Калориметрические и диэлектрические исследования оксифторида (NH₄)₂MoO₂F₄

© В.Д. Фокина^{*,**}, Е.В. Богданов^{*}, Е.И. Погорельцев^{**}, В.С. Бондарев^{*,**}, И.Н. Флёров^{*,**}, Н.М. Лапташ^{***}

* Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ** Сибирский федеральный университет, Красноярск, Россия *** Институт химии ДВО РАН, Владивосток, Россия E-mail: fokina@iph.krasn.ru

(Поступила в Редакцию 2 апреля 2009 г. В окончательной редакции 15 мая 2009 г.)

> Выполнены исследования температурных зависимостей теплоемкости, диэлектрических свойств и восприимчивости к внешнему давлению и электрическому полю оксифторида $(NH_4)_2MoO_2F_4$ (пр. гр. *Стем, Z = 4*). На основе сравнительного анализа данных об энтропии фазовых переходов, фазовых T-p-диаграммах, диэлектрической проницаемости и поведении аномальной теплоемкости совместно с результатами проведенных ранее исследований родственных $(NH_4)_2WO_2F_4$ и $(ND_4)_2WO_2F_4$ установлена существенная роль как анионов $[MO_2F_4]^{2-}$, так и аммонийных групп в механизме и природе структурных превращений.

> Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 09-02-00062).

1. Введение

Одно из активно развиваемых направлений в исследовании оксифторидов относится к области пересечения интересов химии и физики твердого тела, а также материаловедения. Ацентричность фтор-кислородных шестикоординированных анионов, обусловленная смещением атома металла из центра октаэдра по направлению к кислородным лигандам, может служить одной из причин наличия в исходном состоянии кристалла полярной фазы или возникновения ее при изменении внешних параметров: температуры и давления. Таким образом, среди оксифторидов должно существовать немало соединений, перспективных с точки зрения реализации в них пьезоэлектричества, сегнетоэлектричества и нелинейных оптических свойств. Очевидно, что при этом должны отсутствовать как статистическое разупорядочение лигандов, приводящее к появлению внутреннего центра симметрии шестикоординированного аниона, так и центр симметрии кристаллической решетки в целом.

Обширный круг исследований посвящен поиску путей реализации упорядочения лигандов, способствующего возникновению полярных фаз во фторкислородных материалах, содержащих, в частности, анион $[MO_2F_4]^{2-}$ (M = Mo, W). Обнаружено, что в зависимости от состава одновалентных атомарных катионов лиганды O(F) в кристаллической решетке соединений $A_2MO_2F_4$ могут быть как упорядочены (Na₂WO₂F₄ [1], K₂MoO₂F₄ [2]), так и частично (Rb₂MoO₂F₄ [3]) или полностью динамически разупорядочены (Cs₂WO₂F₄ [4], Rb₂WO₂F₄ [5]). Возможности варьирования характера и степени разупорядочения атомов F(O) в анионе $[MO_2F_4]^{2-}$ были изуче-

ны также путем исследования кристаллов со сложными органическими катионами типа пиридина, пиразина и др. [6,7]. Катионный состав оказывает влияние и на симметрию кристаллической решетки оксифторидов [1–7].

Работы по исследованию возможных фазовых переходов в оксифторидах подобного рода до последнего времени отсутствовали. И лишь сравнительно недавно структурные превращения были впервые обнаружены в кристалле (NH₄)₂WO₂F₄ с ромбической исходной симметрией (пр. гр. Стст) [8,9]. Рентгеновские исследования на монокристальном дифрактометре позволили локализовать в исходной фазе лишь по одному атому фтора и кислорода, лежащих на псевдооси четвертого порядка [9]. Остальные лиганды в (NH₄)₂WO₂F₄ оказались статистически разупорядоченными по четырем эквивалентным положениям. Таким образом, шестикоординированный анион, во-первых, имеет цис-конфигурацию и, во-вторых, обладает дипольным моментом за счет смещения атома вольфрама из плоскости прямоугольника, образованного атомами F(O). Однако за счет центросимметричной структуры в целом кристалл (NH₄)₂WO₂F₄ не является полярным.

При исследовании физических свойств установлено, что это соединение претерпевает последовательность из двух фазовых переходов при температурах $T_1 = 201$ К и $T_2 = 160$ К [8,9]. Оказалось, что структурное искажение при T_1 является превращением первого рода с температурным гистерезисом $\delta T_1 = 1.4$ К и сопровождается большим изменением энтропии ($\Delta S_1 \approx R \ln 9.8$), что свидетельствует о процессах упорядочения неких структурных элементов в результате перехода. При первичном уточнении исходной структуры (NH₄)₂WO₂F₄ [9] обнаружено, что для всех атомов тепловые параметры невелики и возможность их разупорядочения не рассматривалась. В качестве основного фактора, определяющего большую энтропию высокотемпературного перехода, предполагалось упорядочение тетраэдрических аммонийных групп NH₄. Небольшое изменение энтропии при T_2 ($\Delta S_2 = 0.17R$) связывалось с фазовым переходом типа смещения.

