Высокотемпературная теплоемкость оксидов систем $Bi_2O_3 - SiO_2$ и $Bi_2O_3 - GeO_2$

© В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antlluba@mail.ru

19.04

(Поступила в Редакцию 29 марта 2011 г.)

Получены экспериментальные данные по теплоемкости оксидного соединения Bi_2SiO_5 и эвтектических составов 75 mol.% $Bi_2O_3 + 25$ mol.% SiO_2 и 65 mol.% $Bi_2O_3 + 35$ mol.% GeO_2 в широком интервале температур.

1. Введение

Интерес исследователей к оксидным соединениям на основе Bi_2O_3 не ослабевает в течение длительного времени [1–4]. Это обусловлено наличием у этих материалов важных с практической точки зрения свойств. Хорошо изучены их оптические и электрофизические свойства, в то время как сведений о теплофизических характеристиках явно недостаточно.

Целью настоящей работы является исследование теплоемкости C_p оксидного соединения Bi₂SiO₅ и эвтектических составов Bi₂O₃-SiO₂ и Bi₂O₃-GeO₂ при высоких температурах.

2. Эксперимент

Методика экспериментов по определению теплоемкости оксидных материалов систем Bi2O3-SiO2 и Bi_2O_3 -GeO₂ аналогична описанной нами ранее [5,6]. Все измерения проводились в платиновых тиглях. Получение материалов Bi2O3-SiO2 (GeO2) осложняется рядом факторов: во-первых, имеющимися расхождениями данных по фазовым равновесиям в данных системах [1-4], во-вторых, наличием метастабильных состояний, в-третьих, высокой агрессивностью расплавов на основе Bi2O3. Особенно сложно получить соединение Bi2SiO5. Это обусловлено тем, что в стабильном равновесии система Bi2O3-SiO2 характеризуется образованием соединений со структурами силленита Bi₁₂SiO₂₀ и эвлитина Bi₄Si₃O₁₂. Соединение Bi₂SiO₅ имеется только на метастабильной фазовой диаграмме $Bi_2O_3-SiO_2$ [3,7]. Тем не менее это соединение может быть охлаждено до комнатной температуры без фазового перехода. При повторном отжиге метастабильное соединение переходит в стабильное Bi₄Si₃O₁₂ около 1158 К [7].

С учетом указанного контроль полученных образцов проводился с использованием рентгенофазового анализа (X'Pert Pro фирмы "Panalytical", Нидерланды), рентгенофлуоресцентного анализа (ARL Advant'x (с программным обеспечением UniQvant) и Quant'x (Thermo)).

3. Результаты и их обсуждение

Температурная зависимость C_p соединения Bi₂SiO₅ показана на рис. 1. Несмотря на значительный разброс экспериментальных точек, нетрудно видеть, что в измеренном интервале температур значения теплоемкости закономерно увеличиваются. Кривая теплоемкости была сглажена методом наименьших квадратов. Полученные значения $C_p = f(T)$ в единицах J/(mol·K) могут быть описаны следующим уравнением:

$$C_p = a + b \cdot 10^{-3}T - c \cdot 10^5 T^2$$

= 222.36 + 24.8 \cdot 10^{-3}T - 28.26 \cdot 10^5 T^{-2}. (1)

Наличие температурной зависимости C_p позволяет по известным термодинамическим уравнениям определить $H_T^0 - H_{298}^0$ и $S_T^0 - S_{298}^0$ для Bi₂SiO₅. Эти данные приведены в таблице.

При температурах выше 600 К значение теплоемкости *C_p* превышает классический предел Дюлонга-Пти

Сглаженные величины теплоемкости (C_p) и рассчитанные по ним значения энтальпии $(H_T^0 - H_{298}^0)$ и энтропии $(S_T^0 - S_{298}^0)$ для Bi₂SiO₅

<i>Т</i> , К	C_p ,	$H_T^0 - H_{298}^0,$	$S_T^0 - S_{298}^0$,
	$J/(mol \cdot K)$	kJ/mol	$J/(mol \cdot K)$
298	198	_	—
350	208	13.4	33
400	215	26.0	61
450	220	38.4	86
500	223	50.7	110
550	227	63.0	131
600	229	75.3	151
650	232	87.5	170
700	234	99.8	187
750	236	112	203
800	238	124	218
850	240	137	233
900	241	149	246
950	243	162	260
1000	244	174	272

Рис. 1. Температурная зависимость C_p соединения Bi₂SiO₅ (линия — сглаженные значения теплоемкости).

Рис. 2. Влияние температуры на теплоемкость эвтектик $Bi_2O_3-GeO_2$ (1) и $Bi_2O_3-SiO_2$ (2).

3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице Bi_2SiO_5 (s = 8).

Экспериментальные результаты по определению теплоемкости эвтектических составов 75 mol.% $Bi_2O_3 + 25 \text{ mol.}\% SiO_2$ (400–1050 K) и 65 mol.% $Bi_2O_3 + 35 \text{ mol.}\% GeO_2$ (350–1000 K) показаны на рис. 2. Эти данные могут быть описаны соответственно следующими уравнениями ($J/(g \cdot K)$):

$$C_p = 0.257 + 0.0084 \cdot 10^{-3}T + 0.00343 \cdot 10^5 T^{-2},$$
 (2)

$$C_p = 0.302 + 0.051 \cdot 10^{-3}T + 0.034 \cdot 10^5 T^{-2}.$$
 (3)

Значения C_p в уравнениях (2) и (3) приведены в J/(g · K), так как в этом случае нужно рассчитывать на моль раствора, а не на моль соединения.

