Упругие, микро- и макропластические свойства поликристаллического бериллия

© Б.К. Кардашев¹, И.Б. Куприянов²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Высокотехнологический научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара, Москва, Россия

E-mail: b.kardashev@mail.ioffe.ru

07

(Поступила в Редакцию 24 мая 2011 г.)

Изучено поведение модуля Юнга и внутреннего трения поликристаллов бериллия (размер зерна от 6 до 60 μ m), приготовленных методом порошковой металлургии, в зависимости от амплитуды и температуры в интервале от 100 до 873 К. Измерения проводились методом составного пьезоэлектрического вибратора при продольных колебаниях на частотах около 100 kHz. На основе акустических измерений получены данные об упругих и неупругих (микропластических) свойствах в зависимости от амплитуды колебательных напряжений в пределах от 0.2 до 30–60 MPa. Показано, что при амплитудах выше 5 MPa диаграмма микропластического деформирования становится нелинейной. Проводится сравнение механических характеристик бериллия (предела текучести $\sigma_{0.2}$, предела прочности σ_B и условного предела микротекучести σ_y) в зависимости от размера зерна. Для всех параметров при комнатной температуре удовлетворительно соблюдается соотношение Холла–Петча, хотя полного подобия нет. Подобие полностью отсутствует для температурных зависимостей. Если $\sigma_{0.2}(T)$ и $\sigma_B(T)$ монотонно уменьшаются при нагревании от комнатной к более высоким температурам, то $\sigma_y(T)$ ведет себя необычно и имеет минимум вблизи 400 К. Различный уровень напряжений и отсутствие подобия указывают на то, что рассеяние ультразвуковой энергии и формирование уровня напряжений макроскопического течения происходят в бериллии на разных по своей природе препятствиях для движения дислокаций.

1. Введение

Взаимосвязи и сопоставлению акустических (действующий модуль упругости и поглощение энергии упругих колебаний или внутреннее трение) и макромеханических (пластичность и прочность) свойств кристаллических твердых тел уделяется достаточно много внимания [1–9]. В исследованиях с применением неразрушающей акустической методики достаточно ярко проявляются физические дислокационные механизмы, которые в той или иной мере контролируют процессы деформации и разрушения. Обычно поведение нелинейного амплитуднозависимого внутреннего трения (A3BT), например, в зависимости от температуры сравнивают с поведением предела текучести или напряжения пластического течения [3-6]. По существу, речь в этом случае идет о сравнении микро- и макропластических характеристик кристаллов.

Оказалось, что, как и пластические свойства, некоторые аспекты разрушения, например хрупко-вязкий переход металлов и сплавов, можно изучать неразрушающим акустическим методом. Здесь, как было показано в [7–9], главным параметром в акустических исследованиях выступает амплитудно-независимое внутреннее трение (AH3BT), уровень которого предопределяется вязким торможением быстро движущихся дислокаций.

Сравнение микро- и макропластических свойств ведется, как правило, в области умеренно низких температур, где можно говорить о существовании закона подобия [5,6]. Подобие обнаруживается между зависимостями от температуры характерных колебательных напряжений в акустическом эксперименте (при изучении A3BT в достаточно широком диапазоне амплитуд это так называемый условный предел микротекучести) и обычного предела текучести, который получается из диаграмм упругопластического деформирования. Закон подобия хорошо соблюдается для ионных кристаллов; в достаточно узком интервале температур он имеет место для ряда металлов (Al, W, Mo, Mg) и сплавов (Al–Si–Fe, Cu–Si, Fe–Cr); подобие не проявляется для поликристаллов меди с различным размером зерна [6].

В настоящей работе представлены экспериментальные данные совместных исследований акустических и пластических свойств поликристаллического бериллия с различным размером зерна. Исследования выполнены в диапазоне температур от 100 до 873 К. Результаты анализа полученных данных показали, что рассеяние ультразвуковой энергии в области АЗВТ в указанном интервале температур может быть связано с увеличением пластичности бериллия. Дополнительная потеря энергии движущимися дислокациями в какой-то мере может предохранять материал от разрушения. В этом случае рассеяние энергии в области АЗВТ играет практически ту же роль, что и вязкое торможение дислокаций (область АНЗВТ) для ОЦК-металлов и сплавов [7–9].

Образцы и экспериментальная методика

Поликристаллы бериллия (размер зерна от 6 до 60 m) были приготовлены методом порошковой металлургии. Образцы для акустических измерений имели форму стержней с квадратным поперечным сечением $\sim (2.5 \times 2.5 \text{ mm})$ и длиной l = 61.0 mm. Такая длина обеспечивала резонанс продольных колебаний всех образцов, приготовленных из бериллия с разным размером зерна, на частотах $f \approx 100 \text{ kHz}$. Перед измерениями образцы выдерживались в течение 15 min при 873 K.