Недавно выполненные тщательные исследования структуры исходной и искаженной фаз (NH₄)₂WO₂F₄ позволили получить новые важные результаты [5]. Во-первых, на основе анализа конкурирующих структурных моделей предложена модель, в соответствии с которой в фазе Стст существуют два независимых состояния октаэдра [WO₂F₄], различающиеся упорядоченным и разупорядоченным положением центрального атома. Во-вторых, удалось преодолеть затруднения, связанные с двойникованием кристалла в искаженной фазе, и установить, что ее симметрия является триклинной с пр. гр. Р1, характеризующейся полным упорядочением атомов W и F(O). Атомы водорода не были локализованы в обеих фазах, однако обе кристаллографически неэквивалентные аммонийные группы, так же как и в [9], предполагались ориентационно разупорядоченными в фазе Стст.

В пользу центросимметричной структуры ниже T_1 свидетельствуют и данные оптических и диэлектрических измерений [8,10]: природа фазового перехода является сегнетоэластической.

С целью выяснения роли аммонийных тетраэдров в механизмах фазовых переходов были выполнены калориметрические исследования кристалла $(ND_4)_2WO_2F_4$ [11]. Дейтерирование не вызвало значительного изменения температур фазовых переходов, характерных для протонированного соединения $(T_1 = 200 \text{ K} \text{ и } T_2 = 162 \text{ K}),$ но привело к появлению двух дополнительных небольших аномалий теплоемкости при $T'_1 = 267.5 \,\mathrm{K}$ и $T_2' = 193.5$ К. Величина температурного гистерезиса δT_1 осталась прежней, а превращение при T₂' оказалось переходом первого рода ($\delta T_1 = 1.5 \,\mathrm{K}$). Изменение энтропии, связанное с переходом при T_1 , в дейтерированном соединении существенно меньше ($\Delta S_1 \approx R \ln 4.9$) [11], что, безусловно, свидетельствует об участии тетраэдров в этом переходе, по крайней мере в протонированном оксифториде. Близость величин ΔS_2 для кристаллов $(NH_4)_2WO_2F_4$ и $(ND_4)_2WO_2F_4$ позволяет считать, что механизм фазового перехода при T₂ один и тот же в обоих соединениях.

При исследовании влияния гидростатического давления [9,11] установлено, что скорости сдвига температуры T_1 под давлением оказались практически одинаковыми для протонированного и дейтерированного вольфрамовых оксифторидов. В то же время замещение $D \rightarrow H$ привело к росту величины dT_2/dp почти в 2.5 раза. Именно поэтому на T-p-диаграмме (ND₄)₂WO₂F₄ была зафиксирована тройная точка

 $(p_{\rm tr} = 0.18\,{\rm GPa}$ и $T_{\rm tr} = 202.6\,{\rm K})$, существование которой для $({\rm NH_4})_2{\rm WO}_2{\rm F_4}$ только предполагалось в районе 0.7 GPa.

Исследования оксифторидов криолитного типа (пр. гр. $Fm\bar{3}m$) (NH₄)₃WO₃F₃ и (NH₄)₃MoO₃F₃ показали, что замещение центрального атома приводит к существенным изменениям физических свойств и природы фазовых превращений [10]. Безусловный интерес представляло изучение роли центрального катиона в устойчивости структуры, природе и механизме фазовых переходов в кристаллах (NH₄)₂ MO_2F_4 (M = Mo, W). Недавно установлено, что замещение $Mo \rightarrow W$ не изменило симметрии (пр. гр. *Стст*) исходной фазы кристалла (NH₄)₂ MO_2F_4 и количества фазовых переходов по сравнению с вольфрамом [12,13]. С другой стороны, установлен ряд индивидуальных особенностей, свойственных только молибдату.

 Существенно более высокие температуры фазовых переходов.

 В соответствии с предварительными исследованиями структуры характер статистического разупорядочения лигандов в исходной фазе не полностью совпадает с наблюдавшимся в вольфрамате.

 Отсутствует двойникование кристалла в искаженных фазах.

4) Сохраняется ромбическая симметрия при температурах ниже T_1 и T_2 (пр. гр. *Pnma*).

5) Часть лигандов в искаженных фазах остается статистически разупорядоченной.

6) На синтезах электронной плотности в фазе *Pnma* зафиксированы следы водородов, принадлежащих обоим аммонийным тетраэдрам.

С целью выяснения влияния замещения $Mo \rightarrow W$ на механизм и природу фазовых переходов в настоящей работе выполнены исследования ряда термодинамических свойств $(NH_4)_2MoO_2F_4$: теплоемкости, диэлектрической проницаемости и восприимчивости к гидростатическому давлению и электрическому полю.

