Исследование теплового расширения, фазовых диаграмм и барокалорического эффекта в оксифторидах (NH₄)₂WO₂F₄ и (NH₄)₂MoO₂F₄

© М.В. Горев*,**, Е.В. Богданов*, И.Н. Флёров*,**, А.Г. Кочарова*, Н.М. Лапташ***

* Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ** Сибирский федеральный университет, Красноярск, Россия *** Институт химии ДВО РАН, Владивосток, Россия E-mail: gorev@iph.krasn.ru, flerov@iph.krasn.ru

(Поступила в Редакцию 28 апреля 2009 г. В окончательной редакции 9 июня 2009 г.)

> Выполнены исследования теплового расширения вдоль главных кристаллографических направлений оксифторидов (NH₄)₂WO₂F₄ и (NH₄)₂MOO₂F₄. Аномальное поведение $\alpha_i(T)$, связанное с фазовыми переходами, обнаружено при $T_1 = 271.4$ К и $T_2 \approx 180$ К для молибдата и при $T_1 = 201.5$ К и $T_2 \approx 161$ К для вольфрамата. Величины dT/dp и $dT/d\sigma_i$, характеризующие зависимость температур переходов от гидростатического и одноосного давлений, определены из анализа результатов исследований теплового расширения и теплоемкости на основе соотношений Пиппарда. Фазовые диаграммы T-p и $T-\sigma_i$ отражают различный характер влияния давления на устойчивость исходной и искаженных фаз оксифторидов. Определены величины экстенсивного и интенсивного барокалорического эффекта в окрестности структурных фазовых переходов: $\Delta S_{BCE} \approx -10 - 17$ J/mol·K и $\Delta T_{AD} \approx 8-17$ К (молибдат), $\Delta S_{BCE} \approx -10 - 17$ J/mol·K и $\Delta T_{AD} \approx 8-13$ К (вольфрамат).

> Работа выполнена в рамках Междисциплинарного интеграционного проекта № 34 СО РАН, при поддержке Красноярского краевого фонда науки и РФФИ в рамках проекта "Сибирь"(грант № 09-02-98001) и гранта президента РФ по поддержке ведущих научных школ РФ (НШ-1011.2008.2).

1. Введение

Интерес к соединениям, содержащим в структуре искаженные октаэдрическике ионные группы $|MO_xF_{6-x}|$ (x = 1, 2, 3) со смещенным из центра ионом *M*, связан, как правило, с поиском критериев конструирования нецентросимметричных материалов, обладающих сегнетоэлектрическими, пьезоэлектрическими и пироэлектрическими свойствами. Однако большинство этих соединений кристаллизуется в центросимметричных пространственных группах вследствие ориентационного разупорядочения структурных элементов. Для создания полярных материалов необходимо понять природу ориентационного беспорядка оксифторидных анионов и исключить как разупорядочение кислородных и фторидных лигандов в анионе, так и центросимметричное расположение октаэдрических анионов в кристаллической решетке по отношению друг к другу.

В случае оксифторидов с ионными группами $|MO_xF_{6-x}|^{2-}$ (x = 2, $M = Mo^{6+}$, W^{6+}) исследовались в основном соединения с органическими и гибридными органическими и неорганическими катионами [1,2]. В неорганических соединениях $A_2MO_2F_4$ [3–7] анионы разупорядочены во всех случаях, за исключением $Na_2WO_2F_4$ [3] и $K_2MoO_2F_4$ [4]. К сожалению, большинство исследований проводилось лишь при комнатной

температуре и сведений о наличии в этих соединениях фазовых переходов нет. Между тем исследование ориентационного упорядочения ионных групп в результате фазовых переходов может дать дополнительную информацию и способствовать созданию полярных соединений с требуемыми свойствами.

Поиск и исследование фазовых переходов в ряду оксифторидов $A_2MO_2F_4$ выполнены в последнее время лишь для аммонийных соединений. Кристаллы (NH₄)₂WO₂F₄ и (NH₄)₂MoO₂F₄ при комнатной температуре имеют орторомбическую структуру $G_0 = Cmcm$, Z = 4 [7–10], а при понижении температуры испытывают последовательно два фазовых перехода $G_0 \rightarrow G_1 \rightarrow G_2$ при температурах T_1 и T_2 [8–15]. Первое структурное превращение является переходом первого рода типа порядок—беспорядок со значительным изменением энтропии $\Delta S_1 \approx R \ln 8 - R \ln 9$ [9,11,15]. Существенно меньшее изменение энтропии в обоих оксифторидах при втором переходе ($\Delta S_2 \approx 0.15R$) связывалось с фазовым переходом типа смещения.

