04

Релаксационные процессы в диэлектриках с недебаевскими спектрами

© А.В. Турик, А.С. Богатин, Е.В. Андреев

Южный федеральный университет, Ростов-на-Дону, Россия

E-mail: turik@sfedu.ru

(Поступила в Редакцию 5 апреля 2011 г.)

Исследованы особенности релаксационных процессов в диэлектриках с недебаевскими спектрами. Объяснена причина различия релаксационных частот диэлектрической проницаемости и диэлектрических потерь (проводимости). Показано, что средняя частота релаксации проводимости значительно (в ряде случаев на несколько порядков) превышает частоту релаксации диэлектрической проницаемости благодаря увеличению в спектрах проводимости статистического веса релаксационных процессов малыми временами релаксации.

1. Введение

Для исследования релаксационных процессов в диэлектриках с дебаевскими спектрами достаточно измерения частотных зависимостей действительной $\varepsilon'(\omega)$ и мнимой $\varepsilon''(\omega)$ частей комплексной диэлектрической проницаемости $\varepsilon=\varepsilon'-i\varepsilon''$ [1–3]. Релаксация удельной проводимости $\gamma = \gamma' + i\gamma'' = i\omega\varepsilon_0\varepsilon = \omega\varepsilon_0(\varepsilon'' + i\varepsilon')$ или удельных диэлектрических потерь $p = \gamma' E_m^2/2$ $=\omega \varepsilon_0 \varepsilon'' E_m^2 / 2$ ($E=E_m \cos \omega t$ — напряженность приложенного к диэлектрику электрического поля, ε_0 диэлектрическая проницаемость вакуума) происходит на тех же частотах $\omega_r = 1/\tau$, и ее исследоание для дебаевских диэлектриков с одним временем релаксации auпрактически не дает новой информации. Однако в работах [4-6] показано, что для недебаевских диэлектриков, характеризующихся ограниченной со стороны малых времен непрерывной областью распределения времен релаксации, имеет место значительное (в некоторых случаях на несколько порядков) различие средних частот релаксации проводимости ω_r^{γ} и диэлектрической проницаемости ω_r^{ε} . Различие ω_r^{γ} и ω_r^{ε} мало исследовано и не упоминается в классических работах [1–3] по физике диэлектриков.

2. Основные положения и формулы

Рассмотрим однокомпонентный диэлектрик с функцией распределения времен релаксации $f(\tau)$ в виде прямоугольника: $f(\tau) = h = {\rm const}$ в интервале $\tau_1 \le \tau \le \tau_2$ и $f(\tau) = 0$ при $\tau < \tau_1$ и $\tau > \tau_2$ ($f(\tau)d\tau$ — вероятность нахождения времени релаксации в интервале от τ до $\tau + d\tau$). В таком диэлектрике релаксатор на микроуровне не может быть описан моделью глубокой потенциальной ямы с двумя положениями равновесия (релаксатор Фрелиха [7]). Согласно [1,2], действительная и мнимая части комплексной ε диэлектрика в случае отсутствия взаимодействия между релаксаторами и линейной суперпозиции вкладов различных групп зависят

от $f(\tau)$, статической (ε_s) и высокочастотной (ε_∞) диэлектрических проницаемостей и частоты ω следующим образом:

$$arepsilon' = arepsilon_{\infty} + (arepsilon_s - arepsilon_{\infty}) \int\limits_0^{\infty} rac{f(au)d au}{1 + \omega^2 au^2},$$

$$arepsilon'' = (arepsilon_s - arepsilon_\infty) \int\limits_0^\infty rac{\omega au f(au) d au}{1 + \omega^2 au^2}, \quad \int\limits_0^\infty f(au) d au = 1. \quad (1)$$

В случае одного времени релаксации $(f(\tau)$ — дельта-функция) выражения (1) упрощаются и сводятся к формулам Дебая. Фигурирующая в $f(\tau)$ константа $h=1/(\tau_2-\tau_1)$ определялась из условия нормировки (1). Подстановка $f(\tau)=h$ в (1) и использование таблиц неопределенных интегралов [8] позволяют получить выражения

$$\varepsilon' = \varepsilon_{\infty} + (\varepsilon_{s} - \varepsilon_{\infty}) \frac{h}{\omega} (\operatorname{arctg} \omega \tau_{2} - \operatorname{arctg} \omega \tau_{1}),$$

$$\varepsilon'' = (\varepsilon_{s} - \varepsilon_{\infty}) \frac{h}{2\omega} \ln \frac{1 + \omega^{2} \tau_{2}^{2}}{1 + \omega^{2} \tau_{1}^{2}}, \quad h = \frac{1}{\tau_{2} - \tau_{1}}.$$
 (2)