2. Теплоемкость и фазовая *T-p*-диаграмма

Образцы соединений $(NH_4)_2MoO_2F_4$ были получены из раствора в виде бесцветных прозрачных монокристаллов по методике, описанной в [12].

Подробные исследования теплоемкости кристалла $(NH_4)_2MoO_2F_4$, так же как И ранее лля (NH₄)₂WO₂F₄ [9], проведены методом адиабатического калориметра в режимах дискретных ($\Delta T = 2 - 3.5 \,\mathrm{K}$) и непрерывных (dT/dt = 0.14 K/min) нагревов. Окрестности фазового перехода при T₁ изучены методом квазистатических термограмм в режимах нагрева и охлаждения ($dT/dt = (2-4) \cdot 10^{-2}$ K/min). Исследуемый образец массой 1.34 g герметично упаковывался в атмосфере гелия в индиевый контейнер, теплоемкость которого определялась в отдельном эксперименте.

Результаты измерения температурной зависимости молярной теплоемкости кристалла $(NH_4)_2MOO_2F_4$ представлены на рис. 1. Характер поведения C_p в целом совпадает с зависимостью $C_p(T)$, наблюдавшейся для $(NH_4)_2WO_2F_4$ [9]: две ярко выраженные аномалии теплоемкости обнаружены при температурах $T_1 = 269.80 \pm 0.05$ К и $T_2 = 180 \pm 2$ К, которые достаточно близки к температурам фазовых переходов, зарегистрированных при измерении двулучепреломления [12]. В то же время в температурной области между T_1 и T_2 на кривой $C_p(T)$ молибдата наблюдались еще три аномалии, весьма незначительные по величине в сравнении с основными пиками теплоемкости (рис. 1).

На вставке к рис. 1 показаны результаты исследования окрестностей температуры T_1 методом квазистатических термограмм в режимах нагрева и охлаждения. Определенная в этих экспериментах величина температурного гистерезиса $\delta T_1 = 0.9$ К удовлетворительно согласуется с найденной в оптических измерениях [12]. Скачок энтальпии при переходе (скрытая теплота фазового перехода) составил $\delta H_1 = 560 \pm 60$ J/mol, а температурный интервал его размытия был достаточно узким: $T_1 \pm 0.07$ К.

Для определения интегральных характеристик фазовых переходов в $(NH_4)_2MoO_2F_4$ выполнено разделение молярной теплоемкости на регулярную составляющую и аномальный вклад, связанный с фазовыми переходами. С этой целью экспериментальные данные $C_p(T)$ значительно выше T_1 и ниже T_2 аппроксимировались комбинацией функций Дебая и Эйнштейна; затем проводилась интерполяция на область аномального поведения теплоемкости. Регулярный вклад в теплоемкость показан штриховой линией на рис. 1, а температурная зависимость аномальной теплоемкости представлена на рис. 2. Здесь более четко проявляются дополнительные пики C_p при температурах $T_1^1 = 256$ K, $T_1^2 = 245$ K и $T_1^3 = 209$ K.

Рис. 1. Температурная зависимость теплоемкости оксифторида $(NH_4)_2MoO_2F_4$. Штриховая линия — решеточная теплоемкость. На вставке — термограмма в режимах нагрева и охлаждения. Вертикальные стрелки соответствуют температурам дополнительных аномалий теплоемкости.

Рис. 2. Температурная зависимость избыточной теплоемкости $(NH_4)_2MoO_2F_4$. На вставке — область температур в окрестности T_2 .

В исходной фазе избыточная теплоемкость появляется при $\sim (T_1 + 30 \text{ K})$ и, таким образом, существует в более узком температурном интервале $(T_1 + 60 \text{ K})$ по сравнению с $(\text{NH}_4)_2 \text{WO}_2 \text{F}_4$ и его дейтерированным аналогом [9,11].

Интегрирование по температуре функции $\Delta C_p(T)$ во всем интервале ее существования (160–300 K) позволило определить суммарное изменение энтальпии $\sum \Delta H_i = 4800 \pm 330 \text{ J/mol B} (\text{NH}_4)_2 \text{MoO}_2 \text{F}_4$, связанное с тепловыми эффектами, наблюдавшимися при температурах T_i .

Для оценки вкладов каждого из эффектов в величину $\sum \Delta H_i$ были выделены в произвольной форме фоновые теплоемкости, показанные на рис. 2 штриховыми линиями. Изменения энтальпии, соответствующие всем наблюдавшимся в эксперименте пикам теплоемкости, составили (в J/mol): $\Delta H_1 = 4420 \pm 300$; $\Delta H_2 = 300 \pm 35$; $\Delta H_1^1 \approx 10$; $\Delta H_1^2 \approx 20$; $\Delta H_1^3 \approx 50$. Величины ΔH_i при T_1^1 , T_1^2 и T_1^3 оказываются почти в пределах величины ошибки определения даже ΔH_2 ; с другой стороны, в интервале температур T_1-T_2 никаких особенностей в поведении других физических свойств не обнаружено. Поэтому можно считать, что тепловые эффекты при T_1^1 , T_1^2 и T_1^3 не связаны с фазовыми переходами в молибдате. В дальнейшем мы не принимаем их во внимание.

