обратного магнитного поля для сильно анизотропного непараболического закона дисперсии *L*-электронов полупроводниковых сплавов *n*-Bi-Sb в рамках модели Лэкса

$$E_{\mathbf{p}} = \sqrt{\left(\frac{E_g}{2}\right)^2 + \frac{E_g}{2}\left(\frac{p_1^2}{m_1} + \frac{p_2^2}{m_2} + \frac{p_3^2}{m_3}\right)} - \frac{E_g}{2}, \quad (2)$$

где $E_{\mathbf{p}}$ — энергия электрона с импульсом \mathbf{p} , m_i — эффективные массы электронов в эллипсоиде, E_g — энергия запрещенной зоны. Формула периода квантовых осцилляций кинетических коэффициентов от 1/H для произвольного электронного спектра металлов приведена в [8] (формула Лифшица–Онзагера)

$$\Delta\left(\frac{1}{H}\right) = \frac{2\pi e\hbar}{cS_{\max}},\tag{3}$$

где S_{max} — экстремальное сечение изоэнергетической поверхности металла плоскостью, перпендикулярной магнитному полю **H**. Для нахождения периода квантовых осцилляций магнетосопротивления сплавов *n*-Bi-Sb было рассмотрено выражение для площади сечения энергетического спектра (2) с энергией Ферми E_{F}

$$S = \int d^3 p \delta \left(\sum_i p_i h_i - p_0\right) \Theta(E_{\rm F} - E_p)$$

=
$$\int d^3 p \delta \left(\sum_i p_i h_i - p_0\right) \Theta \left(E_{\rm F} \left(1 + \frac{E_{\rm F}}{E_g}\right) - \sum_i \frac{p_i^2}{2m_i}\right),$$
(4)

где h — единичный вектор вдоль магнитного поля, $h_i = H_i/H$, p_0 — величина импульса электрона вдоль магнитного поля. Согласно определению функции $\Theta(x)$: $\Theta(x) = 1$ при x > 0 и $\Theta(x) = 0$ при x < 0. Для вычисления интеграла (4) перейдем от *p*-пространства к *p'*-сферически-симметричному пространству с помощью замены переменных

$$p_i = \frac{\sqrt{m_i}}{\sqrt{m}} p'_i, \quad m = (m_1 m_2 m_3)^{1/3}.$$
 (5)

В результате получим

$$S = \int d^{3}p' \delta\left(\sum_{i} \frac{\sqrt{m_{i}}}{\sqrt{m}} p'_{i}h_{i} - p_{0}\right)$$
$$\times \Theta\left(E_{\rm F}\left(1 + \frac{E_{\rm F}}{E_{g}}\right) - \sum_{i} \frac{(p'_{i})^{2}}{2m}\right). \tag{6}$$

Следующее преобразование связано с поворотом, при котором одна из осей координат будет направлена вдоль

магнитного поля. Присвоим ей номер три. Поворот осуществляется унитарной матрицей U_{ik}

$$p_i'' = \sum_k U_{ik} p_k', \quad p_3'' = \frac{\sum_i \sqrt{m_i} h_i p_i'}{\sqrt{\sum_s m_s h_s^2}}, \quad (i, s = 1, 2, 3).$$
(7)

Сумма в знаменателе (7) необходима для того, чтобы было выполнено одно из свойств унитарной матрицы U_{ik} : сумма квадратов коэффициентов матрицы в строке равна единице. Благодаря унитарности матрицы U_{ik}

$$d^{3}p'' = d^{3}p', \quad \sum_{i} (p''_{i})^{2} = \sum_{i} (p'_{i})^{2}.$$
 (8)

После такого преобразования интеграл легко вычисляется

$$S = \int d^3 p'' \delta \left(\frac{\sqrt{\sum_s m_s h_s^2}}{\sqrt{m}} p_3'' - p_0 \right) \Theta \left(E_{\rm F} \left(1 + \frac{E_{\rm F}}{E_g} \right) - \sum_i \frac{(p_i'')^2}{2m} \right) = 2\pi m_c \left[E_{\rm F} \left(1 + \frac{E_{\rm F}}{E_g} \right) - \frac{p_0^2}{2\sum_s m_s h_s^2} \right], \quad (9)$$

где $m_c = \frac{\sqrt{m_1 m_2 m_3}}{\sqrt{\sum\limits_s m_s h_s^2}}$ — циклотронная эффективная масса

электронов в сплавах *n*-Bi-Sb. Значение экстремального сечения достигается при $p_0 = 0$ и выглядит следующим образом:

$$S_{\rm max} = 2\pi m_c E_{\rm F} (1 + E_{\rm F}/E_g).$$
 (10)