Несмотря на небольшое различие в величине ионных радиусов молибдена и вольфрама и одинаковую симметрию исходной фазы G_0 , наблюдается значительное различие в температурах фазовых переходов, симметрии искаженных фаз и свойствах соединений (NH₄)₂WO₂F₄ и (NH₄)₂MOO₂F₄. Структура искаженной фазы G_1 вольфрамата триклинная $P\bar{1}$, Z = 4 [7], в то время как

для молибдата она определена как ромбическая *Pnma*, Z = 4 [10]. В обоих оксифторидах не обнаружено заметных структурных различий между промежуточной G_1 и низкотемпературной G_2 искаженными фазами. Исходная фаза *Cmcm* в результате замещения W на Mo становится менее устойчивой к изменению внешних параметров (температуры и давления), что выражается как в значительном росте температуры T_1 , так и в аномально большой величине барического коэффициента dT_1/dp [15], значительно превышающей установленную для (NH₄)₂WO₂F₄ [9]. В то же время за счет существенно меньшего изменения T_2 интервал существования промежуточной фазы значительно расширяется — с 40 до 90 К.

Анализ структуры и энтропия фазовых переходов позволил в [15] предложить модели высокотемпературных переходов в вольфрамате и молибдате и связать значительные изменения энтропии с упорядочением аммонийных групп, а также с полным в $(NH_4)_2WO_2F_4$ и частичным в $(NH_4)_2MOO_2F_4$ упорядочением фторкислородных октаэдров.

Природа фазовых переходов в исследуемых оксифторидах определена как несегнетоэлектрическая [15], поэтому давление является основным внешним параметром, позволяющим изменять температуру и последовательность структурных искажений. Для (NH₄)₂WO₂F₄ фазовая Т-р-диаграмма была получена экспериментальным путем [9]. Температуры обоих фазовых переходов с увеличением давления растут нелинейно, причем $dT_1/dp < dT_2/dp$, т.е. при увеличении гидростатического давления область существования промежуточной фазы сужается. Тройных точек и фаз, индуцированных давлением, вплоть до 0.5 GPa обнаружено не было. Однако из характера зависимостей $T_i(p)$ выклинивание промежуточной искаженной фазы и наличие тройной точки можно предполагать в районе 0.7 GPa. В (NH₄)₂MoO₂F₄ под давлением удалось зафиксировать лишь фазовый переход при T₁ с барическим коэффициентом $dT_1/dp = 92.8$ K/GPa [15].

Чрезвычайно высокая степень разупорядочения ионных групп в высокосимметричных фазах оксифторидов и упорядочение их в результате единичных или последовательных фазовых переходов, сопровождающихся большими величинами изменения энтропии, достигающими значений $\Delta S \ge R \ln 8$, а также значительная чувствительность к внешнему давлению делают эти материалы перспективными с точки зрения реализации в них значительных калорических эффектов.

Калорические эффекты различной физической природы в твердых телах и основанные на них охлаждающие устройства привлекают в последнее время все большее внимание исследователей [16,17]. Вообще говоря, эти эффекты связаны с изменением энтропии и температуры термодинамической системы при изменении обобщенных внешних полей (электрического, магнитного) соответственно в изотермическом и адиабатном процессах. Вполне очевидно, что наряду

Физика твердого тела, 2010, том 52, вып. 1

с магнитным и электрическим полями воздействие на энтропию термодинамической системы могут оказывать и гидростатическое давление или одноосные (сжимающие или растягивающие) механические напряжения, приводящие к баро- (БКЭ) или пьезокалорическому эффекту (ПКЭ).

Энтропия твердого тела представляет собой сумму энтропий различных подсистем — решеточной (S_L), электронной (S_e) , магнитной (S_M) и электрической (S_{EL}) , а также аномальной энтропии, связанной с фазовыми переходами (ΔS_{an}). Все перечисленные виды энтропии в той или иной степени зависят от внешнего давления, и их изменения могут вносить вклад в БКЭ. Приоритетной работой по изучению БКЭ в области структурных фазовых переходов следует считать работу, выполненную Мюллером на твердых растворах $Pr_{1-x}La_xNiO_3$ [18]. БКЭ был исследован также и в материалах с другими физическими механизмами изменения энтропии при воздействии давления [19-23]. В некоторых случаях экстенсивный ΔS_{BCE} и интенсивный ΔT_{AD} БКЭ при давлениях меньше 1 GPa оказались достаточно большими и сопоставимыми с изменением ΔS и ΔT при магнетокалорическом эффекте [19,20].