Для исследования восприимчивости $(NH_4)_2MoO_2F_4$ к гидростатическому давлению использована методика, основанная на методе ДТА, описанная в [14] и применявшаяся ранее для изучения фазовых T-p-диаграмм других оксифторидов и фторидов. Монокристаллический образец приклеивался к одному из спаев высокочувствительного термопарного элемента Cu–Ge, помещаемого в камеру высокого давления, заполненную трансформаторным маслом. Результаты исследований представлены в виде фазовой диаграммы температура–давление на рис. 3. В экспериментах при нормальном и повышенных давлениях зафиксирована только одна аномалия теплоемкости, соответствующая фазовому переходу при T_1 .

Рис. 3. Фазовая T - p-диаграмма оксифторида (NH₄)₂MoO₂F₄.

Увеличение давления сопровождается ростом температуры перехода со скоростью $dT_1/dp = 92.8 \pm 3.5$ К/GPa. Аномалия теплоемкости с увеличением давления достаточно быстро размывается и при p > 0.3 GPa практически не регистрируется. В исследованном интервале давлений тройных точек и фаз высокого давления не обнаружено. Фазовый переход при T_2 не был зафиксирован, несмотря на бо́льшую по сравнению с вольфраматами [9,11] величину энтальпии ΔH_2 . Главная причина этой неудачи связана со значительной сглаженностью аномалии теплоемкости (рис. 2).

Отмеченные во Введении различия структуры и свойств $(NH_4)_2WO_2F_4$ и $(NH_4)_2MoO_2F_4$, обнаруженные в [12,13], позволяли предположить возможность существования индивидуальных особенностей природы и механизма фазовых переходов в этих кристаллах.

3. Диэлектрическая проницаемость. Влияние электрического поля

С целью получения информации о природе фазовых превращений в $(NH_4)_2MoO_2F_4$ были проведены исследования температурной зависимости его диэлектрической проницаемости на пластинках толщиной ~ (0.6-1) mm, вырезанных параллельно плоскостям (100), (010) и (001). Использовались медные и золотые электроды, которые наносились путем вакуумного напыления. Измерения $\varepsilon(T)$ на частоте 1 kHz в интервале температур 100–320 К выполнены с помощью измерителя иммитанса Е 7-20. Скорости изменения температуры в режимах нагрева и охлаждения составляли ~ 0.7 K/min.

Из результатов измерений, представленных на рис. 4, видно, что диэлектрическая проницаемость обнаруживает ярко выраженное аномальное поведение при температуре фазового перехода из фазы *Стст.* Характер поведения $\varepsilon(T)$ для направлений (001) и (100) похож: аномалии представляют собой существенно асимметричные пики с почти вдвое различающимися максимальными значениями. Совсем по-иному ведет себя диэлектрическая проницаемость ε_b , обнаруживая при нагревании ступенчатое возрастание при температуре фазового перехода и оставаясь практически постоянной выше T_1 . Тангенс угла диэлектрических потерь также характеризуется аномальным поведением, но температуры максимума tg δ для всех направлений лежат ниже температуры T_1 .

При температуре T_2 на кривых $\varepsilon_a(T)$ и $\varepsilon_b(T)$ наблюдались лишь незначительные изломы (вставки на рис. 4, *a*, *c*). В области других отмеченных выше температур (T_1^1 , T_1^2 и T_1^3) каких-либо особенностей в поведении диэлектрической проницаемости и tg δ не обнаружено.

Так как (NH₄)₂MoO₂F₄ испытывает ярко выраженный фазовый переход первого рода *Стст* → *Рпта*, для изучения влияния на температуру Т₁ электрического поля был выбран метод, суть которого аналогична термографическому методу, использованному нами при определении скрытой теплоты и температурного гистерезиса. Благодаря значительной величине скачка энтальпии δH_1 можно было фиксировать фазовый переход и при довольно большой скорости нагревания испытуемого оксифторида, которая составляла $dT/dt \approx 0.25$ K/min. Опыты проводились на образцах, использованных для измерения $\varepsilon(T)$, которые помещались в устройство, позволяющее обеспечивать адиабатические условия эксперимента путем поддержания близкой к нулю разницы температур между образцом и окружающим его температурным экраном. Термопара, с помощью которой регистрировалась температура, приклеивалась непосредственно к электроду образца. Измерения выполнены при следующих значениях электрического поля: E = 0, 2.0, 3.4 kV/cm.

На рис. 5, *а* представлены результаты одного из опытов, показывающие, как выглядел график развертки температуры образца во времени в окрестности фазового перехода. Под влиянием электрического поля температура T_1 понижалась. Для большей наглядности эффекта смещения T_1 опытные данные представлены в виде зависимостей dT/dt(T) при разных напряженностях поля (рис. 5, *b* и вставка к нему). Относительный сдвиг температуры фазового перехода оказался довольно незначительным: $dT_1/dE = -0.026 \text{ K/kV} \cdot \text{cm}^{-1}$.