Подставляя найденную величину S_{max} (10) в формулу (3), получим формулу периода квантовых осцилляций магнетосопротивления от 1/H для сплавов *n*-Bi–Sb

$$\Delta\left(\frac{1}{H}\right) = \frac{e\hbar}{cm_c E_{\rm F}\left(1 + \frac{E_{\rm F}}{E_g}\right)}.$$
(11)

В классической теории электропроводности для непараболического электронного спектра в выражения кинетических коэффициентов входят значения эффективной массы на уровне Ферми $M_i = m_i(1 + 2E_F/E_g)$ (см., например, [7,9]). Можно было бы предположить, что и в выражение для периода квантовых осцилляций (11) войдут значения циклотронной эффективной массы электронов на уровне Ферми. Это предположение оказывается неверным. Правильное значение периода квантовых осцилляций (11) содержит циклотронную эффективную массу электронов и множитель $(1 + E_F/E_g)$, что указывает на участие электронов всего сечения, а не только на уровне Ферми.

Теперь рассмотрим конкретную ориентацию магнитного поля, когда магнитное поле приложено вдоль бинарной оси C₂. В этом случае в результате сильной анизотропии электронного спектра сплава периоды квантовых осцилляций для электронов главного эллипсоида и для электронов побочных эллипсоидов сильно различаются. На рис. 5 представлены главный и побочные эллипсоиды с экстремальными сечениями для них при $H \parallel C_2$.

Используя формулу (10), получим экстремальные сечения для главного и побочного эллипсоидов. При этом отношение экстремальных сечений главного и побочного эллипсоида составляет

$$S_{\max 1}/S_{\max 2} \cong 16.$$

Формула для периода квантовых осцилляций электронов главного эллипсоида при *H* || *C*₂ представлена далее

$$\Delta_1\left(\frac{1}{H}\right) = \frac{e\hbar}{cE_{\rm F}\left(1 + \frac{E_{\rm F}}{E_g}\right)(m_2m_3)^{1/2}}.$$
 (12)

Формула для периода квантовых осцилляций электронов побочных эллипсоидов при $H \parallel C_2$ заметно отличается от $\Delta_1(1/H)$ для электронов главного эллипсоида (12)

$$\Delta_2\left(\frac{1}{H}\right) = \frac{e\hbar \left(m_1 + 3m_2\cos^2\varphi + 3m_3\sin^2\varphi\right)^{1/2}}{2cE_{\rm F}\left(1 + \frac{E_{\rm F}}{E_g}\right)(m_1m_2m_3)^{1/2}}.$$
 (13)

Вычисленные периоды зависимостей квантовых осцилляций от обратного магнитного поля для электронов побочных эллипсоидов исследованных образцов сплава $Bi_{0.93}Sb_{0.07}$ и экспериментально полученные из зависимостей $\rho_{22}(1/H)$ приведены в таблице. Видно, что имеется хорошее согласие вычисленных и экспериментально полученных значений.

С ростом магнитного поля квантовые осцилляции магнетосопротивления в исследованных образцах сплава сменяются квантовым пределом при некотором магнитном поле H_0 . В этом случае все электроны побочных эллипсоидов находятся на нулевом уровне Ландау ниже уровня Ферми (рис. 7). Поле перехода к квантовому пределу H_0 увеличивается с увеличением концентрации носителей заряда (см. таблицу).

В однозонных металлах с квадратичным изотропным законом дисперсии энергия Ферми электронов растет в области магнитных полей квантового предела $(H > H_0)$ настолько значительно, что асимптотически приближается с ростом магнитного поля к значению $E_{\rm F}(H) \rightarrow \hbar \omega/2$ [8,10]. Здесь $\omega = \frac{eH}{cm_c}$ циклотронная частота электронов, m_c — циклотронная эффективная масса электронов. Также наблюдается небольшой рост энергии Ферми в магнитном поле, когда уровни Ландау с малыми номерами (N = 1, 2, 3...) пересекают начальный уровень Ферми $E_{\rm F}(H = 0)$. Так $E_{\rm F}(H_{N=1}) \cong 1.15E_{\rm F}(0)$, $E_{\rm F}(H_{N=2}) \cong 1.06E_{\rm F}(0)$, $E_{\rm F}(H_{N=3}) \cong 1.04E_{\rm F}(0)$, а для больших номеров уровней Ландау возрастание энергии Ферми незначительное [8,10].

