06,08 ЭПР ионов Gd³⁺ в твердых растворах на основе сегнетоэлектрического германата свинца

© В.А. Важенин, А.П. Потапов, М.Ю. Артёмов, В.Б. Гусева, А.В. Фокин

Научно-исследовательский институт физики и прикладной математики Уральского государственного университета им. А.М. Горького, Екатеринбург, Россия

E-mail: vladimir.vazhenin@usu.ru

(Поступила в Редакцию 18 апреля 2011 г.)

В кристаллах твердых растворов $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ обнаружено расщепление ЭПР-спектра одиночного иона Gd^{3+} на четыре интенсивных спектра, обусловленное появлением в трех ближайших германиевых сферах ионов кремния. Определена атомная структура наблюдаемых центров. На основе сравнения измеренного отношения интенсивностей компонент с результатами расчета концентраций ассоциаций Gd^{3+} с ионами кремния сделан вывод о преимущественной замене германия кремнием в кислородных тетраэдрах и одного из атомов германия в кислородных битетраэдрах.

1. Введение

Исследования диэлектрических, пироэлектрических, структурных и оптических свойств, а также переключения направления спонтанной поляризации в монокристаллах и керамических образцах сегнетоэлектрических твердых растворов $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ проведены авторами [1–9]. Структура $Pb_5Ge_3O_{11}$, содержащая германий-кислородные тетраэдры и битетраэдры, в сегнето- и параэлектрической фазах (структурный переход второго рода $P3 \leftrightarrow P\bar{6}$ при 450 K) получена авторами [10,11].

В работах [8,9] на основании результатов рентгеноструктурных исследований и измерений инфракрасных спектров сделан вывод, что в области концентраций кремния (0 < x < 0.39) ионы Si⁴⁺ замещают германий в одиночных тетраэдрах GeO₄ и один из двух ионов Ge в битетраэдрах Ge₂O₇, тогда как авторы [1] считают, что в этом диапазоне происходит замена ионов Ge⁴⁺ на Si⁴⁺ только в одиночных тетраэдрах. Нельзя исключать и вариант, когда происходит замещение германия кремнием во всех позициях. Также в работах [1–9] предлагаются разные оценки пределов существования твердых растворов Pb₅(Ge_{1-x}Si_x)₃O₁₁. Авторами [1,8] с увеличением в кристаллах примеси кремния обнаружено уменьшение параметров элементарной ячейки (\approx 0.3% при концентрации Si 25 at.%).

Настоящая работа представляет исследование монокристаллов твердых растворов $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ методом электронного парамагнитного резонанса с целью определения характера замещения ионов германия кремнием.

2. Объекты и методика эксперимента

Исследовались монокристаллы $Pb_5(Ge_{1-x}Si_x)_3O_{11}$, выращенные методом Чохральского с x = 0.15 и 0.39, содержащие, кроме того, 0.01% гадолиния в шихте. Из сравнения пиковых интенсивностей линий рентгенолю-

минесценции свинца и германия (линии кремния находятся вне рабочего диапазона частот приемника) в номинально чистом и легированном кремнием (15 at.%) образцах для концентрации кремния в $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ получено значение 20%. Спектры ЭПР регистрировались на спектрометре трехсантиметрового диапазона EMX Plus (Bruker). Погрешность поддержания и измерения температуры образца составляла ± 1 K.

3. Результаты эксперимента

Спектр ЭПР тригонального центра (центр 1), представляющего одиночный высокоспиновый (S = 7/2) ион Gd³⁺, в номинально чистом германате свинца исследован в [12,13]. Авторами этих работ было показано, что ион гадолиния замещает ион Pb²⁺ в позиции Pb4 (обозначения [11]), имеющей в сегнетоэлектрической фазе симметрию C_3 , а в парафазе — C_{3h} ; компенсация избыточного заряда Gd³⁺ осуществляется нелокально. Параметры спинового гамильтониана в определении [14]

$$H_{sp} = g\beta(\mathbf{BS}) + 1/3 \sum_{m} b_{2m} O_{2m} + 1/60 \sum_{m} b_{4m} O_{4m} + 1/1260 \sum_{m} b_{6m} O_{6m},$$
(1)

где g - g-тензор, β — магнетон Бора, **S** — спиновый оператор, b_{nm} — параметры тонкой структуры, O_{nm} — спиновые операторы Стивенса, при комнатной температуре и **z** || **C**₃ приведены в табл. 1 [12].