Попытки развернуть петлю диэлектрического гистерезиса в фазе *Pnma* по крайней мере до 1.5 kV/cm оказались безуспешными.

4. Обсуждение

В результате исследований, выполненных в [5,8,12,13], установлено некоторое различие структур исходной и искаженной фаз, а также оптических свойств кристаллов $(NH_4)_2WO_2F_4$ и $(NH_4)_2MoO_2F_4$. Наглядное представление о связи между типом центрального атома и рядом термодинамических свойств этих оксифторидов можно получить из данных, представленных в таблице.

Рис. 4. Температурная зависимость диэлектрической проницаемости ε (*a*, *c*, *e*) и тангенса угла диэлектрических потерь tg δ (*b*, *d*, *f*) (NH₄)₂MoO₂F₄ вдоль кристаллографических осей *a* (*a*, *b*), *b* (*c*, *d*) и *c* (*e*, *f*). На вставках показано поведение ε при *T*₂.

Несмотря на несущественное различие ионных радиусов W (0.60 Å) и Mo (0.59 Å), исходная фаза *Стст* в результате замещения Mo \rightarrow W стала менее устойчивой к изменению внешних параметров (температуры и давления), что выразилось как в значительном росте температуры T_1 , так и в аномально большой величине ее барического коэффициента dT_1/dp , в 7 раз превышающей установленную ранее для (NH₄)₂WO₂F₄ [9]. В то же время за счет существенно меньшего изменения T_2 интервал существования промежуточной между T_1 и T_2 фазы в значительной мере расширился — с 40 до 90 К. К сожалению, вопрос об устойчивости этой фазы в (NH₄)₂MoO₂F₄ по отношению к гидростатическому давлению остается открытым. Ответ на него, по нашему мнению, может быть получен косвенным путем, например по результатам исследований теплового расширения в окрестности T_2 , так как знак барического коэффициента определяется знаком изменения объема и коэффициента объемного расширения соответственно для фазовых переходов первого и второго рода.

В соответствии с данными [5,13] и в молибдате, и в вольфрамате не обнаружено заметных структурных различий между промежуточной ($T_2 < T < T_1$) и низкотемпературной ($T < T_2$) искаженными фазами, существование которых надежно установлено в оптических и калориметрических измерениях, выполненных в [8,9,11–13] и в настоящей работе. В обоих кристаллах при температуре T_1 происходит упорядочение (полное в (NH₄)₂WO₂F₄ и частичное в (NH₄)₂MOO₂F₄) лигандов и соответственно центрального атома, выражающееся

Рис. 5. Результаты исследования влияния электрического поля на температуру T_1 . a — кривая развертки температуры образца во времени, b — поведение производной dT/dt в широком интервале температур и в непосредственной окрестности фазового перехода $Cmcm \rightarrow Pnma$ (на вставке). Кривые соответствуют измерениям при напряженностях электрического поля 0 (1), 2 (2) и 3.4 kV/cm (3).

в его смещении на довольно значительные расстояния (Mo ~ 0.3 Å, W ~ 0.2 Å) [5,13]. Что касается аммонийных групп, предполагавшихся разупорядоченными в фазе *Cmcm*, то ниже T_1 в (NH₄)₂WO₂F₄ в соответствии с [5] они, вероятно, могут оставаться в какой-то мере разупорядоченными. В (NH₄)₂MOO₂F₄ в результате фазового перехода *Cmcm* \rightarrow *Pnma* происходит, повидимому, упорядочение тетраэдров, так как на синтезах электронной плотности в фазе *Pnma* зафиксированы следы водородов обеих аммонийных групп [15].

Рассмотрим энтропии фазовых переходов, которые определялись путем интегрирования $\Delta S_i = \int (\Delta C_p/T) dT$ и составили (в J/mol·K): $\Delta S_1 = 18.2 \pm 1.3$; $\Delta S_2 = 1.70 \pm 0.25$. Хотя энтальпии фазовых переходов в результате замещения Мо \rightarrow W заметно увеличились, соответствующие величины энтропии либо не изменились (ΔS_2), либо даже уменьшились (ΔS_1) (см. таблицу). Это обстоятельство объясняется существенным ростом температур фазовых переходов T_1 и T_2 , который в принципе был ожидаем исходя из данных по исследованию фтор-кислородных вольфраматов и молибдатов с

перовскитоподобной структурой [10,16,17]. Как и в родственных вольфрамовых соединениях [9,11], основное изменение энтропии $(NH_4)_2MoO_2F_4$ связано с превращением при T_1 .