Акустические исследования проводились методом составного пьезоэлектрического вибратора при температурах в интервале от 100 до 873 К. Подробное описание экспериментальной методики имеется в [4]. Продольные колебания на резонансной частоте f возбуждались в образце с помощью кварцевого преобразователя. Изучаемыми параметрами были модуль Юнга $E = 4\rho l^2 f^2$ и логарифмический декремент δ , характеризующий затухание ультразвука (внутреннее трение) в образце. Плотность материала ρ , необходимая для оценки величины модуля упругости, определялась по массе и геометрическим размерам образца.

Метод составного вибратора помимо данных в модуле Юнга и внутреннем трении (декремент δ) позволяет получать сведения и о неупругих (микропластических) свойствах материала. Данные по неупругим свойствам получаются из измерений модуля Е и декремента б в широком диапазоне амплитуд колебательной деформации є. При достаточно больших амплитудах в материале образца возникает нелинейное амплитудно-зависимое поглощение $\delta_h = \delta - \delta_i$ и амплитудно-зависимый дефект модуля Юнга $(\Delta E/E)_h = (E - E_i)/E_i$. Здесь E_i и δ_i значения модуля Юнга и декремента, измеряемые при малых амплитудах, где модуль E и декремент δ остаются еще амплитудно-независимыми. Акустические измерения в широком диапазоне амплитуд позволяют оценить микропластические свойства в обычных для механических испытаний координатах напряжение-деформация. Для этого по оси ординат откладываются значения амплитуд колебательных напряжений $\sigma = E\varepsilon$ (закон Гука), а по оси абсцисс — нелинейная неупругая деформация $\varepsilon_d = \varepsilon (\Delta E/E)_h.$

В результате проведенных исследований были получены данные об амплитудных и температурных зависимостях *E* и δ для пяти марок поликристаллического бериллия, имеющих размер зерна от 6 до 60 μ m. Диапазон амплитуд колебательной деформации ε при измерниях амплитудных зависимостей лежал в пределах от ~ $6 \cdot 10^{-7}$ до ~ $1-2 \cdot 10^{-4}$, что соответствует колебательным напряжениям σ от ~ 0.2 до ~ 30-60 MPa.

Экспериментальные данные и обсуждение

3.1. Амплитудные зависимости и микропластичность. На рис. 1 и 2 в качестве примера

313.20 100 K 313.15 в^а 313.10 ¹⁴¹ 309.40 trinnen 293 K 309.35 309.30 100 80 60 δ, 10⁻⁵ 40 20 100 K 0 10 1 σ, MPa

Рис. 1. Амплитудные зависимости модуля Юнга E и декремента δ для образца Ве с размером зерна $20-25\,\mu$ m при 100 К и комнатной температуре. Стрелки указывают направление изменения амплитуды.

Рис. 2. Амплитудные зависимости модуля Юнга E и декремента δ для образца Ве с размером зерна $20-25\,\mu$ m при 773 и 873 К. Измерения выполнены последовательно при увеличении и уменьшении амплитуды.

Рис. 3. Диаграммы микропластического деформирования образцов бериллия с различным размером зерна. Измерения выполнены при комнатной температуре.

приводятся зависимости $E(\sigma)$ и $\delta(\sigma)$, полученные на образце бериллия с размером зерна 20-25 µm. Для других марок бериллия кривые $E(\sigma)$ и $\delta(\sigma)$ качественно выглядели так же. Однако величины измеряемых параметров могли заметно отличаться друг от друга. Это наглядно демонстрируется на рис. 3, где показаны диаграммы $\sigma(\varepsilon_d)$ для комнатной температуры, полученные на образцах, приготовленных из разных марок бериллия. Из этого рисунка видно, что уменьшение размера зерна в материале приводит к заметному увеличению деформирующих напряжений при фиксированном значении *є*_d. На рис. 4 показаны аналогичные данные для температуры 773 К. При этой, достаточно высокой температуре кривые $\sigma(\varepsilon_d)$ для большинства марок бериллия практически совпадают. Исключение составляет лишь Ве с самым большим размером зерна $(55-60\,\mu m)$, деформирующее напряжение у которого заметно меньше, чем у остальных материалов.

