02,12,13

Оптические исследования межмолекулярных электронных взаимодействий и "свободных" носителей заряда в квазидвумерных органических проводниках и сверхпроводниках группы *ж*-(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x}

© Р.М. Власова, Б.В. Петров, В.Н. Семкин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: rema.vlasova@mail.ioffe.ru

(Поступила в Редакцию 10 марта 2011 г.)

Проведен количественный анализ спектров отражения и спектров оптической проводимости кристаллов органических квазидвумерных проводников группы \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} с x = 0, 0.4, 0.73,0.85 и 0.9 в спектральной области (6 meV-0.74 eV) при T = 90-20 K на основе комбинированной полуэмпирической модели, включающей кластерную (тетрамерную) теорию для сильно коррелированных электронов, взаимодействующих с внутримолекулярными колебаниями, и теорию свободных электронов Друде, с целью изучения межмолекулярных электронных взаимодействий и их влияния на формирование основного состояния в этих кристаллах. Установлено, что параметры, характеризующие перенос заряда между молекулами в димерах и тетрамерах, и константы электронно-колебательного взаимодействия (ЭКВ) практически одинаковы для исследования соединений. Большая величина эффективного кулоновского отталкивания U/t (1.3–1.5) свидетельствует о сильных электронных корреляциях как в соединениях с переходом металл/диэлектрик (М/Д) (x = 0, 0.40), так и с переходом металл/сверхпроводник (М/СП) (x = 0.85, 0.9). Сделан вывод о том, что при x = 0 электронные корреляции способствуют антиферромагнитному упорядочению спинов и переходу M/Д, в то время как у сверхпроводников (x = 0.85, 0.9) переход M/Дзатруднен вследствие структурного беспорядка, обусловленного разной ориентацией концевых СН2-групп молекулы BEDT-TTF. Показано, что квазисвободные носители заряда взаимодействуют с локализованными на кластерах электронами и не взаимодействуют с внутримолекулярными колебаниями. Отмечено, что сила осциллятора наблюдаемых электронных переходов в исходной металлической зоне (N_{eff} = 0.38-0.31 на димер) значительно меньше соответствующего значения для свободных (невзаимодействующих) носителей (N = 1), что указывает на определяющую роль кулоновских корреляций и ЭКВ в кинетических явлениях в исследованных молекулярных проводниках и сверхпроводниках.

Работа поддержана программой ОФН РАН II "Физика конденсированных сред" (подпрограмма II.3).

1. Введение

Квазидвумерные органические проводники представляют собой слоистые ион-радикальные молекулярные слои с верхней неполностью заполненной электронной зоной с сильными электронными корреляциями и взаимодействием носителей заряда с внутримолекулярными колебаниями. Благодаря этому такие соли обладают необычными электронными свойствами, отличающими их от элементарных металлов. Основным состоянием у них может быть металлическое состояние, конкурирующие моттовский изолятор, магнитоупорядоченное или сверхпроводящее состояния в зависимости от ширины и заполнения исходной металлической зоны и характера электрон-фононных взаимодействий [1-4]. Среди этих соединений наибольший интерес исследователей вызывают катион-радикальные соли молекулы BEDT-TTF (bis(ethylenedithio) - tetrathiafulvalene, рис. 1, a, вставка)с различными анионами и ее производных, так что в настоящее время получено большое число солей, среди которых имеются сверхпроводники с $T_c = 12.5 \,\mathrm{K}$ при нормальном давлении [5,6]. Оптические исследования этих соединений опубликованы в работах [7–15], в которых впервые было обнаружено электронно-колебательное взаимодействие (ЭКВ) в виде аномальных интенсивных особенностей в спектрах и ИК-области и проявление электрон-электронных кулоновских взаимодействий. Роль ЭКВ в электропроводности и появлении сверхпроводимости в органических проводниках, так же как и другие свойства этих материалов, представлены в [16].

Группа изоструктурных солей \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]X (X = Cl, Br, Br_{0.5}Cl_{0.5}) была впервые представлена в работах [17–21]. Соль с Br является сверхпроводником при нормальном давлении с $T_c = 11.6$ K; соль с Cl имеет переход в диэлектрическое состояние ниже 50 K и становится сверхпроводником при $T_c = 12.8$ K под давлением около 0.3 kbar; соль с X = Br_{0.5}Cl_{0.5} — сверхпроводник с $T_c = 11.3$ K.

Кристаллы этих соединений относятся к ромбической сингонии, пространственная группа Pnma, Z = 4. Структура состоит из параллельных плоскости (ac)

отражения Рис. 1. Спектры кристаллов \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} в поляризации $\mathbf{E} \parallel \mathbf{c}$ для x = 0(a), 0.4 (b), 0.73 (c), 0.85 (d), 0.9 (e) при T = 20 (1) и 50 К (2) [4]. На вставках: а — структурная формула молекулы BEDT-TTF; b, c — структура проводящего слоя (BEDT-TTF)₂⁺: *b* — проекция слоя вдоль длинной оси молекулы (b1 — интеграл перекрывания между верхними занятыми молекулярными орбиталями BEDT-TTF) внутри димера, р, д — между соседними перпендикулярными димерами, b2 — между соседними параллельными димерами вдоль оси с [22]; с — проекция слоя перпендикулярно плоскости (ac) [21]; d — схематическое изображение плотности электронных состояний для хаббардовской модели (W — ширина зоны Хаббарда) [28].