Из рис. 1 видно, что в кристаллах $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ наблюдаются сильное уширение сигналов и появление высокополевого плеча у перехода $+1/2 \leftrightarrow -1/2$, однако незначительное изменение основных параметров ЭПР-спектра свидетельствует об идентичности структур твердых растворов и германата свинца. Узкий сигнал в твердых растворах, расположенный ниже центрального, принадлежит иону Cu²⁺ [15]. Слабые сигналы на

Рис. 1. Спектр ЭПР центров Gd^{3+} при **B** || **C**₃ (первая производная сигналов поглощения, *B* — индукция магнитного поля, *T* = 295 K) в номинально чистом (*I*) и содержащем 15 (*2*) и 39 at.% Si (*3*) германате свинца.

крыльях центра 1 в номинально чистом образце обусловлены переходами локально компенсированных центров Gd³⁺ [16,17]. ЭПР-сигналы образца Pb₅(Ge_{0.61}Si_{0.39})₃O₁₁, соответствующие переходам $\pm 1/2 \leftrightarrow \pm 3/2$, имеют едва заметную дублетную структуру. В спектре образца с 15% кремния из-за меньшей ширины линий все переходы (кроме $+1/2 \leftrightarrow -1/2$) демонстрируют четыре компоненты; это хорошо видно из рис. 2 в спектре второй производной сигналов поглощения. Приблизительная симметричность наблюдаемого спектра при В || С₃ (рис. 1) позволяет соотнести эти компоненты с четырья типами центров, обозначенными на рис. 2 как Gd_{Si}1, Gd_{Si}2, Gd_{Si}3, Gd_{Si}4. Следует отметить, что для центров Gd_{Si}4 при уходе от ориентации **B** || **C**₃ наблюдается расщепление некоторых сигналов (на рис. 3 они помечены стрелками). Указанное расщепление, скорее всего, обусловлено существованием трех эквивалентных центров.

Таблица 1. Параметры тонкой структуры Gd^{3+} в Pb₅Ge₃O₁₁ [12] и Pb₅(Ge_{0.85}Si_{0.15})₃O₁₁, определенные из анализа ориентационного поведения резонансных положений (T = 296 K, F — среднеквадратичное отклонение, все величины даны в MHz)

Параметр	Центр 1 [12]	$Gd_{Si}1$	$Gd_{Si}2 \\$	$Gd_{Si}3$	$Gd_{Si}4 \\$
b_{20}	813	719	785	848	1001
b_{21}	_	_	_	_	-542
b_{22}	_	94	41	-17	-116
C 21	_	_	_	_	-353
C 22	—	_	_	_	15
b_{40}	-119	-121	-121	-118	-116
b_{60}	4	5.4	4	4.5	5.8
F	—	36	24	26	64

Оптимизация параметров спинового гамильтониана (диагональных и второго ранга) при описании ориентационного поведения (рис. 3) сигналов четырех наблю-

Рис. 2. Вторая производная ЭПР-спектра Gd^{3+} в $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ (x = 0.15) при **В** || **С**₃ и комнатной температуре в районе перехода $-1/2 \leftrightarrow -3/2$. Центрам сигналов соответствуют минимумы кривой.

Рис. 3. Ориентационное поведение ЭПР-спектра Gd^{3+} в $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ при комнатной температуре. θ — полярный угол магнитного поля. Сплошные кривые — расчет для центров $Gd_{Si}1-Gd_{Si}3$, штриховые — для трех центров $Gd_{Si}4$, различающихся поворотом на $\pm 120^{\circ}$ вокруг C_3 .

Рис. 4. Температурные зависимости величин $\lambda(T) = B_{res}(-1/2 \leftrightarrow -3/2) - B_{res}(1/2 \leftrightarrow 3/2)$ четырех центров при **В** || **С**₃. $\Delta(T) = -0.049(T_0 - T)$, $\delta(T) = 0.85\sqrt{T_0 - T}$. Точки — эксперимент.

Рис. 5. Экспериментальный (сплошная кривая) и симулированный (штриховая) вид переходов $1/2 \leftrightarrow 3/2$ центров $Gd_{Si}1$, $Gd_{Si}2$, $Gd_{Si}3$, $Gd_{Si}4$ при 470 К и **В** || **С**₃.

