09,13 Анизотропия локального поля в пленках Лэнгмюра—Блоджетт арахидата кадмия

© Е.М. Аверьянов

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: aver@iph.krasn.ru

(Поступила в Редакцию 10 мая 2011 г.)

Получены экспериментальные значения компонент тензоров Лорентца и локального поля для одноосных пленок Лэнгмюра—Блоджетт арахидата кадмия с толщинами от 3 до 100 nm на подложках из серебра, полиметилметакрилата и стекла с использованием данных по дисперсии показателей преломления пленок в видимой области. Установлены ограничения снизу на среднее значение и анизотропию молекулярной поляризуемости, обусловленные межмолекулярными взаимодействиями в пленке.

Пленки Лэнгмюра–Блоджетт (LB) нанометровых толщин перспективны в качестве элементов молекулярной электроники и оптоэлектроники [1–3]. В исследованиях их структуры и свойств эффективны методы линейной оптики и спектроскопии [1–3]. Количественная интерпретация данных основана на связи [4]

$$\varepsilon_j(\omega) = 1 + 4\pi N f_j(\omega) \gamma_j(\omega) \tag{1}$$

компонент диэлектрической проницаемости ε_i с усредненными по ансамблю компонентами у поляризуемости молекул для световых волн, поляризованных вдоль $(j = \parallel)$ и нормально $(j = \perp)$ оптической оси пленки **n** (N — число молекул в единице объема). Компоненты $f_j = 1 + L_j(\varepsilon_j - 1)$ тензора локального поля связывают локальное поле $E_i^{(loc)}(\omega) = f_i(\omega)E_i(\omega)$ световой волны, действующее на молекулу, с макроскопическим полем $E_i(\omega)$ световой волны в среде. В области прозрачности пленки $\varepsilon_j = n_i^2$, n_j — показатели преломления, L_j компоненты тензора Лорентца (SpL = 1). Информация об ориентационной упорядоченности молекул и их свойствах заключена в компонентах γ_i , определяемых из (1) и зависимых от значений f_i, L_i. Поэтому для изучения пленок LB и моделирования их свойств необходимо экспериментальное определение величин L_i , что возможно при наличии зависимостей *n_i*(λ) показателей преломления пленки от длины световой волны в видимой области прозрачности [5]. В настоящей работе этот метод используется для определения компонент L_i и f_i в пленках LB арахидата кадмия (Cd-A) на разных подложках и выяснения ограничений, налагаемых на свойства тензора у молекулярной поляризуемости образованием пленки LB и межмолекулярными взаимодействиями в ней.

Оптическая ось **n** пленок Cd-A нормальна к поверхности подложки, а продольные оси **l** молекул $[CH_3-(CH_2)_{18}-C(O)O^-]_2Cd^{++}$ преимущественно ориентированы вдоль **n** [2,6–8]. Для молекул Cd-A без ароматических фрагментов различием плотности поляризуемости для гидрофобных алифатических цепей и гидрофильных "головок" можно пренебречь и в форму-

ле (1) не учитывать зависимость компонент $\gamma_j(z)$, $\varepsilon_j(z)$, $L_j(z)$, $f_j(z)$ от координаты $z \parallel \mathbf{n}$ внутри молекулярного слоя. Мерой ориентационной упорядоченности молекул относительно **n** служит величина $S = \langle 3 \cos^2 \theta - 1 \rangle / 2$, где θ — угол между осями **l** и **n**, а скобки $\langle \dots \rangle$ означают усреднение по молекулярному ансамблю. Для одноосных молекул Cd-A тензор γ с продольной (γ_l) и поперечной (γ_t) компонентами характеризуется средним значением $\bar{\gamma} = (\gamma_l + 2\gamma_l)/3$ и анизотропией $\Delta \gamma = \gamma_l - \gamma_t$.

