Релаксационные процессы в диэлектриках с недебаевскими спектрами

© А.В. Турик, А.С. Богатин, Е.В. Андреев

Южный федеральный университет, Ростов-на-Дону, Россия E-mail: turik@sfedu.ru

(Поступила в Редакцию 5 апреля 2011 г.)

Исследованы особенности релаксационных процессов в диэлектриках с недебаевскими спектрами. Объяснена причина различия релаксационных частот диэлектрической проницаемости и диэлектрических потерь (проводимости). Показано, что средняя частота релаксации проводимости значительно (в ряде случаев на несколько порядков) превышает частоту релаксации диэлектрической проницаемости благодаря увеличению в спектрах проводимости статистического веса релаксационных процессов малыми временами релаксации.

1. Введение

04

Для исследования релаксационных процессов в диэлектриках с дебаевскими спектрами достаточно измерения частотных зависимостей действительной $\varepsilon'(\omega)$ и мнимой $\varepsilon''(\omega)$ частей комплексной диэлектрической проницаемости $\varepsilon = \varepsilon' - i\varepsilon''$ [1–3]. Релаксация удельной проводимости $\gamma = \gamma' + i\gamma'' = i\omega\varepsilon_0\varepsilon = \omega\varepsilon_0(\varepsilon'' + i\varepsilon')$ или удельных диэлектрических потерь $p = \gamma' E_m^2/2$ $=\omega \varepsilon_0 \varepsilon'' E_m^2/2$ ($E=E_m \cos \omega t$ — напряженность приложенного к диэлектрику электрического поля, ε_0 диэлектрическая проницаемость вакуума) происходит на тех же частотах $\omega_r = 1/\tau$, и ее исследоание для дебаевских диэлектриков с одним временем релаксации т практически не дает новой информации. Однако в работах [4-6] показано, что для недебаевских диэлектриков, характеризующихся ограниченной со стороны малых времен непрерывной областью распределения времен релаксации, имеет место значительное (в некоторых случаях на несколько порядков) различие средних частот релаксации проводимости ω_r^{γ} и диэлектрической проницаемости ω_r^{ε} . Различие ω_r^{γ} и ω_r^{ε} мало исследовано и не упоминается в классических работах [1-3] по физике диэлектриков.

2. Основные положения и формулы

Рассмотрим однокомпонентный диэлектрик с функцией распределения времен релаксации $f(\tau)$ в виде прямоугольника: $f(\tau) = h = \text{const}$ в интервале $\tau_1 \leq \tau \leq \tau_2$ и $f(\tau) = 0$ при $\tau < \tau_1$ и $\tau > \tau_2$ $(f(\tau)d\tau$ — вероятность нахождения времени релаксации в интервале от τ до $\tau + d\tau$). В таком диэлектрике релаксатор на микроуровне не может быть описан моделью глубокой потенциальной ямы с двумя положениями равновесия (релаксатор Фрелиха [7]). Согласно [1,2], действительная и мнимая части комплексной ε диэлектрика в случае отсутствия взаимодействия между релаксаторами и линейной суперпозиции вкладов различных групп зависят от $f(\tau)$, статической (ε_s) и высокочастотной (ε_{∞}) диэлектрических проницаемостей и частоты ω следующим образом:

$$\varepsilon' = \varepsilon_{\infty} + (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{f(\tau)d\tau}{1 + \omega^{2}\tau^{2}},$$
$$\varepsilon'' = (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{\omega\tau f(\tau)d\tau}{1 + \omega^{2}\tau^{2}}, \quad \int_{0}^{\infty} f(\tau)d\tau = 1.$$
(1)

В случае одного времени релаксации $(f(\tau)$ — дельта-функция) выражения (1) упрощаются и сводятся к формулам Дебая. Фигурирующая в $f(\tau)$ константа $h = 1/(\tau_2 - \tau_1)$ определялась из условия нормировки (1). Подстановка $f(\tau) = h$ в (1) и использование таблиц неопределенных интегралов [8] позволяют получить выражения

$$\varepsilon' = \varepsilon_{\infty} + (\varepsilon_s - \varepsilon_{\infty}) \frac{h}{\omega} (\operatorname{arctg} \omega \tau_2 - \operatorname{arctg} \omega \tau_1),$$

$$\varepsilon'' = (\varepsilon_s - \varepsilon_{\infty}) \frac{h}{2\omega} \ln \frac{1 + \omega^2 \tau_2^2}{1 + \omega^2 \tau_1^2}, \quad h = \frac{1}{\tau_2 - \tau_1}.$$
 (2)