Очевидно, что чем больше степень разупорядочения структурных элементов в исходной высокотемпературной фазе материала, тем больше вероятность при понижении температуры реализации в нем фазового перехода типа порядок—беспорядок, в окрестностях температуры которого возможно осуществление значительного БКЭ.

В настоящей работе проведены исследования теплового расширения кристаллов $(NH_4)_2WO_2F_4$ и $(NH_4)_2MOO_2F_4$ с целью получения дополнительной информации о фазовых переходах, определения термодинамических параметров и выяснения вида фазовых диаграмм температура—гидростатическое давление T-p и температура—одноосное давление $T-\sigma$. Кроме того, мы определили величины интенсивного и экстенсивного барокалорического и пьезокалорических эффектов на основе данных о температурной зависимости теплоемкости при атмосферном давлении и полученных в ходе исследований фазовых диаграмм T-p и $T-\sigma$.

Образцы и экспериментальные методы

Сравнительно крупные монокристаллы $(NH_4)_2WO_2F_4$ и $(NH_4)_2MOO_2F_4$ в виде призм или толстых пластин были получены из растворов по методикам, описанным в [8,13], в результате медленного испарения на воздухе. Для дилатометрических измерений приготовлены образцы в виде параллелепипедов с размерами 5.08, 10.108 и 2.385 mm ($(NH_4)_2WO_2F_4$) и 7.892, 1.579 и 2.843 mm ($(NH_4)_2MOO_2F_4$) вдоль кристаллографических направлений *a*, *b* и *c* соответственно.

Рис. 1. Температурные зависимости деформации $\Delta L/L$ (*a*, *c*) и коэффициентов линейного теплового расширения α (*b*, *d*) вдоль кристаллографических направлений *a* (*1*), *b* (*2*) и *c* (*3*). *a*, *b* — (NH₄)₂WO₂F₄, *c*, *d* — (NH₄)₂MOO₂F₄.

Измерения теплового расширения были выполнены на дилатометре DIL-402C фирмы NETZSCH в температурном диапазоне 140–320 К в динамическом режиме со скоростью нагрева 3 К/min. Для калибровки и учета расширения измерительной системы использовались эталоны из плавленого кварца.

3. Результаты исследований

3.1. Тепловое расширение. Температурные зависимости деформации $\Delta L/L$ и коэффициентов линейного теплового расширения α вдоль трех кристаллографических направлений a, b и c для $(NH_4)_2WO_2F_4$ и $(NH_4)_2MOO_2F_4$ показаны на рис. 1. Для каждого из направлений выполнено несколько серий измерений, результаты которых удовлетворительно согласуются между собой. Аномальное поведение $\alpha(T)$ при $T_1 = 201.5$ К и $T_2 \approx 161$ К в $(NH_4)_2WO_2F_4$ и при $T_1 = 271.4$ К и $T_2 \approx 180$ К в $(NH_4)_2MOO_2F_4$ связано с обнаруженными в [8-15] фазовыми переходами. Температуры переходов оказались несколько выше, чем полученные при измерениях теплоемкости в адиабатическом калори-

метре [9,15], что связано с динамическим характером измерений в дилатометре.

Как и ожидалось, исходя из структурных данных о различии симметрии искаженных фаз, поведение теплового расширения $(NH_4)_2WO_2F_4$ и $(NH_4)_2MOO_2F_4$ заметно различается. Если при понижении температуры деформация $\Delta L_a/L_a$ уменьшается при T_1 для обоих кристаллов, то $\Delta L_b/L_b$ увеличивается для $(NH_4)_2WO_2F_4$ и уменьшается для $(NH_4)_2MOO_2F_4$, а $\Delta L_c/L_c$, наоборот, уменьшается для вольфрамата и увеличивается для молибдата. Несмотря на это, характер изменения объема $\Delta V/V$ и коэффициента объемного теплового расширения $\beta = \alpha_a + \alpha_b + \alpha_c$ для обоих кристаллов качественно подобен и определяется в основном поведением теплововго расширения вдоль оси *с* для $(NH_4)_2WO_2F_4$ и вдоль оси *b* для $(NH_4)_2MOO_2F_4$.