Для пленок LB с $\Delta\gamma>0$ и $\Delta\varepsilon=(\varepsilon_{\parallel}-\varepsilon_{\perp})>0$ компонента $L_{\perp}~(L_{\parallel}=1-2L_{\perp})$ определяется следующим образом. В видимой области прозрачности используются параметры $\bar{\varepsilon}=(\varepsilon_{\parallel}+2\varepsilon_{\perp})/3,~Q=\Delta\varepsilon/(\bar{\varepsilon}-1)$ и зависящие от них величины

$$r_{0} = 1 - \frac{2Q^{2}(\bar{\varepsilon} - 1)}{3(3+Q)(\bar{\varepsilon} + 2)}, \quad b = \frac{3(\bar{\varepsilon} - 1)}{4\pi N \bar{\gamma}(\bar{\varepsilon} + 2)} - r_{0},$$
$$b_{1} = \frac{2r_{0}Q^{2}}{(3-Q)(3+2Q)}, \quad b_{2} = b_{1}[(6+Q)/Q]^{2}.$$
(2)

При заданном состоянии пленки, характеризуемом индексом T, эти величины являются функциями T, а искомое значение $L_{\perp}(T)$ связано с ними выражением [9]

$$L_{\perp} = L_{\perp k} - \frac{(\bar{\epsilon} + 2)}{12(\bar{\epsilon} - 1)} [(b_1 b_2)^{1/2} - b - [(b_1 - b)(b_2 - b)]^{1/2}].$$
(3)

Знак анизотропии $\Delta f = f_{\parallel} - f_{\perp}$ совпадает со знаком b, а значение $L_{\perp k} = (3 + 2Q)/3(3 + Q)$ отвечает условиям $b = \Delta f = 0$. Функция $b(\lambda, T)$ зависит от неизвестной величины \bar{p} . При известных значениях $n_j(\lambda_i, T)$ для дискретного набора величин $\lambda_i(i = 1 - p)$ в видимой области функция $b(\lambda, T)$ в интервале $\lambda_1 - \lambda_p$ аппроксимируется полиномом

$$b(\lambda, T) = a_0(T) + a_1(T)\lambda + \ldots + a_m(T)\lambda^m.$$
(4)

Значение $L_{\perp}(T)$ не зависит от λ , и состоянию T отвечают m + 2 неизвестных величин $\{L_{\perp}^{(m)}, a_0 - a_m\}$. Они находятся из системы m + 2 = p уравнений (3), каждое

из которых соответствует одному из значений λ_i . Более высокое приближение в (4) предполагает более высокую точность значений $n_j(\lambda, T)$, иначе система уравнений на $\{L_{\perp}^{(m)}, a_0 - a_m\}$ может не иметь физических решений. Критерием адекватности используемого приближения в (4) является согласие значений $L_{\perp}^{(m)}$ с величинами $\langle L_{\perp}^{(m-1)} \rangle$, усредненными по значениям $L_{\perp}^{(m-1)}$, которые отвечают всем возможным сочетаниям p-1 реперов λ_i из набора $\lambda_1 - \lambda_p$ [5]. В отличие от известных методов определения компонент L_j , f_j в одноосных молекулярных средах [4], данный метод свободен от априорных предположений о ненаблюдаемых молекулярных параметрах (размерах молекул и анизотропии их формы, свойствах тензора γ , силах осцилляторов молекулярных переходов).

Для пленок Cd-A на различных подложках известны зависимости $n_j(\lambda)$ в видимой области [2,6,7]. Для пленок на серебряных подложках в таблице приведены величины $n_j(\lambda)$, представленные графически в работе [6] и усредненные по совокупности образцов с числом молекулярных слоев от 1 до 12, что соответствует толщине пленок d = 2.7-32.3 nm [6]. Для пленок Cd-A на подложках из полиметилметакрилата (PMMA) и стекла в таблице приведены значения $n_j(\lambda)$ [7], усредненные по образцам с числом слоев 29, 37 и 41 (d = 77.7, 99.2и 109.9 nm).