3. Результаты и обсуждение

Результаты выполненных по формулам (2) расчетов иллюстрируются рис. 1. Согласно (2), релаксационная частота $\omega_r^{\gamma} = 1/\sqrt{\tau_1\tau_2}$, тогда как $\omega_r^{\varepsilon} \approx (\tau_1 + \tau_2)/2$. По мере расширения интервала $[\tau_1, \tau_2]$ происходит сдвиг ω_r^{γ} в область высоких частот. При $\tau_2/\tau_1 \gg 1 \omega_r^{\gamma}$ может превышать ω_r^{ε} на много порядков, причем $\omega_r^{\gamma}/\omega_r^{\varepsilon} \gg \varepsilon_s/\varepsilon_{\infty}$. Следовательно, рассматриваемый эффект не может быть следствием различия времен нормальной (retardation) и обратной (relaxation) релаксаций в линейной среде. Как показано в [9], это различие обусловлено особенностями поведения диэлектрика под действием постоянного напряжения (retardation) и постоянного заряда (relaxation), причем отношение времен ретардации и релаксации равно $\varepsilon_s/\varepsilon_{\infty}$.

Рис. 1. Частотные зависимости действительной и мнимой частей диэлектрической поницаемости (*a*) и проводимости (*b*) диэлектрика с функцией распределения времен релаксации в виде прямоугольника. $\varepsilon_s = 10^4$, $\varepsilon_{\infty} = 10^2$. $I - \tau_1 = \tau_2 = 1$ s (Debye); $2 - \tau_1 = 0.005$ s, $\tau_2 = 1.995$ s; $3 - \tau_1 = 0.000001$ s, $\tau_2 = 1.999999$ s.

Огромный рост $\omega_r^{\gamma} = 1/\sqrt{\tau_1 \tau_2}$ при $\tau_1 \to 0$ обусловлен увеличением статического веса релаксационных процессов с малыми временами релаксации и большой начальной проводимостью абсорбционных токов $g_r \sim 1/\tau$ [3]. Действительно, диэлектрические потери — следствие протекания абсорбционных токов, не успевающих спадать на высоких частотах. А так как при расширении интервала $[\tau_1, \tau_2]$ появляется и расширяется область малых т, для предотвращения спадания соответствющих малым τ абсорбционных токов происходит сдвиг ω_r^{γ} в область высоких частот. Одновременно увеличиваются γ' и максимальная величина γ'' . Размытие (расширение по оси ω) спектра ε' с ростом ширины интервала [τ_1, τ_2] приводит к возникновению плато на кривой $\gamma'' = \omega \varepsilon_0 (\varepsilon' - \varepsilon_\infty)$, получающейся после исключения из γ'' сингулярного (расходящегося при $\omega \to \infty$) члена $\omega \varepsilon_0 \varepsilon_\infty$.

Роль релаксационных процессов с малыми τ иллюстрируется рассмотрением диэлектрика с функцией распределения времен релаксации в виде параболы $f(\tau) = h + p(\tau - \tau_0)^2 > 0$ в интервале $\tau_1 \le \tau \le \tau_2$ и $f(\tau) = 0$ при $\tau < \tau_1$ и $\tau > \tau_2$. Результаты выполненных по формулам (1) расчетов иллюстрируются рис. 2. В случае параболы с максимумом в центральной точке $au_0 = (au_1 + au_2)/2 \ (h > 0)$ отсутствует сколько-нибудь широкая область с малыми временами релаксации. Сдвиг области релаксации γ в область высоких частот и

Рис. 2. Частотные зависимости действительной и мнимой частей диэлектрической поницаемости (ε' и ε'') и проводимости (γ и γ'') диэлектрика с функцией распределения времен релаксации в виде параболы. $\varepsilon_s = 10^4$, $\varepsilon_{\infty} = 10^2$, $\tau_1 = 0.000001$ s, $\tau_2 = 1.999999$ s.