Для выделения и анализа аномального вклада в деформацию необходимо корректное описания неаномальных вкладов в деформацию и коэффициенты теплового расширения. Мы выполнили оценку этих вкладов, используя аппроксимацию "решеточной" составляющей $\Delta V/V$ двумя методами. При традиционном подходе, когда удлинение при температурах $T > T_1$ аппроксимируется

При уменьшении температуры коэффициенты теплового расширения должны стремиться к нулю, и в низкотемпературной области ($T < T_i < \Theta_D$) необходимо учитывать связь теплового расширения и теплоемкости и температурную зависимость теплоемкости хотя бы в рамках модели Дебая. Однако достаточно узкий доступный для обработки интервал температур неаномального поведения теплового расширения выше Т₁ (280-320 К для молибдата и 220-270 К для вольфрамата) затрудняет такой анализ. Поэтому мы были вынуждены ограничиться предположением, что при *T* > *T*₁ коэффициенты $\alpha(T)$ практически линейно зависят от температуры. Это приближение значительно улучшает аппроксимацию экспериментальных температурных зависимостей $\alpha(T)$ и деформации при $T > T_1$ и позволяет оценить скачки объема при фазовых переходах первого рода. При удалении от T_1 в низкотемпературную область ошибка выделения аномального вклада, естественно, возрастает.

3.2. Соотношения Клапейрона-Клаузиуса и Пиппарда. При исследовании фазовых диаграмм температура-давление в молибдате [15] удалось зафиксировать лишь фазовую границу $G_0 \rightarrow G_1$. Наличие данных по теплоемкости [9,15] и тепловому расширению позволяет вычислить величины сдвига температур переходов под влиянием гидростатического и одноосных давлений и построить полные фазовые диаграммы.

В случае переходов первого рода при *T*₀ можно воспользоваться соотношением Клапейрона-Клаузиуса

$$\frac{dT_0}{dp} = \frac{\delta V}{\delta S},\tag{1}$$

где δV и δS — скачки объема и энтропии в точке перехода. Однако фазовые переходы при T_1 в обоих соединениях достаточно близки к трикритической точке [9,15]; кроме того, вблизи температур фазовых переходов существует размытие аномалий теплоемкости и теплового расширения, обусловленное как несовершенством образцов, так и динамическим характером измерений теплового расширения. Поэтому определение скачков энтропии и объема при T_1 весьма затруднительно и сопряжено с большой ошибкой. Приближенные оценки дают величины $dT_1/dp \approx 17$ К/Ра для вольфрамата и $dT_1/dp \approx 74$ К/Ра для молибдата.

Для более точного определения как dT_1/dp , так и dT_2/dp мы воспользовались соотношениями Пиппарда [24], устанавливающими связь между теплоемкостью и коэффициентами теплового расширения вблизи температуры фазового перехода

$$C_p = \frac{V_m T_0}{\gamma_i} \alpha_i + \text{const}, \quad C_p = \frac{V_m T_0}{\gamma} \beta + \text{const}, \quad (2)$$

где C_p — теплоемкость, V_m — молярный объем,

$$\gamma_i = \frac{dT_0}{d\sigma_i}, \qquad \gamma = \frac{dT_0}{dp} = \sum_i \gamma_i.$$
 (3)

Соотношения (2) позволяют определить сдвиг температуры перехода как под гидростатическим давлением dT_0/dp , так и при воздействии одноосных напряжений $dT_0/d\sigma$ и получить фазовые диаграммы $T-\sigma_i$.

Так как величины dT/dp и $dT/d\sigma$ и выполнимость соотношений (2) сильно зависят от точности совмещения по температуре данных вблизи фазовых переходов, небольшие расхождения в температурных шкалах при измерении теплоемкости и адиабатическом калориметре (датчик температуры — платиновый термометр сопротивления) и теплового расширения в дилатометре (термопара) будут приводить к значительным ошибкам в результатах расчетов. Поэтому данные по тепловому расширению и теплоемкости были приведены к одной температурной шкале совмещением температур фазовых переходов. Величины молярных объемов определялись из структурных данных [7,9,13].

Результаты совместной обработки теплоемкости и коэффициентов объемного теплового расширения в искаженных фазах $(NH_4)_2WO_2F_4$ вблизи температур T_1 и T_2 показаны на рис. 2. Соотношения Пиппарда (2) достаточно хорошо выполняются для обоих фазовых переходов. Отклонения от зависимостей (2) наблюдаются при достаточном удалении от температур фазовых переходов $T_1 - T \gtrsim 15 \,\text{K}$ и $T_2 - T \gtrsim 15 \,\text{K}$, а также в непосредственной окрестности превращений $T_1 - T \lesssim 1.5 \, {
m K}$ и $T_2 - T \lesssim 3.5 \,\text{K}$, где наиболее сильно сказывается влияние несовершенства образцов, динамический характер измерений теплового расширения и недостаточная точность совмещения температурных шкал массивов данных $C_p(T)$ и $\alpha(T)$. Подобная картина поведения теплового расширения и теплоемкости наблюдается и для (NH₄)₂MoO₂F₄.

