Зонная структура новых слоистых арсенидов $SrRu_2As_2$ и $BaRu_2As_2$

© И.Р. Шеин, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, Екатеринбург, Россия E-mail: ivanovskii@ihim.uran.ru

(Поступила в Редакцию 28 апреля 2009 г.)

Представлены результаты *ab initio* FLAPW-GGA-расчетов зонной структуры двух новых слоистых фаз: SrRu₂As₂ и BaRu₂As₂, изоструктурных и изоэлектронных известным тетрагональным (Ca, Sr, Ba)Fe₂As₂ базисным фазам группы FeAs-сверхпроводников. Для SrRu₂As₂ и BaRu₂As₂ впервые определены энергетические зоны, распределения плотностей электронных состояний, топология поверхности Ферми, коэффициенты низкотемпературной электронной теплоемкости и молярной парамагнитной восприимчивости Паули, которые обсуждаются в сопоставлении с таковыми для BaFe₂As₂ и BaRh₂As₂.

Работа поддержана РФФИ (проект № 09-03-00946-а).

1. Введение

Открытие в 2008 г. [1] нового семейства так называемых FeAs сверхпроводников (СП) с критическими температурами перехода вплоть до $T_C \sim 56$ К инициировало интенсивный поиск родственных сверхпроводящих материалов и изучение их физических свойств (см. обзоры [2,3]). Одну из наиболее интересных групп базисных фаз, на основе которых ведется поиск новых FeAs-СП, составляют так называемые "122" FeAs-фазы состава AFe_2As_2 , где A = Ca, Sr или Ba.

Тетрагональные AFe₂As₂-фазы (пр. гр. *I4/mmm*, структурный тип ThCr₂Si₂) составлены блоками [Fe₂As₂], которые разделены плоскими сетками атомов Ca, Sr или Ва. Важнейшей особенностью этих фаз является высокое содержание в их составе магнитного металла — Fe, когда недопированные *A*Fe₂As₂-фазы являются антиферромагнетиками [2–4].

Переход в сверхпроводящее состояние "122" FeAs-фаз связан с подавлением магнетизма — например, за счет введения различных допантов. В качестве таковых используют либо одновалентные ионы щелочных металлов (K, Na или Cs), вводимые в сетки A, либо атомы магнитных 3*d*-металлов (Mn, Co или Ni) [4], помещаемые в позиции Fe в слоях [Fe₂As₂]. При этом максимальные значения T_C , зафиксированные для "122"-СП на основе AFe_2As_2 -фаз, составляют около 37–38 K для систем $Ba_{1-x}K_xFe_2As_2$ и $Sr_{1-x}Cs_xFe_2As_2$ [2,3].

Альтернативным способом получения СП-материалов на основе AFe_2As_2 -фаз является частичное замещение атомов железа атомами немагнитных 4d- и 5d-металлов. Например, для систем $Sr(Fe_{1-x}Ir_x)_2As_2$ и $Ba(Fe_{1-x}Ru_x)_2As_2$ наблюдали критические переходы при $T_C = 22.3$ и 20.8 К соответственно [5,6]. Более того, найдена [7] сверхпроводимость в родственных фосфорсодержащих "122"-фазах без участия магнитных 3d-металлов: $BaRh_2P_2$ ($T_C = 1.0$ К) и $BaIr_2P_2$ ($T_C = 2.1$ К); особенности электронных свойств этих систем обсуждались авторами [8].

С учетом указанного выше, большой интерес представляет недавнее сообщение [9] об успешном синтезе двух новых "122"-арсенидов: SrRu₂As₂ и BaRu₂As₂. Обнаружено [9], что в отличие от изоэлектронных и изоструктурных арсенидов AFe_2As_2 эти фазы являются диамагнетиками, а сверхпроводящий переход (по крайней мере, до T < 1.8 K) отсутствует. Высказано предположение, что по аналогии с "122" AFe_2As_2 -фазами для SrRu₂As₂ и BaRu₂As₂ можно ожидать переход в сверхпроводящее состояние при введении в их Sr- или Ва-подрешетки дырочных допантов — например, ионов щелочных металлов.

В настоящей работе сообщаются первые результаты исследования зонной структуры новых слоистых "122"-фаз SrRu₂As₂ и BaRu₂As₂ как возможных базисных материалов для поиска новых сверхпроводников, которые обсуждаются в сравнении с BaFe₂As₂ — базисной фазой семейства "122" FeAs-СП — и BaRh₂As₂ низкотемпературным ($T_C = 1.0$ K) сверхпроводником.