слоев катион-радикалов BEDT-TTF^{+0.5e}, чередующихся вдоль оси *b* со слоями полимерных анионов Cu[N(CN)₂]X^{-1e}. Слои катион-радиколов состоят из димеров (BEDT-TTF)₂^{+1e}, упакованных взаимно перпендикулярно друг другу характерным для *х*-фазы способом [21,22] (рис. 1, *b*, *c*, вставки). Благодаря перекрыванию верхних незаполненных *л*-орбиталей BEDT-TTF в плоскости (*ac*) в кристаллах образуется исходная квазидвумерная металлическая зона. В работе [23] теоретически изучено влияние сильных электронных корреляций для металлической системы с наполовину заполненной зоной проводимости в случае, когда энергия хаббардовского взаимодействия U недостаточна для перехода в состояние моттовского изолятора. Показано, что в металлической фазе плотность электронных состояний $\rho(\omega)$ содержит пики при энергиях $\omega = -U/2$ и +U/2, соответствующие нижней и верхней зонам Хаббарда, в которых имеют место некогерентные возбуждения. В низкотемпературной области при температуре $T < T_0$ на уровне энергии Ферми образуется квазичастичный пик в плотности состояний шириной T_0 , в котором имеют место когерентные возбуждения (рис. 1, *d*, вставка). Спектральный вес этого пика исчезает при повышении температуры.

В работе [4] представлены экспериментальные спектры отражения И спектры оптической проводимости в поляризованном свете соединений \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} как функции температуры диапазоне $T = 20 - 300 \,\mathrm{K}$ в содержания Br (x = 0, 0.4, 0.73, 0.85 и 0.9) и проведен их количественный анализ для x = 0.85в рамках "кластерной тетрамерной" модели [24,25] с учетом переноса заряда только между соседними параллельными молекулами BEDT-TTF, образующими димер (BEDT-TTF)₂⁺. В рамках модели [24,25] нами проведен количественный анализ спектров оптической проводимости кристаллов этой группы с x = 0 и 0.9 [26] с учетом как внутридимерного переноса заряда, так и переноса заряда между парой ортогональных димеров, который указывает на участие в переносе заряда двух типов носителей: 1) носителей, локализованных на двух взаимно ортогональных димерах (кластерах), и 2) квазисвободных носителей. Определены физические параметры, характеризующие данные электронные переходы: энергия кулоновского отталкивания двух электронов (дырок) на одной молекуле, интегралы переноса электронов между молекулами внутри димера и между ортогональными димерами, константы взаимодействия электронов с полносимметричными которые колебаниями $(A_g$ -BMK), характеризуют также межмолекулярные электронные взаимодействия. Определены также плазменная частота и постоянная затухания квазисвободных (друдевских) носителей.

Представляет интерес изучить указанные межмолекулярные взаимодействия в кластерах и свойства квазисвободных электронов для всей группы органических квазидвумерных проводинков κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} c x = 0, 0.4, 0.73, 0.85 и 0.9 и проследить за их изменением при увеличении содержания Br в анионе и соответствующем изменении основного состояния от диэлектрического состояния при x = 0, 0.4 к промежуточному состоянию, близкому к моттовскому диэлектрику, для x = 0.73 и сверхпроводящему состоянию для $x = 0.85~(T_c \sim 12~{
m K})$ и x = 0.9 $(T_c = 11.6 \, \text{K})$. Такие исследования представлены в настоящей работе. Для анализа выбраны спектры отражения $R(\omega)$ и спектры оптической проводимости $\sigma(\omega)$ в поляризации **E** || c, поскольку в этой поляризации вследствие наклона длинной оси молекулы BEDT–TTF к плоскости (ac) [21] и анизотропии интегралов перекрывания [22] более отчетливо проявляется внутридимерный перенос заряда (хорошо выраженный при низких температурах максимум вблизи 3200–3300 сm⁻¹) наряду с переносом заряда между четырьмя молекулами в тетрамере (широкий максимум при 1500–3000 сm⁻¹) [26].

Ранее в работе [27] проанализирован отклик свободных носителей заряда в низкочастотной части спектра материалов с Br при x = 0.73 и 0.85 и проведено сравнение этих экспериментальных данных с расчетами по динамической теории среднего поля.

2. Эксперимент

Поляризованные спектры отражения $R(\omega)$ монокристаллов указанных выше соединений в области от 50 до $6000 \,\mathrm{cm^{-1}}$ при температурах от 20 до 300 K были получены с помощью ИК Фурье-спектрометра Bruker IFS 113v и гелиевого прокачного криостата Конти и опубликованы раннее в работах [4,26]. Спектры оптической проводимости $\sigma(\omega)$ были получены с помощью соотношений Крамерса-Кронига. При этом в низкочастотной области спектров (< 100 cm⁻¹) использовалась экстраполяция Хагена-Рубенса для кристаллов с "металлическим" типом проводимости и R = constдля диэлектриков. Для высокочастотной экстраполяции (> $10\,000\,\mathrm{cm}^{-1}$) использовались экспериментальные данные о спектрах отражения $R(\omega)$ аналогичных материалов в области 9000-40 000 cm⁻¹ [13,14] и стандартная экстраполяция при более высоких частотах $R \sim \omega^{-2}$.

3. Результаты

3.1. Спектры отражения. На рис. 1, a-e представлены опубликованные в [4] спектры отражения $R(\omega)$ кристаллов \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} для наиболее развитой грани (*ac*), в которой расположены проводяющие слои молекул BEDT-TTF, в поляризации **E** || **c** при T = 20 и 50 К для x = 0 (*a*), 0.4 (*b*), 0.73 (*c*), 0.85 (*d*), 0.9 (*e*) (далее приняты следующие обозначения: Br-0, Br-0.4, Br-0.73, Br-0.85 и Br-0.9).