Для пленки Cd-A на серебре значения $n_j(\lambda_i)$ при шести реперах λ_i дают одинаковые величины $L_{\perp}^{(4)} = 0.3570$, $\langle L_{\perp}^{(3)} \rangle = 0.3571 \pm 0.0014$. Для пленки на РММА (стекле) значения $n_j(\lambda_i)$ при трех реперах λ_i дают величины $L_{\perp}^{(1)} = 0.356$ и $\langle L_{\perp}^{(0)} \rangle = 0.352 \pm 0.002$ ($L_{\perp}^{(1)} = 0.365$ и $\langle L_{\perp}^{(0)} \rangle = 0.362 \pm 0.003$), согласующиеся между собой в пределах точности определения $\langle L_{\perp}^{(0)} \rangle$. Причем величина $L_{\perp}^{(1)}(\text{Ag}) = 0.361$, отвечающая значениям $n_j(\lambda_i)$ при тех же реперах λ_i , что для подложек из РММА и стекла, совпадает со средним значением $[L_{\perp}^{(1)}(\text{PMMA}) + L_{\perp}^{(1)}(\text{Glass})]/2$. Отметим высокую точность величин $\langle L_{\perp}^{(0)} \rangle$ для пленок Cd-A на подложках из РММА и стекла при низкой точности (≈ 0.01) значений $n_j(\lambda_i)$ [7]. Слабая зависимость L_{\perp} от толщины пленки обусловлена использованием величин $n_j(\lambda_i)$ [6,7], усредненных по образцам разной толщины. Различие значений $n_j(\lambda_i)$ при одинаковых λ_i для пленок Cd-A на разных подложках отражается в слабом различии L_{\perp} .

Анизотропия Δf более чувствительна к этим факторам. Для пленок Cd-A на серебре отсутствию изменения $\Delta n = n_{\parallel} - n_{\perp}$ с ростом λ (снижению Δn для пленок на РММА и стекле) отвечает слабое снижение (существенный рост) $|\Delta f|$ в интервале $\lambda_1 - \lambda_p$. Знак и величина Δf отражают ограничения, налагаемые межмолекулярными взаимодействиями на значения $\bar{\gamma}$, $\Delta \gamma$ при организации молекул в анизотропный ансамбль [9]. С использованием параметра

$$A = (L_{\perp} - 1/3)/(L_{\perp k} - 1/3)$$
(5)

Значения $\lambda_i(\mu m)$ и зависимости указанных величин от λ_i для пленок Cd-A на подложках из серебра, полиметилметакрилата и стекла

Substrate	λ_i	n_{\parallel}	n_{\perp}	$-\Delta f$	σ
Ag	0.4416	1.5775	1.5344	0.058	0.429
	0.4579	1.5751	1.5314	0.057	0.414
	0.4880	1.5695	1.5269	0.057	0.424
	0.5145	1.5666	1.5238	0.056	0.415
	0.6041	1.5524	1.5100	0.054	0.397
	0.6328	1.5478	1.5048	0.052	0.379
PMMA	0.4579	1.589	1.544	0.053	0.384
	0.5145	1.571	1.533	0.058	0.485
	0.6328	1.550	1.517	0.059	0.563
Glass	0.4579	1.616	1.536	0.061	0.252
	0.5145	1.568	1.525	0.090	0.670
	0.6328	1.565	1.525	0.093	0.739

величину Δf и среднее значение $\bar{f}=(f_{\parallel}+2f_{\perp})/3$ можно представить в виде

$$\Delta f = Q(\bar{\varepsilon} - 1)(1 - A)/3, \quad \bar{f} = (\bar{\varepsilon} + 2)[1 - A(1 - r_0)]/3.$$
(6)

Для пленок Cd-A на всех подложках в видимой области экспериментальные значения L_{\perp} удовлетворяют неравенствам $L_{\perp} > L_{\perp k} > 1/3$, A > 1 и $\Delta f < 0$. С учетом $\Delta y \Delta f < 0$ из соотношения [4]

$$\bar{\varepsilon} - 1 = 4\pi N(\bar{\gamma}\bar{f} + 2S\Delta\gamma\Delta f/9) \tag{7}$$

следуют ограничения

$$\bar{\gamma} > \frac{\bar{\varepsilon} - 1}{4\pi N \bar{f}} > \frac{3(\bar{\varepsilon} - 1)}{4\pi N r_0(\bar{\varepsilon} + 2)}.$$
(8)

Величина $S\Delta \gamma$ дается выражением [5]

$$S\Delta\gamma = \bar{\gamma}Q(1+\sigma),$$
 (9)

где поправка σ на анизотропию Δf имеет вид

$$\sigma = -\frac{\Delta f (9 - Q^2)(3 + 2Q)}{Q[3(3 + Q)(\bar{\varepsilon} + 2)r_0 + \Delta f (3 - Q)(3 + 2Q)]}.$$
(10)