Итак, основываясь на данных о температурах фазовых переходов, их восприимчивости к гидростатическому давлению, величинах энтропии и характере изменения структуры, можно сделать некоторые заключения об общих и индивидуальных чертах механизмов фазовых переходов в родственных соединениях $(NH_4)_2WO_2F_4$ [9], $(ND_4)_2WO_2F_4$ [11] и $(NH_4)_2MO_2F_4$.

Судя по локализации (полной или частичной) лигандов в искаженных фазах протонированных оксифторидов, определенный вклад в энтропию перехода может быть связан с процессами статистического упорядочения атомов F(O) и, таким образом, центрального атома. В соответствии с моделью структуры Cmcm (NH₄)₂WO₂F₄, предложенной в [5], центральный атом в полиэдре [WO₂F₄] разупорядочен между частным 4c и общим 16h положениями, характеризующимися различными вероятностями заселенности: 0.143 и 0.214 соответственно. Полное его упорядочение приводит к изменению энтропии $R \ln 3.42 = 10.2 \text{ J/mol} \cdot \text{K}.$ Тот же механизм искажения структуры, но с точки зрения упорядочения лигандов связан с величиной $R \ln(4/1) = 11.5 \text{ J/mol} \cdot \text{K}$. Таким образом, изменение энтропии (NH₄)₂WO₂F₄ в процессе упорядочения квазиоктаэдров при Т₁ намного меньше величины ΔS_1 , определенной экспериментально (см. таблицу). Дейтерирование вольфрамата привело к уменьшению соответствующей энтропии почти в 1.5 раза — $\Delta S_1 = 13.2 \text{ J/mol} \cdot \text{K} = R \ln 4.9 \text{ [11]}$. Значительное различие энтропий, составившее 5.7 J/mol · K $\approx R \ln 2$, с нашей точки зрения, может быть связано с тем, что тетраэдр, разупорядоченный по двум положениям в фазе Стст протонированного вольфрамата, в результате замеще-

Некоторые термодинамические параметры фазовых переходов в оксифторидах $(NH_4)_2MO_2F_4$: T_1^* — температура обращения в нуль величины $(\Delta C_p/T)^{-2}$ в соответствии с уравнением (1), T_C — температура Кюри, N — степень близости фазового перехода к трикритической точке

Параметр	$(NH_4)_2WO_2F_4$ [9]	$(NH_4)_2MoO_2F_4 \\$
T_1, K	201	270
$\Delta S_1/R$	ln 9.8	ln 8.9
$\delta S_1/\Delta S_1$	0.18	0.11
$dT_1/dp, \ \mathbf{K} \cdot \mathbf{GPa}^{-1}$	13.5	93
A_T^2/B , J/mol · K ²	-2.2	-0.7
A_T^3/C , $J^2/mol \cdot K^3$	11.5	16.4
$T_1^* - T_1, K$	0.2	1.4
$T_1 - T_C, \mathbf{K}$	0.6	4.2
Ν	-0.06	-0.18
T_2, \mathbf{K}	160	180
$\Delta S_2/R$	ln 1.2	ln 1.2
dT_2/dp , K · GPa ⁻¹	42	?

ния $D \rightarrow H$ упорядочивается. Практическое совпадение температур T_1 и барических коэффициентов dT_1dp $(NH_4)_2WO_2F_4$ [9] и $(ND_4)_2WO_2F_4$ [11] обусловлено, скорее всего, отсутствием водородных связей N-H...F(O) в фазе *Стст*, наличие которых, как, например, в случае KDP и DKDP, при дейтерировании может приводить к росту температуры фазового перехода на десятки градусов [18].

Суммируя указанные выше факты, экспериментально определенные энтропии фазовых переходов при T_1 в вольфраматах можно представить как состоящие из следующих вкладов:

$$(NH_4)_2WO_2F_4 - R\ln 9.8 = R(\ln(4/1) + \ln(2/1) + \ln 1.2),$$

$$(ND_4)_2WO_2F_4 - R \ln 4.9 = R(\ln(4/1) + \ln(1/1) + \ln 1.2).$$

Изменения энтропии $R \ln(4/1)$ и $R \ln(2/1)$ обусловлены соответственно ориентационным упорядочением фтор-кислородных и аммонийных полиэдров, а величина $R \ln 1.2$ может быть связана со смещением отдельных атомов.

Особенность разупорядочения структуры Стст в (NH₄)₂MoO₂F₄ заключается в том, что в одной из полярных вершин полиэдра [MoO₂F₄] был локализован атом F, а вторую занимали F и O с соотношением заселенностей 1/9 [15]. В результате перехода произошло лишь частичное упорядочение структуры: удалось локализовать только три атома F, образующих грань полиэдра $[MoO_2F_4]$, а остальные лиганды равновероятно занимают три вершины противоположной грани. Неполное упорядочение атомов F(O) в фазе Pnma позволяло предполагать возможность существования фазовых переходов в (NH₄)₂MoO₂F₄ при дальнейшем охлаждении кристалла. Аномалия $C_p(T)$ при T_2 едва ли связана с упорядочением лигандов, так как энтропия ΔS_2 невелика и совпадает с соответствующими энтропиями в обоих вольфраматах. В области температур ниже предельно достигнутой в экспериментах на адиабатическом калориметре были проведены измерения теплоемкости на установке PPMS (система измерения физических свойств). Каких-либо аномалий не обнаружено вплоть до 4К. Таким образом, можно предполагать, что в (NH₄)₂MoO₂F₄ происходит постепенное замораживание беспорядка лигандов.