На вставке *d* схематично показана плотность электронных состояний в исходной металлической зоне с сильными электронными корреляциями. Видно, что при указанных температурах у кристаллов с металлическим типом проводимости (рис. 1, *c*-*e*) наблюдается увеличение отражения при уменьшении частоты только в самой низкочастотной области (50–1000 cm⁻¹), что отличает их от обычных атомных металлов, у диэлектриков (рис. 1, *a*, *b*) такого увеличения не наблюдается. При более высоких частотах (> 1000 cm⁻¹) у всех кристаллов наблюдаются широкий максимум в области 3500–3700 cm⁻¹ и интенсивные особенности в области

400–1500 сm⁻¹, обусловленные взаимодействием электронной системы с A_g -ВМК (см. Введение). Следует отметить также пологий участок спектра $R(\omega)$ в интервале 1500–3000 сm⁻¹.

3.2. Спектры оптической проводимости. На рис. 2 и 3 представлены спектры оптической проводимости $\sigma(\omega)$ этих кристаллов для **E** || **c** при температурах 20 и 50К соответственно. Видно, что указанные особенности $R(\omega)$ проявляются в спектрах $\sigma(\omega)$ наиболее отчетливо: 1) у кристаллов Br-0.9 и Br-0.85 (рис. 2, d, e) наблюдается резкий рост σ в области низких частот ($\omega < 500 \, {\rm cm}^{-1}$), указывающий на металлический "квазидрудевский" характер электропроводности в этой области, при этом у Br-0.73 (рис. 2, c) низкочастотный рост σ гораздо более слабый: 2) для всех кристаллов (рис. 2, a-e) в ИК-спектрах кроме заметного максимума при 3200-3300 cm⁻¹ проявляется второй, гораздо более размытый максимум в области 1500-3000 cm⁻¹ (где спектр $R(\omega)$ имеет пологий вид), который у Br-0.9 и Br-0.85 постепенно переходит в "квазидрудевский" рост σ . Положение указанных максимумов практически не зависит от температуры. Обращает на себя внимание тот факт, что интенсивность полос ЭКВ (область $400-1500 \,\mathrm{cm}^{-1}$) у Br-0.9 и Br-0.85 гораздо более слабая, чем у Br-0.73, Br-0.4 и Br-0.

4. Обсуждение результатов

4.1. Теоретическая модель. В настоящее время существуют два теоретических подхода к анализу оптических спектров низкоразмерных молекулярных проводников.

1) "Кластерные" модели [29–31], которые описывают в приближении гамильтониана Хаббарда перенос заряда между соседними молекулами, образующими димеры, тримеры и тетрамеры (кластеры) в проводящих стопках или слоях в структуре кристаллов, и взаимодействие этого электронного перехода с A_g -BMK. Указанная модель не описывает низкочастотного резкого роста σ ($\omega < 500 \,\mathrm{cm}^{-1}$) и природу металлического состояния.

2) Теория, которая рассматривает случай металлической наполовину заполненной электронной зоны с сильными корреляциями, когда хаббардовское взаимодействие U меньше соответствующей величины, необходимой для перехода в состояние моттовского изолятора [23], и не рассматривает ЭКВ и природу наблюдаемых в спектрах максимумов в ИК-области.

На основании изложенного выше для количественного описания представленных на рис. 2 и 3 спектров $\sigma(\omega)$ и получения информации о межмолекулярных взаимодействиях в кристаллах и о свободных носителях заряда мы использовали комбинацию кластерной теории и модели Друде $\varepsilon = \varepsilon_{\infty} - \omega_p^2/(\omega^2 + i\Gamma_D\omega)$ аналогично тому, как это было сделано нами ранее для анализа оптических спектров молекулярного сверхпроводника \varkappa -(BETS)₄Hg_{2.84}Br₈ [32], а также в [26] для описания

Рис. 2. Экспериментальные (1) и расчетные (2–4) спектры оптической проводимости кристаллов \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} в поляризации **E** || с для x = 0 (a), 0.4 (b), 0.73 (c), 0.85 (d), 0.9 (e) при T = 20 K. $I - \sigma_{exp}(\omega), 2 - \sigma_{Drude}(\omega), 3 - \sigma_{tetra}(\omega), 4 - \sigma_{cryst}(\omega)$. На вставках: a — оптическая проводимость в растянутом интервале 400–500 cm⁻¹; e — сила осциллятора $N_{eff}(\omega)$ соответствующих электронных переходов $\sigma_{exp}(\omega)$ для x = 0 (1), 0.4 (2), 0.73 (3), 0.85 (4), 0.9 (5) (справа) и оптическая проводимость в растянутом интервале 400–500 cm⁻¹ (слева).

Рис. 3. Эксперименальные (1) и расчетные (2–4) спектры оптической проводимости кристаллов \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} в поляризации **E** || **с** для x = 0 (*a*), 0.4 (*b*), 0.73 (*c*), 0.85 (*d*), 0.9 (*c*) при T = 50 К. $1 - \sigma_{exp}(\omega), 2 - \sigma_{Drude}(\omega), 3 - \sigma_{tetra}(\omega), 4 - \sigma_{cryst}(\omega).$

Принятое нами кластерное приближение описывается уравнениями

$$H = H_e + H_V + \sum_{\alpha,i} g_{\alpha,i} n_i Q_{\alpha,i} - \mathbf{p} \times \mathbf{E}.$$
 (1)

Здесь первые два члена описывают соответственно электроны (дырки) и внутримолекулярные колебания

спектров Br-0.9 и Br-0 в поляризациях $\mathbf{E} \parallel a$ и $\mathbf{E} \parallel c$ и объяснения их анизотропии (для $\mathbf{E} \parallel \mathbf{c}$ мы приводим здесь уточненные результаты). каждой молекулы в отсутствие ЭКВ, третий член описывает ЭКВ в линейном приближении, где $g_{\alpha,i}$ обозначает константы ЭКВ электронной плотности дырок n_i на молекуле *i* и моды $\alpha(A_g)$ колебаний этой молекулы с безразмерной координатой $Q_{\alpha,i}$. Последний член представляет энергию взаимодействия электрического дипольного момента **р** тетрамера, наведенного смещением электронной плотности дырок во внешнем электрическом поле **E**.