В сплавах $Bi_{0.93}Sb_{0.07}$, когда магнитное поле направлено вдоль бинарной оси $H \parallel C_2$, квантовые осцилляции наблюдаются для электронов побочных эллипсоидов

Рис. 7. Энергетический спектр электронов в сплаве *n*-Bi_{0.93}Sb_{0.07} в магнитном поле $H \parallel C_2$ в зависимости от импульса *p. а* — для главного эллипсоида $E_1(p)$ при невыполнении условия квантования для электронов, *b* — для побочных эллипсоидов $E_2(p)$ при выполнении условия квантования. Под уровнем Ферми E_{F0} расположен только нулевой уровень Ландау (N = 0), что соответствует квантовому пределу (1). Увеличение магнитного поля $H > H_0$ приводит к росту энергии побочных электронов и перетеканию их в главный эллипсоид (показано стрелкой). 2 — окончание перетекания электронов побочных эллипсоидов в главный эллипсоид при $E_F = (1/2)\hbar\omega$.

(рис. 2-4), а в больших магнитных полях для них также наблюдается на эксперименте выход в область магнитных полей квантового предела. По причине сильной анизотропии электронного спектра в сплавах для электронов главного эллипсоида в этих же магнитных полях не выполняется условие квантования из-за низкой подвижности для этой группы электронов. Для системы электронов главного и побочных эллипсоидов сплава в исследованных образцах уровень Ферми общий для магнитных полей $H < H_0$ и равен $E_F(H = 0)$. Наличие главного эллипсоида наряду с побочными эллипсоидами в сплавах приводит к сдерживанию роста энергии Ферми в области магнитных полей для уровней Ландау с малыми номерами (N = 1, 2, 3...). В то же время в магнитных полях квантового предела энергия Ферми для электронов побочных эллипсоидов начинает расти с некоторого критического значения магнитного поля H₀. Если энергия Ферми при H > H₀ превышает прежнюю общую энергию Ферми, то это приводит к перетеканию электронов из побочных эллипсоидов в главный эллипсоид. Это происходит до тех пор, пока все электроны из побочных эллипсоидов не перетекут в главный эллипсоид. В этом случае нулевой уровень Ландау с энергией $(1/2)\hbar\omega$ равняется энергии Ферми $E_{\rm F}$ электронов главного эллипсоида после перетекания всех электронов из побочных эллипсоидов. На рис. 7, b продемонстрировано перетекание электронов с нулевого уровня Ландау для начального положения квантового предела 1 и положение 2, когда перетекание электронов заканчивается и энергия нулевого уровня Ландау $(1/2)\hbar\omega$ равняется энергии Ферми электронов главного эллипсоида $E_{\rm F}$ после перетекания (рис. 7, *a*).

При критическом значении магнитного поля H₀ все электроны побочных эллипсоидов перетекают в главный эллипсоид. Интервал магнитных полей, в котором наблюдается минимальное значение магнетосопротивления после перетекания электронов из побочных эллипсоидов в главный эллипсоид, равняется 0.2 < H < 0.7 Т для образца с концентрацией электронов $n_1 = 1.25 \cdot 10^{16} \, \mathrm{cm}^{-3}$, при этом удельное сопротивление растет пропорционально $H^{1.2}$ (рис. 2). Концентрация электронов в главном эллипсоиде после перетекания становится равной 1.25 · 10¹⁶ cm⁻³, а энергия Ферми возрастает до 11.3 вместо 7 meV в нулевом магнитном поле (формула (1)). Для образца с концентрацией электронов $n_2 = 3.5 \cdot 10^{16} \, {\rm cm}^{-3}$ соответствующий интервал магнитных полей равен 0.4 < H < 2 T, а удельное сопротивление при этом растет пропорционально H^{0.7} (рис. 3). Концентрация электронов в главном эллипсоиде после перетекания становится равной $3.5 \cdot 10^{16} \, \mathrm{cm}^{-3}$, а энергия Ферми возрастает до 17.1 вместо 11 meV до перетекания. Для образца с концентрацией $n_3 = 1.6 \cdot 10^{17} \, \mathrm{cm}^{-3}$ соответствующий интервал магнитных полей равен 1 < H < 5 T, а удельное сопротивление при этом меняет зависимость от магнитного поля с $H^{-0.9}$ на зависимость $H^{1.8}$, проходя через минимум при $H \cong 2$ Т. Концентрация электронов в главном эллипсоиде после перетекания становится равной $1.6 \cdot 10^{17} \,\mathrm{cm}^{-3}$, а энергия Ферми возрастает до 30.6 вместо 20.2 meV до перетекания.