даемых центров привела к значениям, суммированным в табл. 1. Величины b_{43} и b_{63} считались равными соответствующим параметрам центра 1 ($b_{43} = 200$ MHz, $b_{63} = 4$ MHz). Введение в процедуру оптимизации недиагональных параметров спинового гамильтониана четвертого и шестого ранга нецелесообразно в связи с существенными погрешностями в резонансных положениях из-за большой ширины и перекрытия сигналов. Найденные параметры центра $Gd_{Si}4$ свидетельствуют о его триклинной симметрии, при этом находят объяснение все наблюдаемые переходы при $B \perp C_3$ и в произвольной ориентации. Спектры $Gd_{Si}1-Gd_{Si}3$ ввиду малости недиагональных параметров приближенно описываются гамильтонианом тригональной симметрии.

На рис. 4 показано измеренное температурное поведение величины $\lambda(T) = B_{res}(-1/2 \leftrightarrow -3/2) - B_{res}(1/2 \leftrightarrow 3/2)$, пропорциональной линейной комби-

нации параметров гамильтониана $(b_{20} - 6b_{40} + 7b_{60})$. Следует обратить внимание на то, что для трех центров наблюдается практически линейная температурная зависимость с изломом в районе сегнетоэлектрического перехода (аналогичная зависимость характерна для одиночных центров Gd^{3+} в германате свинца [18]), тогда как центр $\mathrm{Gd}_{\mathrm{Si}}4$ демонстрирует более сложное поведение.

В результате симуляции спектра, близкого к экспериментальному, для переходов $\pm 1/2 \leftrightarrow \pm 3/2$ (рис. 5) путем суммирования четырех сигналов (форма линии — лоренциан) определено отношение интенсивностей компонент. Экспериментальные положения переходов и их ширина, имеющие погрешности из-за перекрытия сигналов, подвергались при симуляции небольшому варьированию. При комнатной температуре для центров Gd_{Si}1, Gd_{Si}2, Gd_{Si}3, Gd_{Si}4 получено отношение интенсивностей 1 : 3 : 3 : 0.7, при 470 K — 0.7 : 3 : 3 : 1.4.

Влияние на парамагнитный резонанс Gd³⁺ ионов кремния

Логично предположить, что индивидуальные центры $Gd_{Si}1-Gd_{Si}4$ обусловлены ионами Gd^{3+} , имеющими ион кремния в трех близких позициях Ge^{4+} , а также не имеющими близких Si^{4+} . Естественно, что в этом случае симметрия парамагнитного иона понижается до C_1 , и при **В** || **C**₃ все наблюдаемые сигналы будут представлять сумму переходов трех эквивалентных триклинных центров. Присутствие ионов кремния в более далеких позициях германия обусловливает лишь уширение линий.

Согласно работе [11], при комнатной температуре ближайшие к позиции Рb4 ионы германия расположены в позициях с координатами, приведенными в табл. 2. Ионы Ge2 и Ge3 входят в германий-кислородные битетраэдры, а Ge1 — в тетраэдры. В параэлектрической фазе в связи с повышением симметрии позиции Pb4 до C_{3h} парамагнитные центры Gd³⁺ с ионами Si⁴⁺ в позициях сфер I, II, III при **B** || **C**₃ становятся попарно эквивалентными. Центр Gd_{Si}4, спектр которого наиболее сильно отличается от спектра одиночного гадолиния,

Таблица 2. Сферические координаты ионов германия относительно Pb4($\mathbf{z} \parallel \mathbf{C}_3$) в сегнетоэлектрической фазе (T = 300 K, обозначения позиций даны согласно [11])

Положение иона	Ge2	Ge3	Ge1	Ge1	Ge2	Ge3
$\stackrel{R, A}{ heta, \circ}$	3.4 62	3.5 117	6.17 149	6.3 31	7.3 77	7.35 103
Сфера	Ι		II		III	
Элемент структуры	Битетраэдр		Тетраэдр		Битетраэдр	

скорее всего, следует отнести к центру, у которого ион ${\rm Si}^{4+}$ локализован в сфере I.

Эффективные ионные радиусы Ge⁴⁺ и Si⁴⁺ равны 0.039 и 0.026 nm [19] соответственно, в связи с чем следует ожидать сжатия кислородного тетраэдра, окружающего ион кремния. Указанное сжатие (при локализации кремния в позициях Ge2 и Ge3) приведет к деформации кислородного окружения Gd³⁺, поскольку в ближайшем окружении Ge2 и Ge3 имеются два иона кислорода, являющиеся ближайшими соседями Pb4 и, следовательно, Gd³⁺.