Значения экспериментальных и вычисленных из соотношений Пиппарда (2) барических коэффициентов температур фазовых переходов $\gamma = dT/dp$ и $\gamma_i = dT/d\sigma_i$ для обоих оксифторидов представлены в табл. 1. Для вольфрамата наблюдается удовлетворительное согласие экспериментально определенных барических коэффициентов dT_1/dp и dT_2/dp [9] с величинами, полученными из анализа данных о теплоемкости и коэффициентах объемного и линейного теплового расширения. Эти факты, а также хорошее совпадение экспериментального и вычисленного значений dT_1/dp для молибдата (табл. 1) позволяют надеяться, что и величина dT_2/dp для этого кристалла, которая не была определена экспериментально [15], вычислена нами достаточно точно.

Рис. 2. Зависимости молярной теплоемкости от коэффициента объемного теплового расширения β ниже $T_1(a)$ и $T_2(b)$ для $(NH_4)_2WO_2F_4$.

В табл. 1 представлены также значения $dT_1/d\sigma_i$ и $dT_2/d\sigma_i$ для обоих оксифторидов.

3.3. Фазовые диаграммы. Вычисленные значения dT/dp и $dT/d\sigma$ позволяют построить фазовые диаграммы T-p (рис. 3). На том же рисунке показаны экспериментальные данные [9,15]. Следует обратить внимание на то, что значения температуры T_1 в вольфрамате, определенные при калориметрических, оптических, дилатометрических исследованиях и исследованиях методом дифференциального термического анализа (ДТА), хорошо согласуются друг с другом. Однако температура T_2 , полученная при ДТА-измерениях, оказалась на 12–15 К выше, чем при исследованиях теплоемкости и теплового расширения, что связывалось в [9] с влиянием на T_2 большой скорости изменения температуры в ДТА-измерениях и возможными одноосными напряжениями, возникающими при при-

клеивании образца к спаю дифференциальной термопары.

Как видно из табл. 1, замещение вольфрама на молибден вызывает существенный рост dT_1/dp и уменьшение в 3 раза dT_2/dp , что ведет к расширению температурной области устойчивости фазы G_1 с ростом давления.

Одноосные напряжения вдоль оси *с* в вольфрамате и вдоль *b* в молибдате практически не изменяют вид фазовых диаграмм $T-\sigma$ по сравнению с диаграммами T-p, что следует из значений баричных коэффициентов (табл. 1). Радикальные изменения фазовой диаграммы вольфрамата связаны лишь с напряжением вдоль оси *a*. В этом случае температурная область устойчивости фазы G_1 расширяется с ростом σ_a ($dT_1/d\sigma_a > dT_2/d\sigma_a$). В молибдате напряжение σ_c пприводит к смене знака $dT_1/d\sigma_c$ и $dT_2/d\sigma_c$ и сужению области устойчивости фазы $G_1(dT_1/d\sigma_c < dT_2/d\sigma_c)$.

Таблица 1. Значения экспериментальных [9,15] и вычисленных из соотношений Пиппарда (2) барических коэффициентов температур фазовых переходов $G_0 \rightarrow G_1$ и $G_1 \rightarrow G_2$

Барический коэффициент		$(\mathrm{NH}_4)_2$	WO_2F_4		$(NH_4)_2MoO_2F_4$			
	$G_0 ightarrow G_1$		$G_1 ightarrow G_2$		$G_0 ightarrow G_1$		$G_1 ightarrow G_2$	
	Эксперимент	Расчет	Эксперимент	Расчет	Эксперимент	Расчет	Эксперимент	Расчет
γ, K/GPa	13.4	15.9	41.7	48.8	92.8	98.6	_	16.7
$\gamma_a + \gamma_b + \gamma_c$, K/GPa	—	16.1	—	53.4	—	98.5	—	17.1
$\gamma_a, K/GPa$	—	8.5	—	-5.6	—	52.9	—	21.3
$\gamma_b, K/GPa$	—	-10.0	—	9.9	—	93.5	—	18.0
γ_c , K/Gpa	—	17.6	—	49.1	—	-47.9	—	-22.2

Рис. 3. Фазовые диаграммы T-p (NH₄)₂WO₂F₄ (*a*) и (NH₄)₂MoO₂F₄ (*b*). Точки и пунктирные линии — данные экспериментальных исследований [9,15], сплошные линии — расчет с помощью соотношений Пиппарда.