Электронный гамильтониан *H_e* принимается в приближении Хаббарда

$$H_{e} = \frac{U}{2} \sum_{i,\sigma} n_{i,\sigma} n_{i,-\sigma} - t \sum_{\sigma} (c_{1}^{+}c_{2} + c_{3}^{+}c_{4} + \text{h.c.}) - t' \sum_{\sigma} (c_{2}^{+}c_{3} + c_{2}^{+}c_{4} + \text{h.c.}), \qquad (2)$$

где U — энергия кулоновского отталкивания двух электронов (дырок) на одной молекуле BEDT-TTF, t и t' — интегралы переноса заряда между молекулами внутри димера и между димерами (можно полагать, что t определяется интегралом перекрывания b1, t' интегралами перекрывания p и q, рис. 1, b, вставка).

Расчет комплексной оптической проводимости кристаллов $\sigma_{cryst}(\omega)$ с учетом анизотропии структуры и ориентации молекул в плоскости (ac) описан нами более подробно в [24,25]. Общая проводимость кристалла для **E** || **c** определялась как сумма оптической проводимости локализованных на димерах (σ_{dim}) и тетрамерах (σ_{tetra}) электронов (дырок) и проводимости квазисвободных "друдевских" носителей заряда (σ_{Drude})

$$\sigma_{\text{cryst}}(\omega) = (1 - \delta)\sigma_{\text{tetra}} + \delta\sigma_{\text{dim}} + \sigma_{\text{Drude}} \quad (\delta \le 1).$$
 (3)

Параметр δ определяет долю внутридимерных переходов, для которых t' = 0.

4.2. Сравнение с экспериментом. На рис. 2 и 3 вместе с экспериментальными спектрами $\sigma_{\exp}(\omega)$ представлены полученные нами расчетные зависимости: $\sigma_{dim}(\omega)$, $\sigma_{tetra}(\omega)$, $\sigma_{Drude}(\omega)$ и общей проводимости $\sigma_{cryst}(\omega)$ (3) для кристаллов Br-0 (*a*), Br-0.4 (*b*), Br-0.73 (*c*), Br-0.85 (*d*) и Br-0.9 (*e*) при T = 20 и 50 K соответственно. Руководствуясь правилом сумм [33], мы рассчитали также для исследованного частотного диапазона силу осциллятора *f* наблюдаемых электронных переходов в исходной металлической зоне с сильными корреляциями, которая определяет эффективное число свободных электронов (дырок) на димер N_{eff} ,

$$f = N_{\rm eff} = (2m/\pi Ne^2) \int_{-\infty}^{\omega_0} \sigma(\omega) d\omega, \qquad (4)$$

где m — масса свободного электрона, N — концентрация невзаимодействующих носителей в исходной "металлической" зоне (равная концентрации димеров), $\omega_0 = 6000 \,\mathrm{cm}^{-1}$ (верхний предел интегрирования, больший плазменной частоты невзаимодействующих носителей ω_p). Видно, что расчетные спектры $\sigma_{\mathrm{cryst}}(\omega)$ для всех

Парацотр	x						
Параметр	0	0.4	0.73	0.85	0.9		
t, eV	0.205	0.206	0.203	0.210	0.213		
t'/t	0.62	0.64	0.66	0.53	0.59		
<i>t'</i> , eV	0.127	0.132	0.134	0.111	0.126		
U, eV	0.291	0.310	0.286	0.297	0.285		
$\Gamma_{\beta(\dim)}, eV$	0.07	0.12	0.105	0.273	0.180		
$\Gamma_{\beta(\text{tetra})}, \text{ eV}$	0.15	0.19	0.184	0.310	0.270		
$\omega_{p(\text{Drude})}, \text{eV}$	0	0.062	0.165	0.192	0.238		
$\Gamma_{\text{Drude}}, \text{ eV}$	—	0.03	0.027	0.008	0.027		
$N_{ m eff}$	0.38	0.34	0.38	0.31	0.36		
m^*/m_0	2.7	2.9	2.6	3.1	$2.8~(\pm 10\%)$		
$n_{\rm Drude},{\rm cm}^{-3}$	0	$2.4 \cdot 10^{19}$	$1.7 \cdot 10^{20}$	$2.3\cdot 10^{20}$	$3.4 \cdot 10^{20}$		

Примечание. Г_{β (dim)}, Г_{β (tetra)} — феноменологические коэффициенты затухания электронного возбуждения с переносом заряда между молекулами в димере и тетрамере; величина $\omega_{p(Drude)}$ определена для диапазона 150–240 сm⁻¹.