Для оценки влияния замены иона германия ионом Si⁴⁺ на величину аксиального параметра b_{20} центра Gd³⁺ мы использовали результаты суперпозиционного приближения для параметров тонкой структуры ЭПР-спектра второго ранга [20]

$$b_{20} = \sum_{d} K_{20}(\theta_d) [Z_d b_{2p}(R_0)(R_0/R_d)^3 + b_{2s}(R_0)(R_0/R_d)^n],$$
(2)

где $K_{20}(\theta_d) = 1/2(3\cos^2\theta_d - 1)$ — угловой структурный фактор, R_d , θ_d — сферические координаты ближайших лигандов, $R_0 = 0.234$ nm, $b_{2p} = 6452$ MHz и $b_{2s} = 6900$ MHz — внутренние параметры модели для кислородного окружения, $n \approx 10$, Z_d — заряд лиганда.

Допуская сдвиг ионов кислорода тетраэдра в направлении Si⁴⁺ на величину 0.013 nm, в случае замещения Ge2 получаем увеличение $b_{20}(\mathbf{z} \parallel \mathbf{C}_3)$ на 75 MHz, а в случае замещения Ge3 — на 150 MHz. Помещение в позиции Ge2 или Ge3 двух ионов кремния приблизительно удваивает величину изменения b_{20} . Следует отметить, что использование внутренних параметров приближения [20] для одиночного центра Gd³⁺ приводит к величине $b_{20} \approx 4000$ MHz.

Проведенное нами моделирование с помощью программы GULP 3.4.9 (автор J.D. Gale) структуры германата свинца, содержащего в позиции Pb4 примесный ион гадолиния, дало заметные изменения как радиальных, так и угловых координат лигандов. Полученное таким образом новое окружение парамагнитного иона привело к уменьшению расчетной величины b_{20} на ≈ 500 MHz. И в этом случае увеличение величины b_{20} в результате замены германия на кремний в позициях Ge2 и Ge3 составляет также 75 и 150 MHz. Учитывая эти результаты, центр Gd_{Si}4, демонстрирующий изменение $\Delta b_{20} = b_{20}(\text{Gd}_{\text{Si}4}) - b_{20}(1) = 183$ MHz, следует отождествить с ионом Gd³⁺, в ближайшей позиции Ge3 которого находится ион кремния.

5. Обсуждение результатов

Аналогичный вывод о структуре центра Gd_{Si}4 можно сделать при анализе температурного поведения резонансных положений сигналов (рис. 4). Температурное изменение диагональных параметров спинового гамильтониана, определяющее зависимости на рис. 4, в параэлектрической фазе обусловлено термическим расширением (сжатием) кристалла и спин-колебательным

взаимодействием [21]. В случае отсутствия сегнетоэлектрического перехода поведение $\lambda(T)$ центра Gd_{Si}2 ниже температуры структурного превращения, скорее всего, соответствовало бы штриховой прямой *A*, полученной экстраполяцией парафазной зависимости. И тогда $\Delta(T)$ на рис. 4 будет являться вкладом в $\lambda(T)$, обусловленным спонтанной поляризацией *P*.

Для парамагнитного центра, имеющего в группе симметрии параэлектрической фазы плоскость отражения σ_h , вклад в параметры b_{n0} может быть только квадратичным по поляризации P и, следовательно, при переходе второго рода линейным по $T_0 - T$ (T_0 — температура превращения). Появление в окружении дефекта, расположенного не в плоскости σ_h , понижает симметрию парамагнитного центра до триклинной и разрешает линейный по P вклад в b_{n0} . Естественно, что этот вклад будет уменьшаться в случае удаления дефекта от парамагнитного иона или при его приближении к σ_h .