Барокалорический и пьезокалорический эффекты

Интенсивный и экстенсивный барокалорический и пьезоэлектрический эффекты в $(NH_4)_2WO_2F_4$ и $(NH_4)_2MO_2F_4$ определены так же, как это было сделано для $EuNi_2(Si_{0.15}Ge_{0.85})_2$ [20], с использованием данных о теплоемкости при атмосферном давлении [9,15] и полученных в настоящей работе фазовых диаграмм T-p и $T-\sigma_i$.

Так как в кристаллах оксифторидов преобладают ионные связи, то естественно предположить, что давление оказывает основное влияние на поведение энтропии фазовых переходов. Существенное изменение остальных составляющих энтропии, в том числе и решеточной, в исследуемом диапазоне сравнительно невысоких давлений, скорее всего, практически отсутствует. Таким образом, решеточную энтропию, определенную при атмосферном давлении, можно использовать в качестве фоновой энтропии для анализа результатов влияния давления.

Решеточная составляющая теплоемкости $C_L(T)$ определялась аппроксимацией данных вне интервала существования аномального вклада комбинацией функций Дебая и Эйнштейна. Температурные зависимости изменения решеточной энтропии в температурном диапазоне измерений $S_L(T)-S_L(100 \text{ K})$ и аномальные составляющие $\Delta S(T)$ получены интегрированием функций $C_L(T)/T$ и $(C_p(T) - C_L(T))/T$ соответственно, поведение которых для обоих кристаллов оказалось идентичным. Результаты вычислений для $(NH_4)_2MOO_2F_4$

показаны на рис. 4. Разделение аномальных энтропий фазовых переходов при T_1 и T_2 осуществлялось с помощью аппроксимации данных вблизи T_2 сигмоидой $\Delta S_2(T) = a/(1 + \exp[(T_2 - T)/b])$ (вставка на рис. 4).

Изменение полной энтропии кристаллов как функции температуры и давления определялось суммированием решеточной составляющей энтропии $S_L(T)$ (не зависящей от давления) и аномальных составляющих энтропии $\Delta S_1(T)$ и $\Delta S_2(T)$, сдвинутых для каждого давления по температуре в соответствии с зависимостями $T_1(p)$

Рис. 4. Температурные зависимости энтропии $(NH_4)_2MoO_2F_4$ при различных давлениях. Числа — давление (в GPa). На вставке — температурные зависимости аномальных составляющих энтропии при p = 0. $1 - \Delta S$, $2 - \Delta S_1$, $3 - \Delta S_2$.

Рис. 5. Экстенсивный (a, c) и интенсивный (b, d) калорические эффекты в $(NH_4)_2WO_2F_4$ (a, b) и $(NH_4)_2MoO_2F_4$ (c, d), вычисленные при различных давлениях из данных по теплоемкости и dT/dp. Числа — давление (в GPa).

и $T_2(p)$ (табл. 1, рис. 3). При этом предполагалось, что в исследованном диапазоне гидростатическое давление не приводит к существенному изменению степени близости фазовых переходов к трикритической точке и, таким образом, не изменяет зависимости аномальной теплоемкости. Давление не изменяет и величин ΔS_i , поскольку не меняет числа возможных состояний для упорядочивающихся элементов до и после перехода. Предполагается, что под давлением сохраняется и величина ΔS_2 . Величины экстенсивного БКЭ, определенные как $\Delta S_{BCE}(T, p) = S(T, p) - D(T, 0)$, для $(NH_4)_2WO_2F_4$ и $(NH_4)_2MoO_2F_4$ представлены на рис. 5, *a* и *c* соответственно. Здесь же показаны и величины интенсивного БКЭ ΔT_{AD} (рис. 5, *b* и *d*), полученные из условия $S(T, 0) = S(T + \Delta T_{AD}, p)$.

Аналогичным образом были вычислены калорические эффекты при одноосных напряжениях. Зависимость полной энтропии образца от температуры и напряжения в

Таблица 2. Температуры фазовых переходов T_0 , калорические эффекты ΔT_{AD} и ΔS_{CE} , индуцированные магнитным ΔH и электрическим ΔE полями и гидростатическим давлением p

Материал	T_0, K	$\Delta T_{\rm AD}, {\rm K}$	$\Delta S_{\rm CE}, {\rm J/kg} \cdot {\rm K}$	ΔH , kOe	$\Delta E, \mathrm{kV/cm}$	p, GPa	Литературная ссылка
$(NH_4)_2MoO_2F_4$	270	~ 12	~ 50			0.5	
$(NH_4)_2WO_2F_4$	201	~ 10	~ 40			0.5	
CeSb	16	4	19			0.2 - 0.5	[20]
$EuNi_2(Si_{0.15}Ge_{0.85})_2$	50	14	39			0.2 - 0.5	[20]
MnAs	312	13	32	50			[16]
$Gd_5Si_2Ge_2$	280	15	18.5	50			[25]
PST	290	2.4			138		[26]
PZT	500	15	8		480		[27]

Примечание. PST — PbSc_{1/2}Ta_{1/2}O₃, PZT — PbZr_{0.95}Ti_{0.05}O₃ (пленка 300 nm).

