Фазовый переход сегнетоэлектрического типа в графене с хаббардовским взаимодействием

© М.Б. Белоненко, Н.Г. Лебедев, Н.Н. Янюшкина

Волгоградский государственный университет, Волгоград, Россия Entropique Inc., London, N6J 3S2, ON, Canada E-mail: yana_nn@inbox.ru

(Поступила в Редакцию в окончательном виде 25 мая 2011 г.)

Выявлено, что в графене с хаббардовским взаимодействием между электронами при приложении внешнего постоянного электрического поля возможно спонтанное появление электрического поля, перпендикулярного приложенному полю. Данный эффект можно связать с неравновесностью электронной подсистемы графена. Выявлены характеристики спонтанного поля в зависимости от параметров задачи.

Работа проведена в рамках реализации ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы (проект № НК-16(3)), а также поддержана Российским фондом фундаментальных исследований (гранты № 08-02-00663 и № 11-02-97054-Р_поволжье_а).

1. Введение

12

Фазовые переходы представляют собой одну из парадигм современной фундаментальной физики. Фазовый переход, в широком смысле, — переход вещества из одной фазы в другую при изменении внешних условий температуры, давления, магнитного или электрического поля и т.д.; в узком смысле — скачкообразное изменение физических свойств при непрерывном изменении внешних параметров. Одно из важнейших мест во всем многообразии фазовых переходов занимает неравновесный фазовый переход, которому и будет посвящено настоящее исследование.

В [1,2] теоретически было показано, что в присутствии сильного электрического поля наблюдаются неравновесные фазовые переходы в электронном газе в проводниках с объемно центрированной кубической решеткой. Эффект проявляется в спонтанном возникновении поперечного поля E_v, играющего роль упорядочивающего параметра. Приложенное электрическое поле E_x , направленное вдоль оси симметрии кристалла, является управляющим параметром. Необходимым условием существования поперечного поля является неаддитивность электронного спектра: $\varepsilon(\mathbf{p}) \neq \varepsilon(p_x)$ $+\varepsilon(p_v)+\varepsilon(p_z)$, где **р** — текущий импульс электрона (например, когда используется приближение слабой связи, электронный спектр в объемно центрированной кубической решетке становится неаддитивным: $\varepsilon(\mathbf{p}) \sim \cos(p_x a/2\hbar) \cos(p_y a/2\hbar) \cos(p_z a/2\hbar)),$ где a постоянная решетки). Кроме того, спектр должен быть ограничен.

В настоящей работе мы исследуем возможность существования фазовых переходов в графене, что должно проявляться в появлении поперечной компоненты E_x в присутствии поля E_y , которое и будет играть роль управляющего параметра. Графен представляет собой структуру, состоящую из одного слоя атомов углерода,

и имеет плоскую гексагональную решетку. Большая подвижность электронов в графене и его уникальные электрофизические характеристики привлекают к нему внимание как к одной из альтернатив кремниевой базы современной микроэлектроники [3-6]. Заметим, что электромагнитные волны, распространяющиеся в углеродных структурах, становятся сильно нелинейными уже при относительно слабых полях. Обсуждаемые свойства углеродных структур вызвали как повышенный теоретический интерес, так и попытки применения в устройствах нелинейной оптики [7]. Нелинейность, согласно выводам, сделанным в этих работах, возникает вследствие изменения классической функции распределения электронов и непараболического закона дисперсии электронов. Необходимо отметить, что вне рассмотрения часто остаются собственно электронные свойства, которые могут проявляться в различных частях спектра. Так, например, кулоновское взаимодействие электронов может привести к изменению закона дисперсии и, следовательно, к изменению оптического отклика. Отметим, что наиболее простым методом учета кулоновского взаимодействия является способ, предложенный Шубиным и Вонсовским в 1934 г. (теперь это принято называть моделью Хаббарда [8,9]), когда учитывается только кулоновское отталкивание электронов, расположенных на одном узле решетки.

Суммируя вышесказанное, можно сделать вывод, что задача исследования отклика графена в магнитном поле с учетом хаббардовского взаимодействия представляется достаточно важной и актуальной.

2. Основные уравнения

Рассмотрим отклик графена на внешнее электрическое поле, приложенное вдоль оси *x*. Геометрия задачи представлена на рис. 1.