Спектры Gd_{Si}1-Gd_{Si}3, демонстрирующие в сегнетоэлектрической фазе зависимость $\Delta(T) \sim (T_0 - T)$, следует отнести к ионам Gd³⁺, не имеющим дефектов в ближайшем окружении (Ge2 или Ge3). Для центра $Gd_{Si}4$ кроме вклада $\Delta(T) \sim (T_0 - T)$, обусловливающего зависимость, представленную штриховой прямой С, имеет место вклад $\delta(T) \sim +\sqrt{T_0 - T}$, учет которого дает зависимость D (рис. 4). На основании этого центр Gd_{Si}4 следует считать ионом гадолиния, имеющим в ближайшей позиции (Ge3) ион кремния. В этом случае должен существовать еще один центр с квазизеркальным расположением иона кремния (позиция Ge2) и имеющим линейный по *P* вклад $\delta(T) \sim -\sqrt{T_0 - T}$. Гипотетическое температурное поведение этого центра представлено на рис. 4 пунктирной линией; как видно при комнатной температуре величина Δb_{20} (или $\Delta \lambda (295 \text{ K})$) для него примерно вдвое меньше, чем для Gd_{Si}4. Косвенным подтверждением существования такого центра является различие в соотношении интенсивностей компонент Gd_{Si}1-Gd_{Si}4 при комнатной температуре и в параэлектрической фазе.

Следует заметить, что $\lambda(T)$ центра Gd_{Si}3 в низкотемпературной фазе имеет несколько меньший наклон, чем Gd_{Si}1 и Gd_{Si}2. Это уменьшение может быть обусловлено наличием небольшого линейного по *P* вклада в $\lambda(T)$. И тогда центр Gd_{Si}3 следует связывать с присутствием кремния в германиевой сфере II, позиции которой расположены дальше от плоскости σ_h , чем в сфере III.

Количественно оценить влияние на спектр Gd³⁺ замены германия кремнием в позициях сфер окружения II и III (табл. 2) затруднительно в связи с удаленностью этих позиций и, следовательно, сложностью учета деформации ближайшего окружения гадолиния. Однако заметим, что угловой структурный фактор в (2) и, следовательно, вклад в b_{20} от точечного источника деформации при $\theta \approx 54.7^{\circ}$ меняет знак. Поскольку полярные углы ионов кремния в позициях германиевых сфер II и III имеют величину 31 и 77° (табл. 2), логично центр Gd_{Si}2 считать спектром одиночного иона гадолиния, а центры $Gd_{Si}1$, $Gd_{Si}3$ — ионами Gd^{3+} , возмущенными наличием кремния в позициях германиевых сфер III и II. Несколько смущает уменьшение аксиального параметра b_{20} Gd_{Si}2 относительно параметра центра 1, поскольку в более плотной решетке Pb₅(Ge_{1-x}Si_x)₃O₁₁ [1,8] следовало бы ожидать его увеличения.

Однако конкуренция в выражении (2) двух слагаемых с противоположными знаками и с существенно разными радиальными зависимостями может приводить при уменьшении объема элементарной ячейки и к уменьшению параметра b_{20} . Особенно слабо предсказуемым становится поведение b_{20} в случае изменения при сжатии решетки угловых координат лигандов.

Предполагая указанные выше (раздел 1) три схемы замены германия кремнием и используя формулу Бернулли, можно оценить вероятности того, что атомами кремния заняты одна, две или более различных позиций в окрестности парамагнитного иона и, следовательно, относительные интенсивности ЭПР-сигналов центров Gd_{Si}. В случае нахождения кремния только в одиночных тетраэдрах, согласно нашим расчетам, для образцов с 15% кремния можно ожидать лишь три типа сигналов со сравнимой интенсивностью (4:1.8:3.8): ион Gd, имеющий в позициях Ge1 один ион кремния, два и ни одного соответственно. Отсюда следует, что этот вариант замены германия кремнием в Pb₅(Ge_{0.85}Si_{0.15})₃O₁₁ не реализуется.

В предположении возможности локализации кремния во всех позициях германия для центров Gd^{3+} с участием ионов кремния получается отношение населенностей 1.6:3:3.1:2.2:1.6. Аналогичный расчет при допущении замены германия кремнием в тетраэдрах и одного иона Ge в битетраэдрах дает отношение интенсивностей 1.1:3.1:2.7:1.8:1.2. Как видно, обе последние схемы предсказывают существование еще одного (пятого) довольно интенсивного центра (присутствие ионов Si в сферах I и II) с бо́лышим значением $\lambda(295 \,\mathrm{K})$. Слабые сигналы, подходящие на роль переходов этого центра, наблюдаются на высокополевом крыле группы переходов $5/2 \leftrightarrow 3/2$ и низкополевом — переходов $-5/2 \leftrightarrow -3/2$, остальные переходы попадают под интенсивные сигналы иных центров.

