05 Магнитные свойства монокристалла Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄

© А.В. Малаховский¹, Е.В. Ерёмин¹, Д.А. Великанов^{1,2}, А.В. Карташев¹, А.Д. Васильев¹, И.А. Гудим¹

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Сибирский федеральный университет, Красноярск, Россия E-mail: malakha@iph.krasn.ru

(Поступила в Редакцию 21 марта 2011 г.)

Исследованы магнитные свойства монокристалла Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ в основных кристаллографических направлениях в полях до 90 kG и в интервале температур 2–300 K, а также измерена теплоемкость в интервале 2–300 K. Установлено, что ниже температуры Нееля $T_N = 32$ K вплоть до 2 K в нем реализуется легкоплоскостная антиферромагнитная структура. Обнаружены гистерезис при намагничивании кристалла в легкой плоскости в полях 1–3.5 kG и сингулярность на температурной зависимости магнитной восприимчивости в легкой плоскости при температуре 11 K в поле B < 1 kG. Показано, что эта сингулярность связана с появлением гистерезиса. Обсуждается происхождение магнитных свойств кристалла в области гистерезиса.

Работа была поддержана грантом РФФИ № 09-02-00171-а.

1. Введение

Изучение редкоземельных ферроборатов RFe₃(BO₃)₄ (R = Y, La-Lu) представляет интерес в основном благодаря двум обстоятельствам. Во-первых, некоторые представители этого семейства, например GdFe₃(BO₃)₄, $NdFe_3(BO_3)_4$, $PrFe_3(BO_3)_4$ и HoFe_3(BO_3)_4, являются мультиферроиками [1-5], т.е. в них одновременно присутствуют магнитный и электрический порядок. Во-вторых, ферробораты такого типа обладают разнообразными магнитными структурами и фазовыми переходами в зависимости от выбора редкоземельного иона [6]. Естественно ожидать, что свойства изучаемого в настоящей работе кристалла Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ занимают промежуточное положение между свойствами кристаллов GdFe₃(BO₃)₄ и NdFe₃(BO₃)₄. Оба эти кристалла имеют структуру хантита с симметрией $R32(D_3^7)$ при комнатной температуре. Кристалл NdFe₃(BO₃)₄ сохраняет эту симметрию до температуры 1.6 К [7], а в кристалле $GdFe_3(BO_3)_4$ при температуре 156 К происходит структурный фазовый переход к симметрии $P3_121(D_3^4)$ [8,9].

Магнитные свойства GdFe₃(BO₃)₄ были исследованы в работах [10–12]. Магнитная восприимчивость в парамагнитной области следует закону Кюри–Вейсса с константой $\Theta = -115$ K [10]. При температуре Нееля $T_{\rm N} = 38$ К происходит фазовый переход к антиферромагнитному состоянию типа "легкая плоскость". С понижением температуры при T = 9 К кристалл спонтанно переходит из легкоплоскостного состояния в легкоосное. Магнитная структура представляет собой чередующиеся вдоль оси *с* плоскости, перпендикулярные этой оси и содержащие ферромагнитно упорядоченные ионы железа и гадолиния. Соседние плоскости упорядочены антиферромагнитно [11].

В NdFe₃(BO₃)₄ антиферромагнитный фазовый переход происходит при $T_{\rm N} = 30$ К [13,14]. Кроме того, была

обнаружена аномалия при T = 6 K на температурной зависимости магнитной восприимчивости в плоскости *ab*, перпендикулярной тригональной оси *c* [14,15]. Авторы работ [14] и [16] объясняют эту аномалию изменением заселенности уровней основного крамерсова дублета ионов Nd³⁺, расщепленного магнитным полем, создаваемым упорядоченной подсистемой ионов Fe³⁺. Такое же объяснение дается и для аномалии Шоттки при $T \approx 4 \,\mathrm{K}$ на температурной зависмости теплоемкости [14]. В работе [17] магнитные свойства NdFe₃(BO₃)₄ проанализированы теоретически. Эксперименты по нейтронной дифракции показали, что магнитные моменты подрешеток Fe³⁺ и Nd³⁺ упорядочены антиферромагнитно и лежат в плоскости, перпендикулярной оси с [7]. В парамагнитной области температурные зависимости магнитной восприимчивости вдоль тригональной оси и в базисной плоскости одинаковы и дают константу Вейсса $\Theta = -110 \,\mathrm{K} \,[14].$

Настоящая работа посвящена исследованию магнитных свойств монокристалла $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ и сопоставлению их с магнитными свойствами родственных кристаллов GdFe₃(BO₃)₄ и NdFe₃(BO₃)₄.