2. Метод расчета

отмечалось, изоструктурные SrRu₂As₂ Как И ВаRu₂As₂ имеют [8] присущую семейству "122"-фаз слоистую тетрагональную структуру (структурный тип ThCr₂Si₂, Z = 2), составленную чередованием (вдоль оси z) блоков ... $[Ru_2As_2]/Sr(Ba)/[Ru_2As_2]/Sr(Ba)...$ (рис. 1). В ячейке атомы расположены в позициях Ru: 2d(1/2;0;1/4), As: $4e(0;0;z_{As})$ и Sr(Ba): 2a(0;0;0); структуру обычно описывают с помощью параметров решетки (а и с) и так называемого внутреннего характеризующего межслоевые параметра ZAs, расстояния Fe-As [3].

Расчеты зонной структуры SrRu₂As₂ и BaRu₂As₂ проведены полнопотенциальным методом присоединенных плоских волн (FP–LAPW, код WIEN2k) [10] с обобщенной градиентной аппроксимацией (GGA) обменнокорреляционного потенциала [11]. Набор плоских волн K_{max} определялся как $R_{\text{MT}}K_{\text{max}} = 8.0$. Интегрирование по зоне Бриллюэна (ЗБ) проведено методом тетраэдров

Рис. 1. Кристаллическая структура тетрагональных (пр. гр. *I4/mmm*) фаз (Sr,Ba)Ru₂As₂.

с использованием сетки $10 \times 10 \times 10$ для 99 *k*-точек в неприводимой части ЗБ. Критерий сходимости для полной энергии составлял 0.001 mRy, для зарядов — 0.1 me.

3. Результаты и обсуждение

На первом этапе выполнена полная структурная оптимизация SrRu₂As₂ и BaRu₂As₂ (как по параметрам решетки, так и по атомным позициям), полученные данные приведены в табл. 1. Видно, что при переходе SrRu₂As₂ →BaRu₂As₂ параметр *с* заметно (на 1.02 Å) возрастает, что легко объяснимо с учетом ионных радиусов щелочно-земельных элементов: $r(Sr^{2+}) = 1.20$ Å < $r(Ba^{2+}) = 1.38$ Å. В то же время параметр *а* уменьшается (на 0.01 Å). Таким образом, при замене меньшего иона (Sr²⁺) на больший (Ba²⁺)

происходит анизотропная деформация кристаллической структуры, когда расстояния между блоками растут, а сами блоки сжимаются (в плоскости xy). Причиной такой деформации является резко анизотропная система межатомных взаимодействий в SrRu₂As₂- и BaRu₂As₂-фазах (см. далее). Как видно из данных табл. 1, сжатие блоков [Ru₂As₂] в BaRu₂As₂ (образованных сопряженными тетраэдрами RuAs₄) обусловлено изменением углов связей As-Ru-As и некоторым уменьшением межатомных расстояний d^{Ru-Ru} . Отметим, что подобный тип анизотропных деформаций при изовалентном замещении ионов обнаружен также в других родственных слиостых фазах, например, для BaRh₂P₂, BaIr₂P₂ [8], ANi₂Pn₂ (A = Sr, Ba; Pn = P, As) [12] или LaNiOBi и LaCuOBi [13].

Результаты расчетов электронной структуры представлены на рис. 2-5 и в табл. 2. Как видно из рис. 2, спектр заполненных состояний SrRu₂As₂ содержит две группы зон, разделенных запрещенной щелью (ЗЩ). Из анализа распределений плотности состояний (рис. 3) следует, что нижняя группа зон образована в основном As 4s-состояниями. Валентная полоса (в интервале от $-5.7 \,\mathrm{eV}$ до уровня Ферми $E_{\mathrm{F}} = 0 \,\mathrm{eV}$) имеет смешанный характер с участием гибридизованных Ru 4d-As 4p-состояний. В этой энергетической области выделяются две подполосы состояний (пики В и С на рис. 3), где нижний пик В соответствует указанным гибридным состояниям, тогда как верхний пик С — как и нижний пик D в области свободных состояний — образован в основном 4*d*-состояними Ru. Подчеркнем, что в области занятых состояний валентные s, p-состояния Sr практически отсутствуют, т.е. стронций находится в решетке SrRu₂As₂ в виде двухзарядного иона Sr²⁺, являясь электронным донором.