Рис. 1. Геометрия задачи.

Гамильтониан системы электронов можно записать в виде, предложенном Хаббардом [8,9]

$$H = H_0 + H_{
m int},$$

 $H_0 = \sum_{j\Delta\sigma} t_0 a^+_{j\sigma} a^-_{j+\Delta\sigma} + h.c.,$
 $H_{
m int} = U \sum_i a^+_{j\sigma} a^-_{j\sigma} a^+_{j-\sigma} a^-_{j-\sigma},$

где $a_{j\sigma}^+$, $a_{j\sigma}^-$ операторы рождения и уничтожения электронов на узле *j* со спином σ , t_0^- интеграл перескока, определяемый перекрытием волновых функций электронов в соседних узлах, Δ^- вектор, связывающий соседние узлы в решетке, U^- энергия кулоновского отталкивания электронов, находящихся на одном узле.

При помощи Фурье-преобразования

$$a_{n\sigma}^{+} = \frac{1}{N^{1/2}} a_{j\sigma}^{+} \exp(ijn),$$

$$a_{n\sigma} = \frac{1}{N^{1/2}} a_{j\sigma} \exp(-ijn), \qquad (1)$$

которое диагонализирует гамильтониан H_0 , легко получить спектр электронов, описывающий свойства электронной подсистемы в отсутствие кулоновского отталкивания $\varepsilon(\mathbf{p})$.

Учет гамильтониана взаимодействия H_{int} был произведен в различных приближениях и различными способами в большом количестве работ, из которых упомянем только [10–13]. Основной результат, который следует из проведенного в этих работах анализа, состоит в том, что учет слагаемого, содержащего U, приводит к изменению спектра элементарных возбуждений модели. Так, две первоначально вырожденные (по проекциям спина σ) зоны расщепляются на две невырожденные зоны со спектром, который описывается [10–13]

$$\varepsilon_{h}(\mathbf{p}) = \frac{\varepsilon(\mathbf{p})}{2} + \frac{U}{2} \mp \sqrt{\varepsilon^{2}(\mathbf{p}) - 2\varepsilon(\mathbf{p})U(1 - 2n_{0}) + U^{2}}/2,$$
(2)

где зависимость $\varepsilon(\mathbf{p})$ следует задать прменительно к конкретному случаю (см. ниже), n_0 — среднее число электронов в узле.

Физически причина изменения спектра элементарных возбуждений достаточно прозрачна и состоит в рассеянии электронов на флуктуациях кулоновского поля, создаваемого электронами с другим спином, что и описывается H_{int} . Также отметим, что спектр, аналогичный (2), можно записать и в условиях электронфононного взаимодействия, если под величиной t_0 понимать соответствующим образом перенормированную константу.

Учтем, что закон дисперсии, который описывает свойства графена без учета кулоновского взаимодействия электронов на одном узле, имеет вид [14]

$$\varepsilon(\mathbf{p}) = \pm \gamma \sqrt{1 + 4\cos(ap_x)\cos\left(\frac{ap_y}{\sqrt{3}}\right) + 4\cos^2\left(\frac{ap_y}{\sqrt{3}}\right)},$$
(3)

где $\gamma \approx 2.7 \text{ eV}$, $a = 3b/2\hbar$, b = 0.142 nm расстояние между соседними атомами углерода в графене, $\mathbf{p} = (p_x, p_y)$. Разные знаки относятся к зоне проводимости и валентной зоне.

Уравнение двжиения может быть записано в виде [15]

$$\frac{d\mathbf{p}}{dt} = \mathbf{E}.\tag{4}$$

C использованием калибровки: $\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$ мы получаем

$$p_x = p_0 E_x t$$

$$p_y = p_0 E_y t.$$

Определим

$$\upsilon(p_x) = rac{\partial arepsilon_h(p_x, p_y)}{\partial p_x}, \quad \upsilon(p_y) = rac{\partial arepsilon_h(p_x, p_y)}{\partial p_y}.$$

Далее используем выражение для плотности тока, следующее из решения кинетического уравнения Больцмана [16]

$$j = \int_{0}^{\infty} \upsilon \left(\bar{p}(t) \right) \exp(-t) dt, \qquad (5)$$

где j — плотность тока, время релаксации принято за единицу, $\mathbf{p}(t)$ — решение уравнения (4) с начальными условиями, соответствующими минимуму E, что приведет к необходимости решить уравнение (4) для четырех начальных условий: $ap_x = 0$; $ap_x = \pi$; $ap_y = \pi/3$; $ap_y = 2\pi/3$, а затем сложить все получившиеся значения для тока.