Предложенная в [15] модель искаженной фазы на первый взгляд затрудняет прямой расчет энтропии, связанной с упорядочением лигандов. Однако можно допустить существование прафазы G_0 в (NH₄)₂MoO₂F₄, в которой все лиганды полностью разупорядочены, как, например, в Rb₂WO₂F₄ [5], и из которой могут происходить фазовые переходы ($G_0 \rightarrow Cmcm$ и $G_0 \rightarrow Pnma$). В этом случае возможен и переход первого рода между подгруппами $Cmcm \rightarrow Pnma$, при котором так необычно по сравнению с вольфраматами меняется заселенность вершин полиэдра атомами F(O) или число положений атома Мо — 4/3. В соответствии с [15] при переходе упорядочиваются оба тетраэдра NH₄. Тогда энтропия ΔS_1 представляет собой сумму вкладов, по смыслу соответствующих рассмотренным выше для вольфраматов

$$(NH_4)_2MoO_2F_4 - R\ln 8.9$$

= $R(\ln(4/3) + 2\ln(2/1) + \ln 1.7).$

Значительный рост барического коэффициента dT_1/dp при замещении Mo -> W указывает, безусловно, на существенное различие переходов в (NH₄)₂WO₂F₄ и (NH₄)₂MoO₂F₄. Еще одним подтверждением этой индивидуальности является поведение диэлектрической проницаемости. Зависимости $\varepsilon(T)$ вольфрамата [10] свидетельствуют о сугубо несегнетоэлектрической природе структурных искажений при T₁ [19]. В случае молибденового оксифторида ситуация оказалась сложнее. С одной стороны, в искаженной фазе он не является сегнетоэластиком. С другой — не исключена возможность существования в фазе Рпта антисегнетоэлектрического состояния, о чем свидетельствует ряд экспериментальных фактов: 1) появление сверхструктуры в результате перехода *Стст* → *Рпта* (увеличение вдвое объема примитивной ячейки); 2) первый род фазового перехода и большая величина энтропии ΔS_1 ; 3) отрицательный сдвиг Т₁ в электрическом поле; 4) существенное различие величин є в исходной и искаженной фазах и рост ε по мере приближения к T_1 ; 5) отсутствие петель гистерезиса при $T < T_1$. Согласно [20,21], перечисленные свойства соответствуют признакам, характерным для антисегнетоэлектриков, испытывающих переходы типа порядок-беспорядок, например NH₄HPO₄ и $(NH_4)_2H_3IO_6.$

О значительной роли аммонийных групп в механизме перехода при T_2 свидетельствует существенное влияние дейтерирования на устойчивость к давлению именно этой температуры [11]. Напомним, что в $(ND_4)_2WO_2F_4$ промежуточная фаза выклинивалась при относительно низком давлении: < 0.2 GPa за счет возросшей в несколько раз величины $dT_2/dp = 112 \text{ K} \cdot \text{GPa}^{-1}$ по сравнению с $(NH_4)_2WO_2F_4$ (см. таблицу). С другой стороны, в соответствии с небольшими величинами ΔS_2 (см. таблицу) какие-либо процессы упорядочения при этом превращении явно отсутствуют. Что касается природы этого фазового перехода, то, судя по поведению ε и tg δ , можно уверенно считать ее несегнетоэлектрической как в $(NH_4)_2WO_2F_4$ [10], так и в $(NH_4)_2MOO_2F_4$.

Ранее нами было показано, что в промежуточной фазе между T_1 и T_2 поведение теплоемкости $(NH_4)_2WO_2F_4$ и $(ND_4)_2WO_2F_4$ удовлетворительно описывается в рамках феноменологической теории фазовых переходов Ландау. Судя по величине $\delta S_1/\Delta S_1$ (см. таблицу), характеризующей соотношение между скачком энтропии при T_1 и полным ее изменением в интервале T_1-T_3 , переход из фазы *Стст* в $(NH_4)_2MoO_2F_4$ также достаточно близок к трикритической точке. Представление избыточной теплоемкости молибдата в соответствии с уравнением [22], полученным на основе анализа термодинамического по-

Рис. 6. Температурная зависимость квадрата обратной избыточной теплоемкости (NH₄)₂MoO₂F₄.