Рис. 3. Экспериментальные диэлектрические спектры CaMn₇O₁₂ при 255 К ([10], точки) и частотные зависимости действительной и мнимой частей диэлектрической проницаемости (ε' и ε'') и проводимости (γ' и γ''), рассчитанные для диэлектрика с функцией распределения времен релаксации в виде прямоугольника (сплошные линии, $\varepsilon_s = 692\,000$, $\varepsilon_{\infty} = 66.1$, $\tau_1 = 2.9 \cdot 10^{-5}$ s, $\tau_2 = 3.5 \cdot 10^{-4}$ s).

Рис. 4. Экспериментальные диэлектрические спектры PEO-Cs⁺ при 100°С ([11], точки) и частотные зависимости действительной и мнимой частей диэлектрической проницаемости (ε' и ε'') и проводимости (γ' и γ''), рассчитанные для диэлектрика с функцией распределения времен релаксации в виде параболы (сплошные линии, $\varepsilon_s = 2.51 \cdot 10^6$, $\varepsilon_{\infty} = 10^4$, $\tau_1 = 0.001$ s, $\tau_2 = 0.288$ s).

различие ω_r^{γ} и ω_r^{ε} незначитальны. В случае же параболы с минимумом в точке τ_0 (h = 0) имеется достаточно широкая область с малыми временами релаксации. Потому спектры ε и γ в основных чертах согласуются со спектрами на рис. 1, полученными для прямоугольной функции $f(\tau)$. В частности, выполняется соотношение $\omega_r^{\gamma} \gg \omega_r^{\varepsilon}$.

Экспериментальное подтверждение возможности большого различия средних частот релаксации ω_r^{γ} и ω_r^{ε} иллюстрируется рис. 3 и 4, на которых приведены диэлектрические спектры CaMn₇O₁₂ при 255 K [10] и полимерного электролита PEO-Cs⁺((CH₂CH₂O)_n - Cs⁺) при 100°C [11]. Здесь же показаны результаты аппроксимации этих спектров с помощью равновероятного (в виде прямоугольника, $f(\tau) = h$) и параболического ($f(\tau) = p(\tau - \tau_0)^2$, p > 0, $\tau_0 = (\tau_1 + \tau_2)/2$, $f(\tau_0) = 0$) распределения времен релаксации соответственно.

4. Заключение

Таким образом, большое различие средних времен релаксации ω_r^{ε} и ω_r^{γ} , невозможное в диэлектриках с дебаевскими спектрами, в материалах с ограниченной со стороны малых времен областью распределения времен релаксации проявляется очень четко: ω_r^{γ} может превышать ω_r^{ε} на много порядков. При больших ($\omega \to \infty$) частотах, как видно из (1) и (2), $\varepsilon''(\omega) \sim 1/\omega$ и $\gamma' = \varepsilon_0 \omega \varepsilon''$ выходит на плато (насыщается). При этом частоты, на которых начинается плато γ' , на несколько порядков больше частот, на которых заканчивается плато ε' .

Список литературы

- [1] Г. Фрёлих. Теория диэлектриков. ИИЛ, М. 1960. 252 с.
- [2] В. Браун. Диэлектрики. ИИЛ, М. 1961. 328 с.
- [3] Г.И. Сканави. Физика диэлектриков (область слабых полей). ГИТТЛ, М.-Л. 1949. 500 с.
- Физика твердого тела, 2011, том 53, вып. 12

- [4] А.В. Турик, А.И. Чернобабов, Г.С. Радченко, С.А. Турик. ФТТ 46, 2139 (2004).
- [5] А.В. Турик, М.Ю. Родинин. Письма в ЖТФ 36, 1, 37 (2010).
- [6] А.В. Турик, М.Ю. Родинин. Термодинамика неупорядоченных сред и пьезоматериалов. Тр. Первого Междунар. междисциплинар. симп. (ТDM&PM). Изд-во СКНЦ ВШ ЮФУ АПСН, Ростов н/Д (2009). С. 217.
- [7] Р.Р. Нигматуллин, Я.Е. Рябов. ФТТ **39**, 101 (1997).
- [8] И.Н. Бронштейн, К.А. Семендяев. Справочник по математике для инженеров и учащихся втузов. Наука, М. 1981. 720 с.
- [9] J. Jäckle, R. Richert. Phys. Rev. E 77. 054 402 (2008).
- [10] А.Н. Васильев, О.С. Волкова. Физика низких температур 33, 1181 (2007).
- [11] R.J. Klein, S. Zhang, S. Dou, B.H. Jones, R.H. Colby, J. Runta. J. Chem. Phys. **124**, 144 903 (2006).