2. Результаты и обсуждение

Монокристалл Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ выращен из раствора-расплава на основе K₂Mo₃O₁₀, как описано в [10]. Содержание в нем неодима и гадолиния указано по соотношению соответствующих окислов в растворерасплаве. Структура выращенного кристалла определена с помощью рентгеновского дифрактометра SMART APEX-II с CCD-детектором. Установлено, что при комнатной температуре она идентична структуре кристаллов GdFe₃(BO₃)₄ и NdFe₃(BO₃)₄, т.е. принадлежит к пространственной группе *R*32, и имеет параметры ячейки a = 9.557(7) Å, c = 7.62(1) Å. Для сравнения при

Рис. 1. Зависимости теплоемкости кристалла $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ от температуры.

Рис. 2. Зависимости намагниченности кристалла $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ от магнитного поля при различных температурах.

комнатной температуре параметры ячейки GdFe₃(BO₃)₄: a = 9.5203(1) Å, c = 7.5439(5) Å [9], а NdFe₃(BO₃)₄: a = 9.5878(3) Å, c = 7.6103(3) Å [7]. Измерения теплоемкости и намагниченности в полях до 90 kG проводились на установке Quantum Design Physical Properties Measurement System (PPMS). Часть магнитных измерений выполнена на магнитометре Quantum Design SQUID MPMS-XL. На температурной зависимости теплоемкости (рис. 1) при температуре 32 K наблюдается сингулярность, соответствующая магнитному упорядочению. Особенности, соответствующие структурным переходам, и аномалия Шоттки не обнаружены.

На рис. 2 представлены кривые намагничивания в поле **B** || **c** (вдоль тригональной оси кристалла) при различных температурах и в поле **B** || **b** при T = 2 К (направление *b* не является осью симметрии кристалла, а перпендикулярно осям c и a). Кривые намагничивания в направлениях a и b совпадают в пределах погрешности. Согласно [2], намагниченность NdFe₃(BO₃)₄ в поле, параллельном оси c, не зависит от температуры. Это связывается авторами [2] с отсутствием вклада редкоземельной подсистемы, что довольно странно, так как, согласно [16], g-фактор нижнего дублета вдоль оси cне равен нулю: $g_c = 1.376$. Кроме того, намагниченность NdFe₃(BO₃)₄ в поле **B** || **c** при температуре 4.5 K линейна по полю до 200 kG [2]. Ничего подобного не наблюдается в кристалле Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ (рис. 2). Такое различие можно отнести за счет влияния подсистемы гадолиния, но данными о поведении кристалла GdFe₃(BO₃)₄ в легкоплоскостном состоянии в сильных полях мы не располагаем.

Зависимость магнитной восприимчивости от температуры в поле В || с показана на рис. 3. Аномалия в области магнитного упорядочения заметна только на производной восприимчивости по температуре (рис. 3). На температурных зависимостях магнитной восприимчивости, полученных в поле 1 kG, параллельном направлениям а и b, отчетливо наблюдаются особенности при температурах 11 и 33 К (рис. 4 и 5). Аналогичные особенности наблюдаются при 10 и 32 К на зависимости дифференциальной восприимчивости в слабом переменном поле в плоскости аb (рис. 4, вставка). (Небольшое различие в положении особенностей, по-видимому, связано с влиянием магнитного поля.) В поле 2.2 kG первая особенность сдвигается к температуре 5.8 К, а зависимости в направлениях а и b почти неразличимы (рис. 4). В поле 5 kG, параллельном направлениям а и b, особенность при 33 К наблюдается только на производной восприимчивости по температуре, а первая особенность вообще исчезает (рис. 4 и 5), и теряется различие между направлениями *а* и *b*.

Температурное поведение обратной магнитной восприимчивости в полях $\mathbf{B} \parallel \mathbf{b}$ и $\mathbf{B} \parallel \mathbf{c}$ показано на

Рис. 3. Температурные зависимости магнитной восприимчивости кристалла $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ в магнитном поле 1 kG, параллельном тригональной оси (*1*), и производной восприимчивости по температуре (*2*).