тенциала $\Delta \Phi(p, T, \eta) = A\eta^2 + B\eta^4 + C\eta^6$,

$$\left(\frac{\Delta C_p}{T}\right)^{-2} = \left(\frac{2\sqrt{B^2 - 3A'C}}{A_T^2}\right) + \frac{12C}{A_T^3}\left(T_1 - T\right), \quad (1)$$

свидетельствует о том, что ΔC_p следует линейной зависимости от температуры в довольно широком интервале температур (рис. 6). Из таблицы видно, как повлияло замещение Мо \rightarrow W на соотношения коэффициентов потенциала, в котором $A = A_T(T_1 - T_C)$ $+ A_T(T - T_1) = A' + A_T(T - T_1)$. Кроме того, величины $T_1^* - T_1$, $T_1 - T_C$ и $N = \pm \sqrt{B^2/3A_TCT_C}$, характеризующие степень близости перехода к трикритической точке, показывают, что в молибдате фазовый переход из фазы *Стст* приобрел черты более ярко выраженного правращения первого рода.

5. Заключение

Сравнение данных для $(NH_4)_2MoO_2F_4$ и родственного $(NH_4)_2WO_2F_4$, полученных в настоящей работе, свидетельствует о следующих последствиях замещения $Mo \rightarrow W$.

1) Энтропии фазовых переходов при T_1 и T_2 изменились в пределах ошибки их определения.

2) Существенно выросла неустойчивость исходной фазы *Стст* по отношению к гидростатическому давлению.

3) Не исключено появление анитсегнетоэлектрического состояния при $T < T_1$.

 Анализ структуры и энтропии позволяет считать, что высокотемпературный переход связан с упорядочением обеих аммонийных групп и только с частичным упорядочением лигандов.

5) В приближении феноменологической теории фазовый переход из ромбической фазы стал более удаленным от трикритической точки.

Авторы признательны А.В. Карташеву за измерения теплоемкости на установке PPMS.

Список литературы

- M. Vlasse, J.-M. Moutou, M. Cervera-Marzal, J.-P. Chaminade, P. Hagenmüller. Rev. Chim. Miner. 19, 58 (1982).
- [2] Г.З. Пинскер, В.Г. Кузнецов. Кристаллография 13, 1, 74 (1968).
- [3] В.Г. Сергиенко, М.А. Порай-Кошиц, Т.С. Ходашова. ЖСХ 13, 3, 461 (1972).
- [4] A.M. Srivastava, J.F. Ackerman. J. Solid State Chem. 98, 144 (1992).
- [5] A.A. Udovenko, N.M. Laptash. Acta Cryst. B 64, 645 (2008).
- [6] K.R. Heier, A.J. Norquist, P.S. Halasyamani, A. Duarte, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 38, 762 (1999).
- [7] K.R. Heier, A.J. Norquist, C.G. Wilson, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 37, 76 (1998).
- [8] С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ. ФТТ 48, 1, 110 (2006).
- [9] И.Н. Флёров, В.Д. Фокина, М.В. Горев, А.Д. Васильев, А.Ф. Бовина, М.С. Молокеев, А.Г. Кочарова, Н.М. Лапташ. ФТТ 48, 4, 711 (2006).
- [10] И.Н. Флёров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 50, 3, 497 (2008).
- [11] И.Н. Флёров, В.Д. Фокина, М.В. Горев, Е.В. Богданов, М.С. Молокеев, А.Ф. Бовина, А.Г. Кочарова. ФТТ 49, 6, 1093 (2007).
- [12] С.В. Мельникова, Н.М. Лапташ. ФТТ 50, 3, 493 (2008).
- [13] С.В. Мельникова, А.Д. Васильев, Н.М. Лапташ. Тр. симп. ОDPO-10. Издат.-печ. отд. Политехн. ин-та ЮФУ, Ростов н/Д (2007). Ч. II. С. 172.
- [14] М.В. Горев, И.Н. Флёров, А. Трессо, Д. Деню, А.И. Зайцев, В.Д. Фокина. ФТТ 44, 10, 1864 (2002).
- [15] A.D. Vasiliev, N.M. Laptash. Proc. of ISIF-2008. Vladivostok, Russia (2008). P. 187.
- [16] J. Ravez, G. Peraudeau, H. Arend, S.C. Abrahams, P. Hagenmüller. Ferroelectrics 26, 767 (1980).
- [17] И.Н. Флёров, М.В. Горев, В.Д. Фокина, А.Ф. Бовина, Н.М. Лапташ. ФТТ **46**, *5*, 888 (2004).
- [18] Б.А. Струков, М.А. Коржуев, А. Баддур, В.А. Копцик. ФТТ 13, 1872 (1971).
- [19] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1983). 240 с.
- [20] В. Кенциг. Сегнетоэлектрики и антисегнетоэлектрики. ИЛ, М. (1960). 234 с.
- [21] Г.А. Смоленский, В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Е. Пасынков, М.С. Шур. Сегнетоэлектрики и антисегнетоэлектрики. Наука, Л. (1971). 476 с.
- [22] К.С. Александров, И.Н. Флёров. ФТТ 21, 2, 327 (1979).