Следует отметить, что проведенные расчеты учитывают центры, имеющие в трех ближайших германиевых сферах только один или два иона кремния, поскольку населенности центров с тремя ионами кремния невелики. При учете влияния на спектр центров с двумя ионами кремния предполагается аддитивность вкладов от двух примесных ионов Si в b_{20} и, следовательно, в $\lambda(295 \text{ K})$. Это предположение основывается на слабой зависимости b_{40} и b_{60} от искажений окружения Gd³⁺ и на обнаруженном в разделе 4 удвоении Δb_{20} при добавлении в позиции типа Ge2, Ge3 второго иона кремния.

Как видно, наиболее близок к экспериментальному (0.7:3:3:1.4) отношению интенсивностей компонент в параэлектрической фазе вариант, предполагающий замену германия кремнием в тетраэдрах и одного Ge в битетраэдрах. Однако большая погрешность в экспериментальном определении отношения компонент, а также существенные предположения в процедуре расчетов допускают замену германия кремнием и во всех позициях.

6. Заключение

В кристаллах $Pb_5(Ge_{1-x}Si_x)_3O_{11}$ проведена идентификация парамагнитных центров Gd^{3+} , имеющих в ближайшем окружении ионы кремния. Оценены параметры тонкой структуры второго ранга. Интерпретация наблюдаемых в ЭПР спектров допускает замещение ионов германия ионами кремния как в тетраэдрах, так и в битетраэдрах и, следовательно, является аргументом в пользу утверждения авторов [8,9].

Авторы благодарны В.А. Чернышову и А.Д. Горлову за полезные обсуждения результатов, а С.А. Суевалову за проведение рентгеновских исследований.

Список литературы

- H. Iwasaki, S. Miyazawa, H. Koizumi, K. Sugii, N. Niizeki. J. Appl. Phys. 43, 4907 (1972).
- [2] W. Eysel, R.W. Wolf, R.E. Newnham. J. Am. Ceram. Soc. 56, 185 (1973).
- [3] V.L. Salnikov, S.Yu. Stephanovich, V.V. Chetchkin, M.V. Pentegova, Yu.Ya. Tomashpolskii, Yu.N. Venevtsev. Ferroelectrics 8, 491 (1974).
- [4] А.Г. Белоус, В.В. Демьянов, Ю.Н. Веневцев. ФТТ 19, 1694 (1977).
- [5] Е.В. Синяков, В.В. Гене, А.Я. Крейчерек. ФТТ 21, 1223 (1979).
- [6] Е.В. Синяков, А.Я. Крейчерек. ФТТ 22, 1856 (1980).
- [7] K. Matsumoto, N. Kobayashi, K. Takada, K. Takamatsu, H. Ichimura, K. Takahashi. Jpn. J. Appl. Phys. 24, Suppl., 24-2, 466 (1985).
- [8] А.А. Буш, Ю.Н. Веневцев. Кристаллография 26, 349 (1980).
- [9] М.Х. Рабаданов, Ю.В. Шалдин, А.А. Буш, А. Петрашко. Нано- и микросистемная техника 10, 6 (2006).
- [10] M.I. Kay, R.E. Newnham, R.W. Wolfe. Ferroelectrics 9, 1 (1975).
- [11] Y.J. Iwata. J. Phys. Soc. Jpn. 43, 961 (1977).
- [12] В.А. Важенин, Ю.А. Шерстков, К.М. Золотарева. ФТТ 17, 2485 (1975).
- [13] В.А. Важенин, Л.И. Левин, К.М. Стариченко. ФТТ 23, 2255 (1981).
- [14] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). С. 121.
- [15] В.А. Важенин, А.Д. Горлов, А.И. Кроткий, А.П. Потапов, К.М. Стариченко. ФТТ **31**, 187 (1989).
- [16] В.А. Важенин, К.М. Стариченко, А.В. Гурьев, Л.И. Левин, Ф.М. Мусалимов. ФТТ 29, 409 (1987).
- [17] В.А. Важенин, К.М. Стариченко. ФТТ 29, 2530 (1987).
- [18] А.Е. Никифоров, А.И. Кроткий, В.А. Важенин, Ю.М. Карташев. ФТТ **21**, 2900 (1979).
- [19] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [20] L.I. Levin. Phys. Status Solidi B 134, 275 (1986).
- [21] C.A. Bates, H. Szymczak. Phys. Status Solidi B 74, 225 (1976).