Таблица 2. Параметры электронных возбуждений в спектрах органических проводников \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} в поляризации (**E** || **c**) при температуре 50 K для x = 0, 0.4, 0.73, 0.85, 0.9

Парамотр	x							
параметр	0	0.4	0.73	0.85	0.9			
t, eV	0.203	0.206	0.203	0.202	0.208			
t'/t	0.62	0.63	0.71	0.574	0.585			
<i>t</i> ′, eV	0.126	0.131	0.144	0.115	0.122			
U, eV	0.288	0.298	0.290	0.286	0.291			
$\Gamma_{\beta(\dim)}, eV$	0.10	0.131	0.10	0.146	0.171			
$\Gamma_{\beta(\text{tetra})}, \text{ eV}$	0.18	0.22	0.19	0.27	0.28			
$\omega_{p(\text{Drude})}, \text{ eV}$	0.06	0.074 - 0.08	0.123	0.142	0.248			
$\Gamma_{\text{Drude}}, \text{eV}$	~ 0.06	0.0.25-0.031	0.041	0.062	0.069			
$N_{ m eff}$	0.37	0.34	0.39	0.32	0.35			
m^*/m_0	2.7	2.9	2.7	3.1	$2.9(\pm 10\%)$			
$n_{\rm Drude}, {\rm cm}^{-3}$	$\sim\!2\!\cdot\!10^{19}$	$3.48 \cdot 10^{19}$	$9 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	$3.9 \cdot 10^{20}$			

кристаллов достаточно хорошо описывают $\sigma_{\exp}(\omega)$: положение и интенсивность электронных ИК-максимумов, обусловленных переносом заряда между молекулами в димерах σ_{dim} и тетраметрах σ_{tetra} , проявление особенностей ЭКВ и их положение в спектрах, а также низкочастотный вклад "друдевских" электронов. Следует отметить, однако, что в интервале 500–2000 сm⁻¹ расчетные значения $\sigma_{\text{cryst}}(\omega)$ меньше экспериментальных $\sigma_{\exp}(\omega)$. Полученные путем подгонки спектров величины $t, t', U, \Gamma_{\beta(\text{dim})}, \Gamma_{\beta(\text{tetra})}, \omega_p, \Gamma_{\text{Drude}}$, а также N_{eff} приведены в табл. 1 и 2 для T = 20 и 50 K соответственно. Из табл. 1, 2 видно, что параметры, характеризующие перенос заряда между молекулами в

димерах и тетрамерах, в том числе большая величина U/t (1.3–1.5), практически одинаковы для всех кристаллов (в пределах точности определения в рамках данной модели), что свидетельствует о сильных электронных корреляциях как в соединениях с переходом металл/диэлектрик (М/Д) (Br-0, Br-0.4), так и с переходом металл/сверхпроводник (М/СП) (Br-0.85, Br-0.9). (Следует отметить, что полученная нами энергия кулоновского отталкивания двух дырок на одной молекуле BEDT-TTF²⁺ $U = 0.30 \pm 0.01 \, \text{eV}$ больше энергии отталкивания двух дырок на одном димере $(BEDT-TTF)_{2}^{2+}$ $U = 0.25 \,\mathrm{eV}$ [4].) В [34] высказано мнение о том, что в κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl (Br-0) антиферромагнитное упорядочение спинов и переход в диэлектрическое состояние скорее обусловлены сильными электронными корреляциями, чем образованием волны спиновой плотности, характерным для квазиодномерных соединений.

Из табл. 1 и 2 видно также, что у сверхпроводников Br-0.85, Br-0.9, у которых имеется интенсивный низкочастотный вклад "двудевских электронов" в $\sigma(\omega)$, коэффициенты затухания электронных переходов между молекулами в кластере $\Gamma_{\beta(dim)}$ и $\Gamma_{\beta(tetra)}$ имеют бо́льшие значения, чем у Br-0, Br-0.4. Этот результат указывает на взаимодействие квазисвободных носителей заряда с локализованными на кластерах электронами и подтверждает полученный нами ранее вывод для Br-0.9 [26].

Представленные в таблицах значения $f = N_{\rm eff}$ (0.38-0.31) существенно меньше соответствующего значения для свободных (невзаимодействующих) носителей n_{valent} = 1. Это обстоятельство указывает на то, что кулоновские корреляции и ЭКВ играют существенную роль в кинетических явлениях в исследованных молекулярных проводниках и сверхпроводниках. Этот вывод имеет общий характер для молекулярных проводников на основе молекулы BEDT-TTF и был сделан нами ранее для BEDT-TTF4Hg2.89Br8 и BEDT-TTF₂Cu(NCS)₂ в работе [11]. В табл. 1 и 2 приведены также оптическая эффективная масса носителей заряда $m^*/m_0 = n_{\text{valent}}/N_{\text{eff}}$ $(n_{\text{valent}} = 1)$ и концентрация друдевских электронов n_{Drude}, определенная по значению $\omega_{p(\text{Drude})}$ и m^* . Полученные значения $n_{\text{Drude}} = 3.4 \cdot 10^{20} \text{ cm}^{-3}$ при 20 K и $3.9 \cdot 10^{20} \text{ cm}^{-3}$ при 50 К для Br-0.9 совпадают с холловской концентрацией дырок в кристаллах *ж*-(BEDT-TTF)₂Cu[N(CN)₂]Br в металлическом состоянии $(3 \cdot 10^{20} \, \text{cm}^{-3})$, определенной по эффекту Холла на постоянном токе и не зависящей от температуры [35]. (Следует отметить также, что для Br-0.85 значение m^*/m_0 совпадает с тем, которое было получено в [27] по расширенной модели Друде для низкочастотной области.)