Сравнивая зонные структуры SrRu₂As₂ и BaRu₂As₂, можно отметить их общее подобие (рис. 2 и 3), строение прифермиевской полосы (а следовательно, и проводящие свойства) определяется состояниями блоков [Ru₂As₂]. С другой стороны, для BaRu₂As₂ вблизи нижнего края 4s-зоны As расположены квазиостовные 5p-зоны Ba, в результате 4s-полоса As сужается, тогда как ЗЩ между As 4s- и гибридной Ru 4d-As 4p-зонами несколько возрастает.

Таблица 1. Оптимизированные параметры ячеек a, c и внутренние параметры z_{As} , некоторые межатомные расстояния d и углы связей As-Ru-As θ для SrRu₂As₂ и BaRu₂As₂ по данным FLAPW-GGA-расчетов в сравнении с экспериментом [9]

Фаза	a,Å	c,Å	Z As	$d^{\operatorname{Ru-Ru}}, \operatorname{\AA}$	$d^{\operatorname{Ru}-\operatorname{As}}, \operatorname{\AA}$	$d^{\mathrm{As-As}}, \mathrm{\AA^{**}}$	θ , deg
SrRu ₂ As ₂	4.2068 4.1713*	11.2903 11.1845*	0.3591 0.3612*	2.975	2.437	3.182	119.3 118.4*
BaRu ₂ As ₂	4.1925 4.1525*	12.3136 12.2504*	0.3510 0.3527*	2.966	2.438	3.671	118.7 117.6*

* Эксперимент [9].

** Между ближайшими атомами мышьяка соседних слоев [Ru2As2/[Ru2As2].

Фаза*	$N^{\mathrm{Ar,P}}(E_\mathrm{F})$	$N^{ m Fe,Ru,Rh}(E_{ m F})$	$N^{ m tot}(E_{ m F})$	γ , mJ · K ⁻² · mol ⁻¹	χ , 10 ⁻⁴ emu · mol ⁻¹
SrRu ₂ As ₂	0.155	0.802	1.708	4.03 (4.1 [9])	0.550 (0.550 [9])
$BaRu_2As_2$	0.113	0.864	1.713	4.04 (4.9 [9])	0.551 (0.680 [9])
BaFe ₂ As ₂	0.07	1.86	4.55	10.73	1.47
BaRh ₂ P ₂	0.37	1.86	4.18	9.85	1.35

Таблица 2. Полные $N^{tot}(E_F)$ и парциальные $N^l(E_F)$ плотности состояний на уровне Ферми (state/eV·atom), коэффициенты низкотемпературной электронной теплоемкости у и молярной парамагнитной восприимчивости Паули χ для SrRu₂As₂ и BaRu₂As₂ в сравнении с аналогичными данными для родственных "122"-фаз BaFe₂As₂ и BaRh₂P₂

* Приведены результаты FLAPW-GGA-расчетов BaFe₂As₂ [14] и BaRh₂P₂ [8] в сравнении с имеющимся экспериментом [9].

Уровень Ферми для SrRu₂As₂ и BaRu₂As₂ лежит в локальном минимуме плотности состояний и пересекает в основном 4*d*-зоны Ru, которые образуют систему дырочных и электронных карманов. Подчеркнем, что $E_{\rm F}$ находится на склоне интенсивного пика C (рис. 3), т.е. дырочное допирование этих фаз (например, при частичном замещении атомов щелочно-земельных атомами щелочных металлов) будет способствовать росту плотности состояний на уровне Ферми $N(E_{\rm F})$, что открывает перспективы дальнейших работ по поиску новых сверхпроводящих материлов на основе SrRu₂As₂и BaRu₂As₂-фаз.

Однако строение прифермиевских зон для SrRu₂As₂ и BaRu₂As₂ заметно отличается от такового для АFe₂As₂-фаз. Как известно [2,3,15], в последних поверхность Ферми (ПФ) образована цилиндрическими дырочными листами (вблизи точки Г; такая структура указывает на нестабильность системы и ее склонность к зарядовому или спиновому упорядочению, часто связываемому со структурными искажениями) и электронными листами, располагающимися в углах ЗБ. Как видно из рис. 4, для SrRu₂As₂ и ВаRu₂As₂ цилиндрические листы (для AFe₂As₂) вырождаются в замкнутые дырочные карманы, центрированные в точке Z. Таким образом, в сравнении с АFe₂As₂ фазы SrRu₂As₂ и BaRu₂As₂ частично утрачивают квазидвумерный характер спектра. Отметим, что для BaRh₂P₂ происходит дальнейшая эволюция ПФ, которая (за счет заполнения части прифермиевских зон при росте числа валентных электронов в ряду $BaRu_2As_2 \rightarrow BaRh_2P_2$) принимает выраженный трехмерный характер [8].