этом случае определялась суммированием решеточной составляющей энтропии $S_L(T)$ и аномальных составляющих энтропии $\Delta S_1(T)$ и $\Delta S_2(T)$, сдвинутых для данного механического напряжения по температуре в соответствии с зависимостями $T_1(\sigma)$ и $T_2(\sigma)$, полученными из соотношений Пиппарда (табл. 1). При этом предполагалось, что одноосные напряжения, так же как и гидростатическое давление, не приводят к существенному изменению степени близости фазовых переходов к трикритической точке.

В отличие от гидростатического давления механические напряжения вдоль оси *b* в $(NH_4)_2WO_2F_4$ и *с* в $(NH_4)_2MoO_2F_4$ приводят к смене знака калорических эффектов при *T*₁, что связано с изменением знака барических коэффициентов $dT_1/d\sigma$ вдоль этих направлений по сравнению с dT_1/dp (табл. 1).

В вольфрамате наибольшие эффекты наблюдаются при приложении напряжений вдоль направления с $(\Delta S_{PCE}$ и ΔT_{AD} достигают 14 J/mol·K и 8 K при $\sigma_c = 9 \,\text{GPa}$). Барические коэффициенты для этого кристалла при приложении напряжения вдоль направлений а и b относительно малы (табл. 1), что и приводит к небольшим величинам калорических эффектов ($\Delta S \approx -10 \text{ J/mol} \cdot \text{K}, \Delta T \approx +5 \text{ K}$ при $\sigma_a = 9 \text{ GPa}$ и $\Delta S \approx +10 \,\mathrm{J/mol} \cdot \mathrm{K}, \ \Delta T \approx -5 \,\mathrm{K}$ при $\sigma_b = 9 \,\mathrm{GPa})$ и узким температурным интервалам их существования (170-200 К). Экстенсивный и интенсивный пьезокалорические эффекты в молибдате оказались заметно больше, чем в вольфрамате, особенно при приложении напряжения вдоль направления b (ΔS_{PCE} и ΔT_{AD} достигают $\sim 17 \text{ J/mol} \cdot \text{K}$ и $\sim 15 \text{ K}$ при $\sigma_b = 9 \text{ GPa}$), и к тому же наблюдались в более широком интервале температур (270-350 K).

Представляет интерес сравнение полученных данных об интенсивном и экстенсивном БКЭ в оксифторидах в окрестности структурных фазовых переходов с параметрами магнето- и электрокалорических эффектов в некоторых материалах, испытывающих фазовые переходы в ферромагнитное и сегнетоэлектрическое состояния (табл. 2). Имея в виду, что сопоставление эффектов разной физической природы, вызванных разными полями, является достаточно субъективным, следует все же отметить, что величины ΔT_{AD} и ΔS_{BCE} оксифторидов находятся на уровне наиболее значимых калорических эффектов.

5. Заключение

Выполненные исследования теплового расширения позволили расширить представления об особенностях механизма структурных превращений в $(NH_4)_2 WO_2 F_4$ и $(NH_4)_2 MoO_2 F_4$ и установить корреляцию между поведением коэффициентов объемного и линейного теплового расширения и теплоемкостью в широких интервалах температур ниже T_1 и T_2 . Анализ данных в рамках соотношений Пиппарда позволил определить барические

коэффициенты dT/dp и $dT/d\sigma$ и построить полные фазовые диаграммы T-p и $T-\sigma$, из которых следует, какое направление в кристаллах является ответственным за значительные различия величин dT_1/dp . Установлено, что в молибдате в отличие от вольфрамата область устойчивости промежуточной искаженной фазы под действием давления расширяется.