Зависимости $N_{\rm eff}(\omega)$ (вставка на рис. 2, *e*, справа) показывают, что в ряду Br-0.9–Br-0 сила осциллятора перетекает от низких частот (50–500 cm⁻¹) к более высоким в ИК-области, в результате чего увеличивается интенсивность максимумов $\sigma_{\rm dim}$ и $\sigma_{\rm tetra}$ (1500–5000 cm⁻¹), а также интенсивность особенностей взаимодействия сильно коррелированной электронной системы с внутримолекулярными колебаниями $(400-1500\,{\rm cm^{-1}}).$

Сравнивая полученные нами результаты с выводами теоретической работы [23], а также работ [27,28], можно предположить, что величина n_{Drude} определяет концентрацию квазичастиц в пике плотности состояний, образующемся на уровне Ферми в исходной металлической зоне при температуре $T < T_0$, в котором имеют место когерентные возбуждения (рис. 1, *d*, вставка). Спектральный вес этого пика исчезает при повышении температуры. Действительно, при $T = 90 \, \text{K}$ низкочастотный друдовский вклад в $\sigma_{exp}(\omega)$ для Br-0.85, Br-0.9 отсутствует, но возникает слабо зависящий от частоты вклад в этот спектр, который можно связать с некогерентными возбуждениями в зонах Хаббарда. Величина Т₀ приблизительно определяется температурой, при которой $\Gamma_{\text{Drude}} \cong \omega_{p \text{ Drude}}$ (для краткости мы не приводим соответствующие спектры $\sigma(\omega)$ при 90 К).

4.3. Электронно-колебательное взаимодействие. В табл. 3 приведены константы ЭКВ g_{α} с полносимметричными внутримолекулярными колебаниями (A_g) -ВМК при 20 К. Для отнесения особенностей ЭКВ в спектрах $\sigma(\omega)$ нами были традиционно использованы данные работ [9] для частот и формы A_g -ВМК плоской молекулы BEDT-TTF симметрии D_{2h} и иона (BEDT-TTF)^{+0.5e}. Видно, что наибольшую константу ЭКВ имеют (A_g) -ВМК: ν_2 , ν_3 , ν_7 и ν_{10} для всех соединений. ЭКВ приводит к низкочастотному сдвигу колебательных особенностей в спектрах $\sigma_{\exp}(\omega)$ от приведенных в табл. 3 соответствующих рамановских частот (особенности ν_2 и ν_3 наблюдаются при 1267 и 1339 сm⁻¹, ν_7 — при 880, ν_{10} — при 441 cm⁻¹).

Колебание $v_5(A_g)$ проявляется как глубокий провал (антирезонанс) в наиболее интенсивных особенностях v_2 и v_3 без изменения частоты. Необходимо указать, что в кристаллах симметрия плоской молекулы BEDT-TTF D_{2h} понижается до C_{2h} или D_2 вследствие отклонения концевых (CH)₂-групп от плоскости молекулы в зависимости от их взаимного расположения. Для симметрии C_{2h} наиболее интенсивные особенности в спектрах отнесены к $v_4(A_g)$ — валентные колебания C=C-связи (1150-1450 cm⁻¹); $v_{10}(A_g)$ — "дыхание" скелетного кольца (880 cm⁻¹); $v_{13}(A_g)$ — валентные колебания C-S-связей и изгбиные колебания концевых C-H-связей (вблизи 440 cm⁻¹) [4,8,36].

Рис. 2 и 3 и табл. 3 показывают, что положение в спектрах всех особенностей ЭКВ и соответствующие им константы у исследованных кристаллов с различным содержанием Вг в анионе и различным основным электронным состоянием (в пределах точности определения) одинаковы. Видно, однако, что интенсивность ЭКВ у сверхпроводников Br-0.9, Br-0.85 меньше, чем у кристаллов с переходом М/Д Br-0.4, Br-0. Эти экспериментальные факты указывают на то, что квазисвободные электроны не взаимодействуют с внутримолекулярными колебаниями. Как было отмечено выше (табл. 1 и 2),

Таблица 3. Константы электронно-колебательного взаимодействия g_{α} (10⁻² eV) \varkappa -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x} для x = 0, 0.4, 0.73, 0.85, 0.9 при T = 20 K

v	$ u_{lpha}(A_{g})$				$v_{38}(B_{2g}) =$	$ u_{lpha}(A_{g})$		
Λ	$v_2 = 1496 \text{ cm}^{-1}$	$v_3 = 1468 \text{ cm}^{-1}$	$v_4 = 1370 \mathrm{cm}^{-1}$	$v_5 = 1276 \mathrm{cm}^{-1}$	$1174\mathrm{cm}^{-1}$	$v_6 = 977 \mathrm{cm}^{-1}$	$v_7 = 912 \mathrm{cm}^{-1}$	$v_{10} = 445, 432 \mathrm{cm}^{-1}$
0.9	2	8	0.6	1	0.6	0.2	3.2	3
0.85	1	8	0.6	1	0.6	0.2	3.2	3.3
0.73	2.5	8	0.6	2	0.7	0.2	3.1	3.7
0.4	3.0	8	1	1.6	0.6	0.2	3.3	3.4
0	1.2	8.3	1.1	2	0.6	0.2	3.2	3

Примечание. Отнесение особенностей ЭКВ для молекулы BEDT-TTF симметрии D_{2h} [9] (см. вставку на рис. 1, *a*): v_2 , v_3 — валентные колебания связей C=C; v_4 , v_5 , v_7 — изгибные колебания связей H-C-H, C-C-H; v_{10} (v_{13} для симметрии молекулы C_{2h}) — валентные колебания связей C-S и изгибные колебания концевых связей C-H согласно [36].

у сверхпроводников Br-0.85, Br-0.90 наблюдается заметное увеличение коэффициента затухания электронов, локализованных на димерах и тетрамерах, по сравнению с Br-0.4 и Br-0, что указывает на взаимодействие квазисвободных носителей заряда с локализованными электронами.