На рис. 3 и 4 показана связь между стандартной теплоемкостью C_p^0 и составом систем Bi₂O₃-GeO₂ и Bi₂O₃-SiO₂. Из этих рисунков следует, что имеется определенная корреляция между составом этих систем и стандартной теплоемкостью. Кроме того, имеется и корреляция наших результатов с имеющимися в литературе данными для этих систем. Наличие такой зависимости C_p^0 от состава позволяет оценить значения этих величин для соединений, для которых подобные сведения отсутствуют. Так, например, из рис. 3 следует, что для бенитоита $Bi_2Ge_3O_9$ C_p^0 равно $0.375 \text{ J/(g} \cdot \text{K})$. Согласно рис. 4, для $Bi_4Si_3O_{12}$ C_p^0 равно $0.426 \text{ J/(g} \cdot \text{K})$.

Обращает на себя внимание следующий факт: полученные значения C_p^0 для исследованных систем отличаются от значений, полученных комбинированием теплоемкостей компонентов в соответствующих пропорциях. Тем не менее при расчете термодинамических свойств различных оксидных соединений исходят из именно аддитивного вклада его составляющих (например, метод Неймана–Коппа [10]). Полученные результаты (рис. 3 и 4) свидетельствуют о том, что в ряде случаев при оценке значений C_p^0 аддитивным методом может быть допущена существенная ошибка, которая скажется и на рассчитанных значениях термодинамических величин по этим данным.

Из рис. 3 и 4 видно, что значения C_p^0 для систем Bi₂O₃-SiO₂ и Bi₂O₃-GeO₂ убывают по мере роста содержания Bi₂O₃. Это находится в согласии с эффектом

Рис. 3. Влияние состава системы Bi_2O_3 -GeO₂ на стандартную теплоемкость. 1 - [8], 2 — наши данные, 3 - [2].

Рис. 4. Зависимость стандартной теплоемкости от состава системы Bi_2O_3 -SiO₂. I = [8], 2 — наши данные, 3 = [9].

атомных масс: фононные частоты должны лежать ниже для оксидов с высоким содержанием Bi_2O_3 . В результате это приводит к уменьшению температуры Дебая и соответственно теплоемкости оксидов с более высоким содержанием тяжелых атомов.

По данным [11] темплоемкость гетерогенных систем (в нашем случае эвтектик $Bi_2O_3-SiO_2$ и $Bi_2O_3-GeO_2$) описывается уравнением

$$C_p = \sum m_i C_p^i + T\left(\sum m_i \left(\frac{dx_i}{dt}\right)^2\right), \qquad (4)$$

где m_i, C_p^i — масса и теплоемкость *i*-фазы смеси; производная dx_i/dt определяет зависимость граничного состава *i*-фазы от температуры; скачок теплоемкости ΔC_p на границе раздела фаз описывает второе слагаемое в правой части уравнения (4). Близость ΔC_p к нулю свидетельствует о слабой зависимости состава граничных растворов от температуры [12]. В нашем случае ΔC_p для системы Bi₂O₃-SiO₂ равно 0.098 J/(g·K), а для системы Bi₂O₃-GeO₂ — 0.046 J/(g·K), т.е. в первом случае значение ΔC_p практически в 2 раза выше, чем во втором. Можно предположить, что это связано с особенностями межчастичного взаимодействия в этих системах [2-4,7].

4. Заключение

Исследованы температурные зависимости теплоемкости C_p метастабильного соединения Bi₂SiO₅ (350–1011 K) и эвтектик Bi₂O₃-SiO₂ (400–1050 K) и Bi₂O₃-GeO₂ (350–1000 K). Установлено, что имеется корреляция между значениями стандартной теплоемкости и составом этих оксидов.

Список литературы

- [1] В.М. Денисов, Н.В. Белоусова, Г.К. Моисеев, С.Г. Бахвалов, С.А. Истомин, Э.А. Пастухов. Висмутсодержащие материалы: строение и физико-химические свойства. УрО РАН, Екатеринбург (2000). 256 с.
- [2] Ю.М. Юхин, Ю.И. Михайлов. Химия висмутовых соединений и материалов. СО РАН, Новосибирск (2001). 360 с.
- [3] В.П. Жереб. Метастабильные состояния в оксидных висмутсодержащих системах. МАКС Пресс, М. (2003). 163 с.
- [4] Ю.Ф. Каргин, В.И. Бурков, А.А. Марьин, А.В. Егорышева. Кристаллы Ві₁₂M_xO_{20±δ} со структурой силленита. Синтез, строение, свойства. РАН, М. (2004). 316 с.
- [5] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [6] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова, В.В. Иванов. ТВТ 48, 5, 790 (2010).
- [7] Y.T. Fei, S.J. Fan, R.Y. Sun, H.Y. Xu, M. Ishii, J. Mater. Sci. Lett. 19, 893 (2000).
- [8] Физико-химические свойства окислов. Справочник / Под ред. Г.В. Самсонова. Металлургия, М. (1970). 352 с.
- [9] Л.Т. Денисова, Л.А. Иртюго, В.М. Денисов, В.С. Биронт. Журнал СФУ. Техника и технологии 2, 3, 214 (2009).

- [10] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). УрО РАН, Екатеринбург (1997). 230 с.
- [11] В.К. Филиппов. Вестн. ЛГУ 23, 64 (1960).
- [12] А.Л. Емелина, М.А. Быков, М.Л. Ковба, К.С. Гавричев. Неорган. материалы 46, 9, 1140 (2010).