При воздействии гидростатического давления и одноосного напряжения вдоль направления b в оксифториде (NH₄)₂MoO₂F₄, испытывающем два фазовых перехода, один из которых при T₁ является переходом типа порядок-беспорядок, обнаружены достаточно большие величины интенсивных и экстенсивных барокалорических эффектов, сопоставимые со значениями калорических эффектов в ряде магнетиков и сегнетоэлектриков. Проведенные исследования позволяют сделать заключение о том, что внешнее давление является довольно эффективным инструментом изменения энтропии соединений, содержащих упорядочивающиеся ионы или ионные группы. Вполне вероятно, что наряду с материалами сегнетоэлектрической и магнитной природы, для реализации в которых калорических эффектов используются электрические и магнитные поля, привлекут внимание исследователей сегнетоэластики и материалы со смешанной природой, такие как сегнетомагнетики-сегнетоэластики, сегнетоэлектрики-сегнетоэластики и др., в которых возможны значительные калорические эффекты под воздействием гидростатического или одноосного давления.

Список литературы

- K.R. Heier, A.J. Norquist, P.S. Halasyamani, A. Duarte, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 38, 762 (1999).
- [2] K.R. Heier, A.J. Norquist, C.G. Wilson, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 37, 76 (1998).
- [3] M. Vlasse, J.-M. Moutou, M. Cervera-Marzal, J.-P. Chaminade, P. Hagenmüller. Rev. Chim. Miner. 19, 58 (1982).
- [4] Г.З. Пинскер, В.Г. Кузнецов. Кристаллография 13, 1, 74 (1968).
- [5] В.С. Сергиенко, М.П. Порай-Кощиц, Т.С. Ходашова. ЖСХ 13, 3, 461 (1972).
- [6] A.M. Srivastava, J.E. Ackerman. J. Solid State Chem. 98, 144 (1992).
- [7] A.A. Udovenko, N.M. Laptash. Acta Cryst. B 64, 645 (2008).
- [8] С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ. ФТТ 48, 110 (2006).
- [9] И.Н. Флёров, В.Д. Фокина, М.В. Горев, А.Д. Васильев, А.Ф. Бовина, М.С. Молокеев, А.Г. Кочарова, Н.М. Лапташ. ФТТ 48, 711 (2006).
- [10] A.D. Vasiliev, N.M. Laptash. Proc. of ISIF-2008. Vladivostok, Russia (2008). P. 187.
- [11] И.Н. Флёров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 50, 3, 497 (2008).
- [12] И.Н. Флёров, В.Д. Фокина, М.В. Горев, Е.В. Богданов, М.С. Молокеев, А.Ф. Бовина, А.Г. Кочарова. ФТТ 49, 6, 1093 (2007).

- [13] С.В. Мельникова, Н.М. Лапташ. ФТТ 50, 493 (2008).
- [14] С.В. Мельникова, А.Д. Васильев, Н.М. Лапташ. Тр. симп. ОDPO-10. ИПО ПИ ЮФУ, Ростов н/Д (2007). Ч. II. С. 172.
- [15] В.Д. Фокина, Е.В. Богданов, Е.И. Погорельцев, В.С. Бондарев, И.Н. Флёров, Н.М. Лапташ. ФТТ **52**, *1*, 148 (2010).
- [16] A.M. Tishin, Y.I. Spichkin. The magnetocaloric effect and its applications. Series in condensed matter physics. Institute of Physics Publ., Bristol, Philadelphia (2003).
- [17] J.F. Scott. Science **315**, 954 (2007).
- [18] K.A. Müller, F. Fauth, S. Fischer, M. Koch, A. Furrer, Ph. Lacorre. Appl. Phys. Lett. 73, 1056 (1998).
- [19] Th. Strässle, A. Furrer, A. Donni, T. Komatsubara. J. Appl. Phys. 91, 8543 (2002).
- [20] Th. Strässle, A. Furrer, Z. Hossain, Ch. Geibel. Phys. Rev. B 67, 054 407 (2003).
- [21] L.G. de Medeiros, N.A. de Oliveira, A. Troper. J. Appl. Phys. 103, 113 909 (2008).
- [22] N.A. de Oliveira. J. Phys.: Cond. Matter 20, 175 209 (2008).
- [23] E. Bonnot, R. Romero, L. Manosa, E. Vives, A. Planes. arXiv: 0802.2009v1 [Cond-mat.mtrl-sci].
- [24] A.B. Pippard. The elements of classical thermodynamics. Cambridge University Press, N.Y. (1964).
- [25] K.A. Gschneidner, jr., V.K. Pecharsky, A.O. Pecharsky, V.V. Ivtchenko, E.M. Levin. J. Alloys Comp. 303–304, 214 (2000).
- [26] L. Shebanov, K. Borman, W.N. Lawless, A. Kalvane. Ferroelectrics 273, 137 (2002).
- [27] A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur. Science **311**, 1270 (2006).