Необходимо отметить существенное различие у Br-0 и Br-0.9 тонкой структуры особенности $v_{10}(v_{13})(A_g)$ (вблизи 440 сm⁻¹), обусловленной изгибными колебаниями C–H-групп (вставки на рис. 2, *а* и *е* (слева)): у Br-0 эта особенность имеет две компоненты: при 430 и 454 сm⁻¹, в то время как у Br-0.9 наблюдается четыре компоненты: при 427, 441, 454 и 464 сm⁻¹ на фоне поглощения квазисвободными носителями. Мы полагаем, что это различие может быть обусловлено разной ориентацией C–H-групп относительно плоскости молекулы и их структурной разупорядоченностью [34]. По-видимому, этот факт препятствует переходу М/Д в кристаллах Br-0.9 и Br-0.85 и способствует сохранению металлического состояния при низких температурах и переходу М/СП.

Роль ЭКВ в появлении сверхпроводимости вызывает большой интерес исследователей (см. [16]). В этой связи необходимо отметить работу [36], в которой авторы изучали влияние магнитного поля на спектры $R(\omega)$ и $\sigma(\omega)$ для Br-0 и Br-1.0 (в нашем обозначении) и установили, что индуцированные магнитным полем изменения вибрационных особенностей $R(\omega, H)$ и $\sigma(\omega, H)$ очень малы и не проявляются в этих спектрах непосредственно. Чтобы обойти эту проблему и увеличить чувствительность к возможным изменениям спектров $R(\omega, H)$, авторы изучали при 4.2 К интегральное отношение $\int R(H)/R(H=0)$ для особенностей при 880 и 1290 cm⁻¹. Они обнаружили для Br-1.0, а также для аниона Cu(SCN)2 систематические слабые изменения $(\cong 3\%)$ в приложенном магнитном поле, зависящие от критической температуры T_c и поля H_{c2}. Для Br-0 такие изменения не наблюдались. Полученные результаты позволили заключить, что ЭКВ наряду с другими взаимодействиями вносит определенный вклад в механизм спаривания в слоистых органических сверхпроводниках.

5. Заключение

В настоящей представлены работе теоретическая обработка И подробная интерпретация результатов изучения спектров отражения молекулярных проводников органических группы κ -(BEDT-TTF)₂Cu[N(CN)₂]Br_xCl_{1-x}: x = 0, 0.4 (металлов с переходом М/Д при $T < 50 \,\mathrm{K}$); x = 0.85 и 0.9 (сверхпроводников с $T_c = 11.6$ и 11.3 K) и x = 0.73(промежуточного состояния, близкого к моттовскому диэлектрику) — при 20, 50 и 90 К. Проведен количественный анализ спектров оптической проводимости в рамках комбинированной модели, основанной на участии в переносе заряда двух видов носителей: локализованных на димерах и тетрамерах молекул BEDT-TTF электронов (дырок) и квазисвободных носителей заряда. Для этой цели использованы "кластерная" тетрамерная теория, основанная на гамильтониане Хаббарда для сильно коррелированных электронов, и модель Друде для квазисвободных носителей заряда. Определены физические параметры, характеризующие межмолекулярные электронные взаимодействия, в том числе энергия кулоновского отталкивания двух электронов (дырок) на одной молекуле, интегралы переноса между молекулами внутри димера и между ортогональными димерами, феноменологический коэффициент затухания электронного перехода между молекулами в димере и тетрамере. Установлено, что параметры, характеризующие перенос заряда между молекулами в димерах и тетрамерах, в том числе большая величина U/t (1.3–1.5), практически одинаковы для всех кристаллов. Это обстоятельство свидетельствует о сильных электронных корреляциях в соединениях как с переходом М/Д (Br-0, Br-0.4), так и с переходом М/СП (Br-0.85, Br-0.9). В Br-0 сильные электронные корреляции способствуют антиферромагнитному упорядочению спинов и приводят к переходу в диэлектрическое состояние. У сверхпроводников Br-0.85, Br-0.9 переход М/Д затруднен вследствие структурного беспорядка, обусловленного разной ориентацией концевых С-Н-групп относительно плоскости молекулы BEDT-TTF. У последних наблюдается также более высокий коэффициент затухания электронов, локализованных на димерах и тетрамерах, по сравнению с Br-0.4 и Br-0, что указыает на взаимодействие квазисвободных носителей заряда с локализованными электронами. Показано, что сила осциллятора наблюдаемых электронных переходов в исходной металлической зоне ($N_{\rm eff} = 0.38 - 0.31$) значительно меньше соответствующего значения для свободных (невзаимодействующих) носителей (N = 1). Данный факт указывает на то, что кулоновские корреляции и электронно-колебательное взаимодействие играют существунную роль в кинетических явлениях в исследованных молекулярных проводниках и сверхпроводниках.

Авторы (Р.М.В. и Б.В.П.) выражают благодарность Н.В. Дричко за полезные обсуждения при постановке работы. Авторы благодарны В.М. Ярцеву за построение теоретической кластерной модели ИК-спектров органических проводников, предоставление программы для их расчетов и полезные обсуждения.