После завершения перетекания электронов из побочных эллипсоидов в главный эллипсоид магнетосопротивление выходит на интенсивный рост в магнитном поле (при $H > H_0$) для электронов главного эллипсоида. Для образца с концентрацией электронов $n_1 = 1.25 \cdot 10^{16}$ сm⁻³ магнетосопротивление растет с магнитным полем как $H^{1.7}$ в интервале магнитных полей 0.7 < H < 4 Т. В магнитных полях, превышающих H = 5 Т, наблюдаются осцилляционные особенности удельного сопротивления.

В образце с концентрацией $n_2 = 3.5 \cdot 10^{16}$ сm⁻³ магнетосопротивление растет как H^2 в интервале 2 < H < 11 T, а в магнитных полях более H = 11 T наблюдаются осцилляционные особенности для электронов главного эллипсоида. Для образца с концентрацией $n_3 = 1.6 \cdot 10^{17}$ сm⁻³ магнетосопротивление увеличивается как H^3 в интервале магнитных полей 4 < H < 9 T.

На рис. 2–4 также представлена полевая зависимость коэффициента Холла $R_{32.1}(H)$ и холловское магнетосопротивление $\rho_{32}(H)$ для исследованных образцов сплава *n*-Bi_{0.93}Sb_{0.07}. Во всем интервале магнитных полей 0 < H < 10 Т, где наблюдаются осцилляционные особенности магнетосопротивления $\rho_{22}(H)$, связанные с электронами главного эллипсоида, на $R_{32.1}(H)$ и $\rho_{32}(H)$ также наблюдаются осцилляционные особенности в этих же полях.

3. Заключение

В работе проведено исследование магнетосопротивления $\rho_{22}(H)$, $\rho_{32}(H)$ и коэффициента Холла $R_{32,1}(H)$ полупроводникового сплава Bi0.93Sb0.07 с различной концентрацией электронов при $j \parallel C_1$ и $H \parallel C_2$ при низких температурах в сильном магнитном поле, в том числе и в области квантового предела. В магнитном поле при Н || С2 наблюдаются квантовые осцилляции $\rho_{22}(H)$ для электронов побочных эллипсоидов L_2 и L_3 и не наблюдаются квантовые осцилляции для электронов главного эллипсоида L₁, что связано с сильной анизотропией электронного спектра сплава. В больших магнитных полях для электронов побочных эллипсоидов наблюдается переход к квантовому пределу, когда все электроны побочных эллипсоидов находятся на нулевом уровне Ландау и их энергия растет с ростом магнитного поля. В результате превышения энергии электронов побочных эллипсоидов в квантовом пределе энергии Ферми для электронов главного эллипсоида происходит перетекание электронов из побочных эллипсоидов L2 и L₃ в главный эллипсоид L₁. Таким образом, для полупроводникового сплава Bi0.93Sb0.07 в сильном магнитном поле при Н || С2 реализуется электронный топологический переход из трехдолинного полупроводника в однодолинный.

Авторы выражают благодарность Н.А. Родионову за выращенные монокристаллы полупроводниковых сплавов *n*-Bi_{0.93}Sb_{0.07}.

Список литературы

- [1] G. Oelgart, R. Herrmann. Phys. Status Solidi B **58**, 181 (1973).
- [2] В.Д. Каган, Н.А. Редько, Н.А. Родионов, В.И. Польшин. ЖЭТФ 122, 377 (2002).
- [3] Н.Б. Брандт, В.А. Кульбачинский, Н.Я. Минина. Письма в ЖЭТФ 26, 637 (1977).
- [4] Н.Б. Брандт, С.М. Чудинов. УФН 137, 479 (1982).
- [5] Л.А. Киракозова, Н.Я. Минина, А.В. Савин. Письма в ЖЭТФ 52, 693 (1990).
- [6] К.И. Гейман, И.А. Драбкин, А.В. Матвиенко, Е.А. Можаев, Р.В. Парфеньев. ФТП 11, 846 (1977).
- [7] Б.А. Аскеров. Кинетические эффекты в полупроводниках. Наука, Л. (1970). 303 с.
- [8] Н.Б. Брандт, С.М. Чудинов. Электронная структура металлов. Изд-во МГУ, М. (1973). 332 с.
- [9] Н.А. Редько, В.Д. Каган. ФТТ 50, 385 (2008).
- [10] Б.А. Аскеров. Электронные явления переноса в полупроводниках. Наука, М. (1985). 318 с.