Закон дисперсии для графена можно представить в виде ряда:

$$A_{mn} = \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \varepsilon(p_x, p_y) \cos(mp_x) \cos(np_y) dp_x dp_y.$$

Физика твердого тела, 2011, том 53, вып. 12

В итоге получаем выражение для *х*-компоненты плотности тока

$$j_x = q \sum_{m,n} A_{mn} \frac{m^2 E_x (n^2 E_y^2 - 1 - m^2 E_x^2)}{\left(1 + (nE_y + mE_x)^2\right) \left(1 + (nE_y - mE_x)^2\right)}.$$
(6)

Для данного приложенного поля E_y поперечное поле E_x определяется исходя из граничных услвоий. Далее мы полагаем отсутствие тока во внешней цепи

$$j_x = 0. \tag{7}$$

Это условие соответствует уравнению для поперечного поля $E_x = E_x(E_y)$. Уравнение (7) имеет два решения

$$E_{x} = 0,$$

$$\sum_{m,n} A_{mn} \frac{m^2 (n^2 E_y^2 - 1 - m^2 E_x^2)}{\left(1 + (nE_y + mE_x)^2\right) \left(1 + (nE_y - mE_x)^2\right)} = 0.$$
(8)

Необходимо отметить, что нами рассматриваются недиссипативные решения уравнений (7) и (8), т.е. без джоулева тепла, по аналогии с целочисленным квантовым эффектом Холла. В рассматриваемой модели существует щель в электронном спектре, и в случае низких температур механизм образования тепла вследствие электрон-фононного взаимодействия подавлен. При некоторых значениях параметров, входящих во второе уравнение (8), возникает поле, поперечное к приложенному полю. В этом случае имеем дело с неравновесным переходом первого рода. Существование поперечной компоненты является, возможно, простым примером самоорганизации в графене с хаббардовским взаимодействием.

Следует также подчеркнуть, что в рамках настоящей работы можно установить прямую связь между рассмотренной задачей и точно решаемой задачей Ваннье– Штарка об электроне в постоянном электрическом поле.

3. Результаты численного анализа

Типичная зависимость j_x от величины E_x , которая описывается в (8), представлена на рис. 2.

Здесь видно, что уравнение (8) имеет два корня, один из которых, как будет показано далее, соответствует неустойчивому решению.

Зависимость поперечной компоненты поля E_x от E_y , которая определяется как нулевое решение (8), показана на рис. 3.

Заметим, что спонтанное поперечное поле возникает не от нуля, а скачком от некоторой конечной величны, что будет соответствовать фазовому переходу первого рода. Возникновение данного поля, как и ранее, можно связать с сильной неравновесностью электронной подсистемы графена в присутствии внешнего поля.

На рис. 4 проиллюстрирована зависимость минимального значения компоненты поля E_y , при котором

Рис. 2. Зависимость плотности тока от поля E_x , когда поле E_y фиксировано ($E_y = 2.0$). Все величины приведены в безразмерных единицах.

Рис. 3. Зависимость поля E_x от поля E_y : (1) U = 3, n = 0.1; (2) U = 2, n = 0.1. Все величины — в безразмерных единицах.

Рис. 4. Зависимость поля E_y от U: (1) n = 0.1; (2) n = 0.2; (3) n = 0.3. Все величины — в безразмерных единицах.

Рис. 5. Зависимость функции Φ от E_x при фиксированном значении E_y : (1) $E_y = 1.5$; (2) $E_y = 2.5$; (3) $E_y = 3.5$. Все величины — в безразмерных единицах.

возникает поперечное электрическое поле, от *U* для разных значений *n*.