Список литературы

- [1] R.H. McKenzie. Sciecne 278, 821 (1997).
- [2] H. Seo, C. Hotta, H. Fukuyama. Chem. Rev. 104, 5005 (2004).
- [3] M. Dressel, N. Drichko. Chem. Rev. 104, 5689 (2004).
- [4] D. Faltermeier, J. Barz, M. Dumm, M. Dressel, N. Drichko, B. Petrov, V. Semkin, R. Vlasova, C. Meziere, P. Batail. Phys. Rev. B 76, 165 113 (2007).
- [5] D. Jerome. In: Organic conductors / Ed. J.P. Farges. Dekker, N.Y. (1994). P. 405.
- [6] T. Ishiguro, K. Yamaji, G. Saito. Organic superconductors. 2nd ed. Springer-Verlag, Berlin (1998). 848 p.
- [7] M.G. Kaplunov, E.B. Yagubskii, L.P. Rosenberg, Yu.G. Borodko. Phys. Status Solidi A 89, 509 (1985).
- [8] M. Menegetti, R. Bozio, C. Pecile. J. Phys. (Paris) 47, 1377 (1986).
- [9] J.E. Eldridge, Y. Xie, Hau H. Wang, J.M. Williams, A.M. Kini, J.A. Schlueter. Spectrochim. Acta A 52, 45 (1996); A 51, 947 (1995).
- [10] J.E. Eldridge, K. Kornelsen, H.H. Wang, J.M. Williams, A.V. Strieby-Crouch, D.M. Watkins. Solid State Commun. 79, 583 (1991).
- [11] R.M. Vlasova, S.Ya. Priev, V.N. Semkin, R.N. Lyubovskaya, E.I. Zhilyaeva, E.B. Yagubskii, V.M. Yartsev. Synth. Met. 48, 129 (1992).
- [12] K. Kornelsen, J.E. Eldridge, H.H. Wang, H.A. Charlier, J.M. Williams. Solid State Commun. 81, 343 (1992).
- [13] O.O. Drozdova, V.N. Semkin, R.M. Vlasova, N.D. Kushch, E.B. Yagubskii. Synth. Met. 64, 17 (1994).
- [14] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Кущ, Э.Б. Ягубский. ФТТ 38, 869 (1996).
- [15] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Кущ, Е.И. Жиляева, Р.Н. Любовская, Э.Б. Ягубский. ФТТ 41, 897 (1999).
- [16] T. Ishiguro, K. Yamaji. Organic superconductors. Springer Ser. in Solid-State Sciences. Springer-Verlag (1990). 288 p.
- [17] A.M. Kini, U. Geiser, H.H. Wang, K.D. Carlson, J.M. Williams, W.K. Kwok, K.G. Vandervoort, J.E. Thompson, D. Stupka, D. Jung, M.-H. Whngbo. Inorg. Chem. **29**, 2555 (1990).

- [18] H.H. Wang, A.M. Kini, L.K. Montgomery, U. Geiser, K.D. Karlson, J.M. Willias, J.E. Thompson, D.M. Watkins, W.K. Kwok. Chem. Mater. 2, 482 (1990).
- [19] J.M. Williams, A.M. Kini, H.H. Wang, K.D. Carlson, U. Geiser, L.K. Montgomery, G.J. Pyrka, D.M. Watkins, L.M. Kommers, S.J. Boryschuk, A.V. Strieby-Crouch, W.K. Kwok, J.E. Schirber, D.L. Overnyer, D. Jung, M.-H. Whangbo. Inorg. Chem. 29, 3272 (1990).
- [20] N.D. Kushch, L.I. Buravov, A.G. Khomenko, E.B. Yagubskii, L.D. Rozenberg, R.P. Shibaeva. Synth. Met. 53, 155 (1993).
- [21] U. Geiser, A. Schultz, H.H. Wang, D.M. Watkins, D.L. Stupka, I.M. Williams, J.E. Schirber, D.L. Overmyer, D. Jung, J.J. Novoa, M.-H. Whagbo. Physica C 174, 475 (1991).
- [22] T. Mori, H. Mori, S. Tanaka. Bull. Chem. Soc. Jpn. 72, 179 (1999).
- [23] J. Merino, R.H. McKenzie. Phys. Rev. B 61, 7696 (2000).
- [24] V.M. Yartsev, O.O. Drozdova, V.N. Semkin, R.M. Vlasova. J. Phys. I. (France) 6, 1673 (1996).
- [25] V.M. Yartsev, O.O. Drozdova, V.N. Semkin, R.M. Vlasova, R.N. Lyubovskaya. Phys. Status Solidi B 209, 471 (1998).
- [26] Р.М. Власова, Н.В. Дричко, Б.В. Петров, В.Н. Семкин, D. Faltermeier, J. Barz, M. Dumm, M. Dressel, C. Mezier, P. Batail. ФТТ **51**, 986 (2009).
- [27] J. Merino, M. Dumm, N. Drichko, M. Dressel, R.H. McKenzie. Phys. Rev. Lett. 100, 086 404 (2008).
- [28] M. Dressel, D. Faltermeier, M. Dumm, N. Drichko, B. Petrov, V. Semkin, R. Vlasova, C. Meziere, P. Batail. Physica B 404, 541 (2009).
- [29] V.M. Yartsev. Springer Proc. in Physics. V. 81. Materials and measurements in molecular electronics / Eds K. Kajimura, S. Kuroda. Springer-Verlag, Tokyo (1996). P. 189.
- [30] V.M. Yartsev, R. Swietlik. Rev. Solidi State Sci. 4, 69 (1990).
- [31] M.J. Rice. Solid State Commun. **31**, 93 (1979).
- [32] Р.М. Власова, Н.В. Дричко, Б.В. Петров, В.Н. Семкин, Е.И. Жиляева, Р.Н. Любовская, I. Olejniczak, A. Kobayashi, Н. Kobayashi. ФТТ 46, 1921 (2004).
- [33] Х. Филипп, Х. Эренраих. В кн.: Оптические свойства в области фундаментальной полосы поглощения / Под ред. Р. Нилларсона, А. Бира. Мир, М. (1970).
- [34] K. Miyagawa, A. Kawamoto, Y. Nakazawa, K. Kanoda. Phys. Rev. Lett. 75, 1174 (1995).
- [35] M.A. Tanatar, T. Ishiguro, H. Ito, M. Kubota, G. Saito. Phys. Rev. B 55, 12 529 (1997).
- [36] R. Wesolowski, J.T. Haraldsen, J. Cao, J.L. Musfeldt, I. Olejniczak, J. Choi, Y.J.J.A. Schlueter. Phys. Rev. B 71, 214 514 (2005).