Знаки σ и Δf противоположны, и в видимой области прозрачности для пленок Cd-A на всех подложках $\sigma > 0$. Значения Δf и σ , рассчитанные по формулам (6) и (10) с использованием величин $n_j(\lambda_i)$, компонент $L_{\perp}(\text{Ag}) = 0.357$, $L_{\perp}(\text{PMMA}) = 0.356$ и $L_{\perp}(\text{Glass}) = 0.365$, приведены в таблице. Из нее видно, что, несмотря на малые значения Δf , величины σ не малы и существенны для определения значений $\Delta \gamma S$ по формуле (9). С учетом (8), (9) получаем ограничения

$$S\Delta\gamma > \frac{\Delta\varepsilon}{4\pi N\bar{f}} (1+\sigma) > \frac{3\Delta\varepsilon}{4\pi Nr_0(\bar{\varepsilon}+2)}.$$
 (11)

Верхние оценки величин $\bar{\gamma}$, $S\Delta\gamma$ в формулах (8), (11) слабо отличаются от их точных значений в (7), (9).

Правые части формул (8), (11) соответствуют значениям $\bar{\gamma}$, $S\Delta\gamma$ при $\Delta f = 0$ и изотропном тензоре $f = \bar{f}(A = 1) = (\bar{\epsilon} + 2)r_0/3 < (\bar{\epsilon} + 2)/3$. При заданной величине S, определяемой условиями приготовления пленки LB [1], ограничения (8) и (11) отражают влияние межмолекулярных взаимодействий в пленке на компоненты $\gamma_{\parallel} = \bar{\gamma} + 2S\Delta\gamma/3$ и $\gamma_{\perp} = \bar{\gamma} - S\Delta\gamma/3$, которые изменяются взаимосогласованно с величинами $n_j(\lambda)$, L_j , f_j . Это важно для понимания и моделирования свойств искусственно организованных анизотропных молекулярных ансамблей, поскольку обычно считается, что в процессе образования таких ансамблей свойства молекул остаются неизменными. Определение компонент L_j , f_j позволяет контролировать изменение свойств молекул в процессе их структурной организации.

Для пленок LB, молекулы которых имеют в качестве гидрофильных фрагментов большие ароматические группы (хромофоры, красители [1]) с электронной структурой и плотностью поляризуемости, существенно отличными от таковых для гидрофобных фрагментов, использованный здесь метод определения компонент L_j , f_j неприменим. Разделение молекулярного слоя пленки на субмонослои, образованные гидрофильными и гидрофобными фрагментами молекул, приводит к модуляции компонент $\gamma_j(z)$, $\varepsilon_j(z)$, $L_j(z)$, $f_j(z)$ в молекулярном слое и требует описания оптических свойств таких пленок LB как слоистых двухкомпонентных композитных материалов.

В заключение отметим, что до настоящего времени для пленок LB зависимости $n_j(\lambda)$ в достаточно широкой спектральной области очень редки [1–3,6,7]. Показанные здесь новые возможности использования этих зависимостей для получения экспериментальных значений компонент L_j , f_j и величин $\bar{\gamma}$, $S\Delta\gamma$ (при неизвестной плотности $\rho \propto N$) могут стимулировать развитие методов измерения $n_j(\lambda)$ для пленок LB в двух направлениях: повышения точности значений n_j и расширения спектрального диапазона λ .

Список литературы

- Л.М. Блинов. Успехи химии 52, 1263 (1983); УФН 155, 443 (1988).
- [2] J.D. Swalen. J. Mol. Electr. 2, 155 (1986).
- [3] J.D. Swalen. Thin Solid Films 160, 197 (1988).
- [4] Е.М. Аверьянов. Эффекты локального поля в оптике жидких кристаллов. Наука, Новосибирск (1999). 552 с.
- [5] Е.М. Аверьянов. ЖЭТФ 137, 705 (2010).
- [6] I. Pockrand, J.D. Swalen, J.G. Gordon, M.R. Philpott. Surf. Sci. 74, 237 (1977).
- [7] J.D. Swalen, K.E. Rieckhoff, M. Tacke. Opt. Commun. 24, 146 (1978).
- [8] D.I. Allara, J.D. Swalen. J. Phys. Chem. 86, 2700 (1982).
- [9] Е.М. Аверьянов. ЖЭТФ 135, 194 (2009).