3. Результаты и обсуждение

Результаты выполненных по формулам (2) расчетов иллюстрируются рис. 1. Согласно (2), релаксационная частота $\omega_r^{\gamma}=1/\sqrt{\tau_1\tau_2}$, тогда как $\omega_r^{\varepsilon}\approx(\tau_1+\tau_2)/2$. По мере расширения интервала $[\tau_1,\tau_2]$ происходит сдвиг ω_r^{γ} в область высоких частот. При $\tau_2/\tau_1\gg 1$ ω_r^{γ} может превышать ω_r^{ε} на много порядков, причем $\omega_r^{\gamma}/\omega_r^{\varepsilon}\gg\varepsilon_s/\varepsilon_\infty$. Следовательно, рассматриваемый эффект не может быть следствием различия времен нормальной (retardation) и обратной (relaxation) релаксаций в линейной среде. Как показано в [9], это различие обусловлено особенностями поведения диэлектрика под действием постоянного напряжения (retardation) и постоянного заряда (relaxation), причем отношение времен ретардации и релаксации равно $\varepsilon_s/\varepsilon_\infty$.

Рис. 1. Частотные зависимости действительной и мнимой частей диэлектрической поницаемости (a) и проводимости (b) диэлектрика с функцией распределения времен релаксации в виде прямоугольника. $\varepsilon_s=10^4,\ \varepsilon_\infty=10^2.$ $1-\tau_1=\tau_2=1\,\mathrm{s}$ (Debye); $2-\tau_1=0.005\,\mathrm{s},\ \tau_2=1.995\,\mathrm{s};$ $3-\tau_1=0.000001\,\mathrm{s},\ \tau_2=1.999999\,\mathrm{s}.$

Огромный рост $\omega_r^{\gamma}=1/\sqrt{\tau_1\tau_2}$ при $\tau_1\to 0$ обусловлен увеличением статического веса релаксационных процессов с малыми временами релаксации и большой начальной проводимостью абсорбционных токов $g_r \sim 1/\tau$ [3]. Действительно, диэлектрические потери — следствие протекания абсорбционных токов, не успевающих спадать на высоких частотах. А так как при расширении интервала $[\tau_1, \tau_2]$ появляется и расширяется область малых au, для предотвращения спадания соответствющих малым au абсорбционных токов происходит сдвиг ω_r^{γ} в область высоких частот. Одновременно увеличиваются γ' и максимальная величина γ'' . Размытие (расширение по оси ω) спектра ε' с ростом ширины интервала $[\tau_1, \tau_2]$ приводит к возникновению плато на кривой $\gamma'' = \omega \varepsilon_0 (\varepsilon' - \varepsilon_\infty)$, получающейся после исключения из γ'' сингулярного (расходящегося при $\omega \to \infty$) члена $\omega \varepsilon_0 \varepsilon_\infty$.

Роль релаксационных процессов с малыми τ иллюстрируется рассмотрением диэлектрика с функцией распределения времен релаксации в виде параболы $f(\tau) = h + p(\tau - \tau_0)^2 > 0$ в интервале $\tau_1 \le \tau \le \tau_2$ и $f(\tau) = 0$ при $\tau < \tau_1$ и $\tau > \tau_2$. Результаты выполненных по формулам (1) расчетов иллюстрируются рис. 2. В случае параболы с максимумом в центральной точке

 $au_0 = (au_1 + au_2)/2 \ (h > 0)$ отсутствует сколько-нибудь широкая область с малыми временами релаксации. Сдвиг области релаксации γ в область высоких частот и

Рис. 2. Частотные зависимости действительной и мнимой частей диэлектрической поницаемости (ε' и ε'') и проводимости (γ и γ'') диэлектрика с функцией распределения времен релаксации в виде параболы. $\varepsilon_s=10^4,\,\varepsilon_\infty=10^2,\,\tau_1=0.000001\,\mathrm{s},\,\tau_2=1.999999\,\mathrm{s}.$

Рис. 3. Экспериментальные диэлектрические спектры ${\rm CaMn_7O_{12}}$ при 255 K ([10], точки) и частотные зависимости действительной и мнимой частей диэлектрической проницаемости (ε' и ε'') и проводимости (γ' и γ''), рассчитанные для диэлектрика с функцией распределения времен релаксации в виде прямоугольника (сплошные линии, $\varepsilon_s=692\,000$, $\varepsilon_\infty=66.1$, $\tau_1=2.9\cdot 10^{-5}$ s, $\tau_2=3.5\cdot 10^{-4}$ s).