Рис. 2. Энергетические зоны $SrRu_2As_2$ (*a*) и $BaRu_2As_2$ (*b*).

Рис. 3. Полная и парциальные плотности состояний SrRu₂As₂ (*a*) и BaRu₂As₂ (*b*).

Рис. 4. Поверхности Ферми $SrRu_2As_2$ (*a*) и $BaRu_2As_2$ (*b*).

Из приводимых в табл. 2 величин видно, что для SrRu₂As₂ и BaRu₂As₂ плотность состояний на уровне Ферми $N(E_{\rm F})$, как и определяемые ею коэффициенты низкотемпературной электронной теплоемкости γ и молярной парамагнитной восприимчивости Паули χ (которые оценивались по модели свободных электронов: $\gamma = (\pi^2/3)N(E_{\rm F})k_{\rm B}^2$ и $\chi = \mu_{\rm B}^2N(E_{\rm F})$), существенно меньше, чем для BaFe₂As₂, а также низкотемпературного СП BaRh₂P₂. Тогда в рамках модели БКШ отсутствие сверхпроводящего перехода для (Sr,Ba)Ru₂As₂ в срав-

нении с $BaRh_2P_2$ получает простое объяснение, связанное со значительным уменьшением $N(E_F)$ для этих фаз (табл. 2).

Рассчитанные величины γ^{theor} позволяют провести в рамках модели [16] для SrRu₂As₂ и BaRu₂As₂ оценку констант электрон-фононного взаимодействия λ как $\gamma^{\text{exp}} = \gamma^{\text{theor}}(1 + \lambda)$, используя экспериментальные значения γ^{exp} [9]. Получено, что величины λ для этих фаз весьма малы и составляют $\lambda \sim 0.20$ (SrRu₂As₂) и $\lambda \sim 0.02$ (BaRu₂As₂).

Рис. 5. Распределение электронной плотности в плоскости (100) для фазы SrRu₂As₂.

В заключение рассмотрим особенности системы межатомных взаимодействий в $SrRu_2As_2$ и $BaRu_2As_2$. Как отмечалось, в составе этих фаз атомы Sr и Ba присутствуют в виде двухзарядных катионов, поэтому данные арсениды (в рамках простой ионной модели) можно описать как состоящие из двух типов противоположно заряженных блоков: ... $[Ru_2As_2]^{2-}/Sr(Ba)^{2+}/[Ru_2As_2]^{2-}/Sr(Ba)^{2+}$ Следовательно, между слоями $[Ru_2As_2]$ и атомными сетками щелочно-земельных металлов происходит перенос за-

ряда в направлении (Sr,Ba) \rightarrow [Ru₂As₂], т.е. реализуется ионное взаимодействие. Дополнительно в слоях [Ru₂As₂] между атомами Ru и As существует ионная компонента связи за счет зарядового переноса в направлении Ru \rightarrow As. Кроме того, как следует из распределения плотности состояний (рис. 3), между атомами Ru и As образуются ковалентные связи за счет перекрывания Ru 4d-As 4p-орбиталей, а между атомами рутения — металлические связи за счет делокализованных прифермиевских 4d-состояний Ru.

На рис. 5 представлена общая картина распределения зарядовой плотности ρ в SrRu₂As₂, иллюстрирующая рассмотренную картину межатомных взаимодействий. Видно, что электронная плотность концентрируется в основном внутри слоев [Ru₂As₂], причем контуры ρ сильно деформированы вдоль направления связей Ru–As, демонстрируя упомянутые ковалентные взаимодействия. Отсюда SrRu₂As₂- и BaRu₂As₂-фазы можно описать как квазидвумерные ионные металлы, состоящие из противоположно заряженных блоков [Ru₂As₂]^{δ -} и атомных сеток (Sr,Ba)^{δ +}, связанных за счет кулоновских взаимодействий, тогда как проводимость осуществляется исключительно в блоках [Ru₂As₂]^{δ -}. Сходная картина межатомных взаимодействий реализуется в других "122"-фазах [17].

4. Заключение

В настоящей работе с использованием FLAPW-GGAметода впервые изучена зонная структура новых слоистых тетрагональных (пр. гр. *I4/mmm*) фаз SrRu₂As₂ и BaRu₂As₂, изоструктурных и изоэлектронных фазам (Ca,Sr,Ba)Fe₂As₂, которые являются базисными материалами для семейства новых "122" FeAs-сверхпроводников.