Отметим, что наиболее сильно, как и следовало ожидать, минимальная величина поля E_y , при котором возникает поперечное электрическое поле, зависит от энергии кулоновского отталкивания, что можно связать с более сильной "перестройкой" одноэлектронного спектра при увеличении кулоновского отталкивания.

Возникающее спонтанно поперечное электрическое поле E_x может оказаться термодинамически неустойчивым, в отличие от всегда устойчивого решения для разомкнутой в направлении x цепи $E_x = 0$. Для исследования на устойчивость используем метод, описанный в [1], и введем функцию

$$\Phi(E_x) = \int_0^{E_x} j_x(E'_x) dE'_x + \text{const}, \quad E_y = \text{fixed.}$$
(9)

Данная функция обычно называется синергетическим потенциалом и выступает в роли аналога термодинамического потенциала для неравновесных задач. Согласно [1], условия устойчивости решения есть

$$\frac{d\Phi}{dE_x} = 0, \quad \frac{d^2\Phi}{dE_x^2} > 0. \tag{10}$$

Это фактически означает, что в данной неравновесной ситуации функция (9) достигает своего минимума в стационарном состоянии, таким образом, функция Ф может выступать аналогом термодинамического потенциала для равновесных систем.

Зависимость "потенциала" Φ от поля E_x для ряда значений E_y отображена на рис. 5.

Из проведенных расчетов видно, что функция Φ имеет точку минимума и максимума. Отметим, что точка максимума соответствует меньшему по модулю ненулевому решению (10), а точка минимума — большему по модулю решению, что в свою очередь, означает, что большее по модулю решение устойчиво. Отметим, что пунктирные ветви на рис. З соответствуют максимуму функции Ф (неустойчивому решению), а сплошная — минимуму (устойчивому решению).

Данный переход, в котором спонтанно возникает электрическое поле, следует отнести к сегнетоэлектрическому типу, причем роль параметра порядка будет играть поперечное поле E_x , а аналогом температуры (управляющим параметром) будет выступать поле E_y .

4. Заключение

Сформулируем основные выводы настоящей работы.

1. Выявлено возникновение электрического поля, перпендикулярного приложенному внешнему электрическому полю, в графене с хаббардовским взаимодействием.

2. Минимальная величина приложенного поля, при котором возникает спонтанное поле в перпендикулярном направлении, определяется в основном величиной кулоновского потенциала.

3. Анализ синергетического потенциала показал, что возникающее состояние со спонтанным поперечным полем является устойчивым.

Список литературы

- [1] Г.М. Шмелев, Е.М. Эпштейн. ФТТ 34, 2565 (1992).
- [2] Е.М. Эпштейн, Г.М. Шмелев, И.И. Маглеванный. ФТТ 38, 3478 (1996).
- [3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science 306, 666 (2004).
- [4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, A.A. Firsov. Nature 438, 197 (2005).
- [5] Y. Zhang, J.W. Tan, H.L. Stormer, P. Kim. Nature 438, 201 (2005).
- [6] S. Stankovich, D.A. Dikin, GH.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Nature 442, 282 (2006).
- [7] А.М. Желтиков. Сверхкороткие импульсы и методы нелинейной оптики. Физматлит, М. (2006). 296 с.
- [8] J. Hubbard. Proc. Roy. Soc. A276. 1365, 238 (1963).
- [9] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [10] Yu.A. Izyumov, B.M. Letfulov, E.V. Shipitsyn, K.A. Chao. Int. J. Mod. Phys. 21, 3479 (1992).
- [11] Ю.А. Изюмов, М.И. Кацнельсон, Ю.Н. Скрябин. Магнетизм коллективизированных электронов. Физматлит, М. (1994). 368 с.
- [12] Ю.А. Изюмов, Ю.Н. Скрябин. Статистическая механика магнитоупорядоченных систем. Наука, М. (1987). 264 с.
- [13] Ю.А. Изюмов. УФН 165, 403 (1995).
- [14] P.R. Wallace. Phys. Rev. 71, 622 (1947).
- [15] E.M. Epshtein, I.I. Maglevanny, G.M. Shmelev. Electric-fieldinduced magnetorisistance of lateral superlattice. J. Phys. Cond. Matter 8, 4509 (1996).
- [16] F.G. Bass, A.P. Tetervov. Phys. Rep. 140, 237 (1985).