3.2. Температурные зависимости. Рис. 5 представляет диаграммы микропластического деформирования образца бериллия с зерном величиной $20-25\,\mu$ m при различных температурух. Видно, что поведение характерных напряжений носит немонотонный характер. Уровень напряжений (условный предел микротекучести σ_y) при умеренных температурах (вблизи 400 K) для всех марок бериллия оказался самым низким, что демонстрируется на рис. 6, где показаны температурные зависимости $\sigma_y(T)$ при фиксиро-

Рис. 4. Диаграммы микропластического деформирования образцов бериллия с различным размером зерна. Измерения выполнены при 773 К.

Рис. 5. Диаграммы микропластического деформирования образца бериллия с размером зерна $20-25\,\mu$ m при различных температурах.

ванной величине колебательной неупругой деформации $\varepsilon_d = 1.0 \cdot 10^{-8}$. Это означает, что в области температур от комнатной до 500 К должен наблюдаться максимум микропластической деформации, если поддерживать постоянным уровень амплитуды деформирующего напряжения σ .

Контрольный эксперимент, проведенный на образце Ве с зерном величиной $20-25\,\mu$ m (рис. 7), показал, что такой максимум действительно наблюдается. Он сопровождается максимумом АЗВТ (декремента δ_h). Наличие максимума означает, что в области умеренных температур носители пластической деформации (дислокации) в бериллии обладают наиболее высокой подвижностью при колебательном движении вблизи положения равновесия, что приводит к большим потерям ультразвуковой энергии.

В этом опыте измерения декремента и модуля Юнга проводились через каждые 30 s параллельно при двух амплитудах: малой $\sigma_1 = 0.6$ MPa (область AH3BT) и большой $\sigma_2 = 18$ MPa (область A3BT). Бо́льшую часть времени образец колебался с амплитудой σ_2 . Лишь на короткое время (~2 s) устанавливалась амплитуда σ_1 для измерений амплитудно-независимых декремента и модуля Юнга. Скорость охлаждения была около 2 K/min. Таким образом были получены температурные зависимости неупругой (микропластической) деформации ε_d и амплитудно-зависимого декремента δ_h при постоянной амплитуде колебательного напряжения $\sigma = 18$ MPa ($\varepsilon = 6.0 \cdot 10^{-5}$) в области от низких до умернно высоких температур.

Следует иметь в виду, что охлаждение от комнатной температуры до 100 К меняет декремент и характерную неупругую деформацию обратимо. Теория амплитудно-

Рис. 6. Температурные зависимости условного предела микротекучести σ_y (напряжения микропластического деформирования) при постоянной величине колебательной неупругой деформации $\varepsilon_d = 1.0 \cdot 10^{-8}$ для различных марок бериллия.

Рис. 7. Температурные зависимости неупругой деформации ε_d и амплитудно-зависимого декремента δ_h при постоянной амплитуде колебательного напряжения $\sigma = 18$ MPa ($\varepsilon = 6.0 \cdot 10^{-5}$) для образца бериллия с размером зерна $20-25 \,\mu$ m при охлаждении в области температур 533–100 К.

зависимого внутреннего трения (см. обзоры [4,10,11] влияние низких температур объясняет обратимым изменением силы связи дислокаций с центрами их закрепления (точечными дефектами): увеличением силы связи при охлаждении и уменьшением при нагревании.

В отличие от охлаждения нагрев до высоких температур может приводить как к обратимым, так и к необратимым изменениям и декремента, и деформационных характеристик. С точки зрения существующих теорий дислокационного внутреннего трения уменьшение A3BT с повышением температуры может быть связано с тремя процессами.

 Дальнейшее уменьшение силы связи дислокации с точечными центрами закрепления (вплоть до нуля).
В этом случае точечные дефекты перестают действовать как центры закрепления при высоких температурах и обратимо восстанавливаются при охлаждении.

2) Диффузия других (дополнительных) точечных дефектов к дислокациям, что приводит к их более сильному закреплению. Этот процесс является, как правило, необратимым.

 Необратимое уменьшение плотности дислокаций в результате отжига.

В нашем случае исследуемые образцы после изготовления специально нагревались до 873 К, так что

неравновесных дислокаций и точечных дефектов в процессе акустических измерений уже не должно быть. Здесь, очевидно, мы имеем дело лишь с обратимыми изменениями ε_d и δ_h .

3.3. Микро- и макропластичность. На рис. 8 проводится сравнение механических характеристик бериллия (предела текучести $\sigma_{0.2}$, напряжения σ_B) и условного предела микротекучести σ_y в зависимости от размера зерна в координитах Холла-Петча. Видно, что виличины $\sigma_{0.2}$ и σ_B более чем на порядок превосходят значения σ_y . Для всех параметров удовлетворительно соблюдается соотношение Холла-Петча (см., например, [12]), хотя полного подобия и не наблюдается (прямые линии на рис. 8 явно не параллельны друг другу). Для более высокой температуры соотношение Холла-Петча не соблюдается, что следует из данных, приведенных на рис. 4.