показали, Расчеты что при переходе $SrRu_2As_2 \rightarrow BaRu_2As_2$ происходит анизотропная деформация их кристаллической структуры за счет увеличения межслойного расстояния вдоль оси z с одновременным сжатием слоев в плоскости ху. Эффект связан с резкой анизотропией межатомных взаимодействий: сильными ковалентно-ионно-металлическими связями внутри блоков [Ru₂As₂] и ионными связями между соседними бло- $\dots [Ru_2As_2]^{2-}/Sr(Ba)^{2+}/[Ru_2As_2]^{2-}/Sr(Ba)^{2+}\dots$ ками Основываясь на проведенных расчетах, фазы SrRu₂As₂ и BaRu₂As₂ можно описать как квазидвумерные ионные металлы.

Расчеты зонной структуры показали, что состояния вблизи уровня Ферми для $SrRu_2As_2$ и $BaRu_2As_2$ определяются вкладами 4*d*-состояний Ru с примесью 4*p*-состояний As, причем *E*_F располагается в локальном минимуме плотности состояний. В сравнении с *A*Fe₂As₂ фазы $SrRu_2As_2$ и $BaRu_2As_2$ частично утрачивают квазидвумерный характер спектра: в отличие от *A*Fe₂As₂-фаз, для которых ПФ содержит цилиндрические дырочные листы, в $SrRu_2As_2$ и $BaRu_2As_2$ эти листы вырождаются в замкнутые дырочные карманы, центрированные в точке Z. Для SrRu₂As₂ и BaRu₂As₂ плотность состояний на уровне Ферми существенно меньше, чем для BaFe₂As₂, а также низкотемпературного СП BaRh₂P₂, и отсутствие свехпроводящего перехода для (Sr,Ba)Ru₂As₂ в сравнении с BaRh₂P₂ получает простое объяснение, связанное со значительным уменьшением $N(E_{\rm F})$ для этих фаз. Оценки показывают, что для этих фаз константы электрон-фононного взаимодействия весьма малы ($\lambda < 0.2$).

Наконец, наши результаты позволяют предположить, что дырочное допирование (например, при частичном замещении атомов щелочно-земельных на атомы щелочных металлов) будет способствовать росту плотности состояний на уровне Ферми $N(E_{\rm F})$, что открывает перспективы дальнейших работ по поиску новых сверхпроводящих материалов на основе SrRu₂As₂- и BaRu₂As₂-фаз.

Список литературы

- Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono. J. Am. Chem. Sos. 130, 3296 (2008).
- [2] М.В. Садовский. УФН 178, 1243 (2008).
- [3] А.Л. Ивановский. УФН 178, 1273 (2008).
- [4] D. Kasinathan, A. Ormeci, K. Koch, U. Burkhardt, W. Schnelle, A. Leithe-Jasper, H. Rosner. New J. Phys. 11, 025 023 (2009).
- [5] F. Han, X. Zhu, Y. Jia, L. Fang, P. Cheng, H. Luo, B. Shen, H.H. Wen. arXiv:0902.3257 (2009).
- [6] S. Paulraj, S. Sharma, A. Bharathi, A.T. Satya, S. Chandra, Y. Hariharan, C.S. Sundar. arXiv:0902.2728 (2009).
- [7] D. Hirai, T. Takayama, R. Higashinaka, H. Aruga-Katori, H. Takagi. J. Phys. Soc. Jpn. 78, 023 706 (2009).
- [8] И.Р. Шеин, А.Л. Ивановский. Письма в ЖЭТФ 89, 418 (2009).
- [9] R. Nath, Y. Singh, D.C. Johnston. arXiv:0901.4582 (2009).
- [10] P. Blaha, K. Schwarz, G. Madsen, D. Dvasnicka, J. Luitz. WIEN2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001).
- [11] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [12] I.R. Shein, A.L. Ivanovskii. Phys. Rev. B 79, 054 510 (2009).
- [13] I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii. Phys. Rev. B 78, 104 519 (2008).
- [14] И.Р. Шеин, А.Л. Ивановский. Письма в ЖЭТФ 88, 115 (2008).
- [15] C. Liu, G.D. Samolyuk, Y. Lee, T. Kondo, A.F. Santander-Syro, S.L. Bud'ko, J.L. McChesney, E. Rotenberg, T. Valla, A.V. Fedorov, P.C. Canfield, B.N. Harmon, A. Kaminski. Phys. Rev. Lett. **101**, 177 005 (2008).
- [16] Ch. Walti, E. Felder, C. Degen, G. Wigger, R. Monnier,
 B. Delley, H.R. Ott. Phys. Rev. B 64, 172 515 (2001).
- [17] И.Р. Шеин, А.Л. Ивановский. ЖСХ 50, 540 (2009).