Рис. 4. Экспериментальные диэлектрические спектры $PEO-Cs^+$ при $100^{\circ}C$ ([11], точки) и частотные зависимости действительной и мнимой частей диэлектрической проницаемости (ε' и ε'') и проводимости (γ' и γ''), рассчитанные для диэлектрика с функцией распределения времен релаксации в виде параболы (сплошные линии, $\varepsilon_s = 2.51 \cdot 10^6$, $\varepsilon_{\infty} = 10^4$, $\tau_1 = 0.001$ s, $\tau_2 = 0.288$ s).

различие ω_r^γ и $\omega_\epsilon^\varepsilon$ незначитальны. В случае же параболы с минимумом в точке τ_0 (h=0) имеется достаточно широкая область с малыми временами релаксации. Потому спектры ε и γ в основных чертах согласуются со спектрами на рис. 1, полученными для прямоугольной функции $f(\tau)$. В частности, выполняется соотношение $\omega_r^\gamma \gg \omega_r^\varepsilon$.

Экспериментальное подтверждение возможности большого различия средних частот релаксации ω_r^γ и ω_r^ε иллюстрируется рис. 3 и 4, на которых приведены диэлектрические спектры $\mathrm{CaMn_7O_{12}}$ при $255\,\mathrm{K}$ [10] и полимерного электролита $\mathrm{PEO-Cs^+}\big((\mathrm{CH_2CH_2O})_n-\mathrm{Cs^+}\big)$ при $100^\circ\mathrm{C}$ [11]. Здесь же показаны результаты аппроксимации этих спектров с помощью равновероятного (в виде прямоугольника, $f(\tau)=h$) и параболического ($f(\tau)=p(\tau-\tau_0)^2,\ p>0,\ \tau_0=(\tau_1+\tau_2)/2,\ f(\tau_0)=0$) распределения времен релаксации соответственно.

4. Заключение

Таким образом, большое различие средних времен релаксации ω_r^ε и ω_r^γ , невозможное в диэлектриках с дебаевскими спектрами, в материалах с ограниченной со стороны малых времен областью распределения времен релаксации проявляется очень четко: ω_r^γ может превышать ω_r^ε на много порядков. При больших $(\omega \to \infty)$ частотах, как видно из (1) и (2), $\varepsilon''(\omega) \sim 1/\omega$ и $\gamma' = \varepsilon_0 \omega \varepsilon''$ выходит на плато (насыщается). При этом частоты, на которых начинается плато γ' , на несколько порядков больше частот, на которых заканчивается плато ε' .

Список литературы

- [1] Г. Фрёлих. Теория диэлектриков. ИИЛ, М. 1960. 252 с.
- [2] В. Браун. Диэлектрики. ИИЛ, М. 1961. 328 с.
- [3] Г.И. Сканави. Физика диэлектриков (область слабых полей). ГИТТЛ, М.-Л. 1949. 500 с.

- [4] А.В. Турик, А.И. Чернобабов, Г.С. Радченко, С.А. Турик. ФТТ 46, 2139 (2004).
- [5] А.В. Турик, М.Ю. Родинин. Письма в ЖТФ 36, 1, 37 (2010).
- [6] А.В. Турик, М.Ю. Родинин. Термодинамика неупорядоченных сред и пьезоматериалов. Тр. Первого Междунар. междисциплинар. симп. (ТDM&PM). Изд-во СКНЦ ВШ ЮФУ АПСН, Ростов н/Д (2009). С. 217.
- [7] Р.Р. Нигматуллин, Я.Е. Рябов. ФТТ **39**, 101 (1997).
- [8] И.Н. Бронштейн, К.А. Семендяев. Справочник по математике для инженеров и учащихся втузов. Наука, М. 1981. 720 с.
- [9] J. Jäckle, R. Richert. Phys. Rev. E 77. 054 402 (2008).
- [10] А.Н. Васильев, О.С. Волкова. Физика низких температур 33, 1181 (2007).
- [11] R.J. Klein, S. Zhang, S. Dou, B.H. Jones, R.H. Colby, J. Runta. J. Chem. Phys. 124, 144 903 (2006).