Подобие полностью отсутствует для температурных зависимостей. Если $\sigma_{0.2}(T)$ и $\sigma_B(T)$ монотонно уменьшаются при повышении от комнатной к более высоким температурам (рис. 9), то $\sigma_y(T)$ имеет минимум в области 400 К (рис. 6). Различный уровень напряжений и отсутствие подобия, согласно существующим дислокационным представлениям, свидетельствует о том, что рассеяние ультразвуковой энергии и формирование уровня напряжений макроскопического течения происходят в бериллии на разных препятствиях для движущихся дислокаций.

Тем не менее препятствия, на которых рассеивается ультразвук, по-видимому, сказываются на пластических характеристиках бериллия, а именно на величине относительного удлинения $\Delta l/l$ при разрыве (разрушении). И для $\Delta l/l$ (рис. 9), и для $\delta_h(T)$ (рис. 7) имеет место максимум при температурах выше комнатной. Правда,

Рис. 8. Предел текучести $\sigma_{0.2}$, предел прочности σ_B и условный предел микротекучести σ_y (при величине неупругой деформации $\varepsilon = 1.0 \cdot 10^{-8}$) в зависимости от размера зерна (в координатах Холла–Петча) при комнатной температуре.

Рис. 9. Предел текучести $\sigma_{0.2}$, предел прочности σ_B и относительное удлинение $\Delta l/l$ при разрыве в зависимости от температуры для бериллия с размером зерна $15-17 \,\mu$ m.

максимум для δ_h наблюдается в области 400 K, а для $\Delta l/l$ — при более высокой температуре (~ 600 K). Эти особенности в поведении (наличие максимумов), а также их различное расположение на температурной шкале можно объяснить следующим образом.

При поступательном движении дислокаций в процессе пластической квазистатической деформации их средняя скорость должна уменьшаться благодаря наличию препятствий, на которых происходит рассеяние ультразвука. При достаточно высоких деформирующих напряжениях выше предела текучести (они на порядок превосходят σ_y) на этих препятствиях может иметь место заметное квазивязкое торможение дислокаций. Если скорость головных дислокаций в вершине трещин по какой-то причине замедляется, то и скорость распространения трещин, очевидно, будет меньше. В связи с этим разрыв образца может задержаться, и деформация до разрушения $\Delta l/l$ материала при этом будет больше. Этим можно объяснить наличие температурного максимума и у $\Delta l/l$, и у δ_h .

Если считать, что движение дислокаций в поле точечных дефектов (препятствий) носит термоактивируемый характер, то при высоких напряжениях, которые имеют место в процессе квазистатической деформации, время задержки дислокации на тех же барьерах должно быть существенно меньше по сравнению с ультразвуковыми испытаниями, где задержка является фикси-

4. Заключение

Проведенные исследования показали, что в области умеренных температур (~ 400 K) носители пластической деформации (дислокации) при колебательном движении вблизи положения равновесия в бериллии обладают наиболее высокой способностью рассеивать энергию. Это явление, как показывает анализ экспериментальных данных, может способствовать появлению максимума пластичности бериллия в области умеренно высоких температур вблизи 600 K.

Список литературы

- [1] T.A. Read. Phys. Rev. 58, 4, 371 (1940).
- [2] G.S. Baker. J. Appl. Phys. 33, 5, 1730 (1962).
- [3] Б.К. Кардашев. ФТТ 19, 8, 2490 (1977).
- [4] С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985). 254 с.
- [5] А.Б. Лебедев, С.Б. Кустов. ФТТ **29**, *3*, 915 (1987).
- [6] A.B. Lebedev. J. Phys. IV. Colloque C8 6, C8-255 (1996).
- [7] Б.К. Кардашев, А.С. Нефагин, Г.Н. Ермолаев, М.В. Леонтьева-Смирнова, М.М. Потапенко, В.М. Чернов. Письма в ЖТФ 32, 18, 44 (2006).
- [8] Б.К. Кардашев, В.М. Чернов. ФТТ 50, 5, 820 (2008).
- [9] B.K. Kardashev, V.M. Chernov. Mater. Sci. Eng. A 521–522, 329 (2009).
- [10] V.L. Indenbom, V.M. Chernov. In: Elastic strain fields and dislocation mobility / Eds V.L. Indenbom, J. Lothe. North-Holland, Elsevier Science, Amsterdam (1992). P. 517.
- [11] G. Gremaud. Mater. Sci. Forum. 366-368, 178 (2001).
- [12] Р. Хоникомб. Пластическая деформация металлов. Пер. с англ. Мир, М. (1972). 408 с.