Рис. 4. Температурные зависимости магнитной восприичивости кристалла $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ в направлениях *а* и *b* (штриховая линия), полученные в различных полях. На вставке — дифференциальная восприимчивость в переменном поле.

Рис. 5. Температурные зависимости производных магнитной восприимчивости кристалла Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ в плоскости *ab* по температуре.

рис. 6. Зависимости в полях **B** || **a** и **B** || **b** практически идентичны. Полученные зависимости отклоняются от закона Кюри–Вейсса задолго до температуры магнитного упорядочения. Экстраполяция линейных участков к нулю дает параметры Вейсса для двух направлений поля: $\Theta_c = -45 \text{ K}$, $\Theta_{a,b} = -70 \text{ K}$. Таким образом, упорядочение носит антиферромагнитный характер, и кроме кристаллографической магнитной анизотропии присутствует анизотропия обменного взаимодействия: в плоскости *ab* обменное взаимодействие сильнее. В работах [10] и [14] для GdFe₃(BO₃)₄ и NdFe₃(BO₃)₄ приводится только один параметр Вейса для всех направлений поля $\Theta = -115$ и -110 K соответственно. В Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ в поле, параллельном тригональной оси *c*, спин-флоп переход не наблюдается в иссле-

дованной области температур (рис. 2). Это означает, что в свободном состоянии магнитные моменты лежат в плоскости ab и в отличие от GdFe₃(BO₃)₄ не происходит спонтанный спин-переориентационный переход.

Магнитная восприимчивость при достаточно высокой температуре в парамагнитной области описывается соотношением

$$\chi = \frac{nm_{\rm eff}^2}{3k(T-\Theta)}.$$
 (1)

Здесь $m_{\rm eff}$ — эффективный момент молекул Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄, n — число молекул в грамме вещества: n = N/M, где N — число Авогадро, а M — молекулярный вес. Теоретически полный эффективный момент определяется суммой вкладов всех магнитных ионов

$$m_{\rm eff}^2 = 0.5 m_{\rm eff}^2 ({\rm Nd}^{3+}) + 0.5 m_{\rm eff}^2 ({\rm Gd}^{3+}) + 3 m_{\rm eff}^2 ({\rm Fe}^{3+}),$$
 (2)

где $m_{\text{eff}}^2 = g^2 J(J+1)$ в магнетонах Бора. В результате находим, что $m_{\text{eff}} = 11.97$. Экспериментальное значение m_{eff} можно найти с помощью формулы (1), используя любую точку на кривых рис. 6 из области линейности и найденные значения параметров Вейсса. Для двух направлений поля получаем $m_{\text{eff}}(c) = 11.29$, $m_{\text{eff}}(ab) = 12.33$, а среднее из этих двух значений $m_{\text{eff}} = 11.81$.

В малых полях (0–3.5 kG) в плоскости *ab* при $T < T_N$ намагниченность m — нелинейная функция поля. При температуре T < 11 K эта функция обладает гистерезисом (рис. 7). Ширина петли гистерезиса при 2 K равна ≈ 0.25 kG. В то же время в малых полях в областях B < 1 kG и B > 3.5 kG m(B) — приблизительно линейные функции, т.е. дифференциальная восприимчивость dm/dB — константа, которая, однако, различна в указанных областях B < 1 kG и B > 3.5 kG одинаковы при прямом и обратном изменении поля. Это

Рис. 6. Зависимости обратных магнитных восприимчивостей кристалла $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ в направлениях *b* и *c* от температуры.

Рис. 7. Полевые зависимости намагниченности кристалла $Nd_{0.5}Gd_{0.5}Fe_3(BO_3)_4$ в направлениях *b* и *c* при разных температурах.

Рис. 8. Полевые зависимости дифференциальной восприимчивости кристалла Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ в направлении *b* при различных температурах. Сплошные линии соответствуют увеличению поля, пунктирные — уменьшению.

означает, что кристалл в этих областях полей находится в разных, но обратимых магнитных состояниях. Рис. 8 наглядно демонстрирует трансформацию петель гистерезиса с температурой. Температура появления гистерезиса совпадает с положением особенности на температурной зависимости восприимчивости (рис. 4), измеренной в поле B = 1 kG (обратимая часть петли гистерезиса), и на температурной зависимости дифференциальной восприимчивости в переменном поле 10 G, 100 Hz (рис. 4, вставка). Таким образом, особенность на температурной зависимости восприимчивости при T = 11 K связана с появлением гистерезиса. Ранее в [18] наблюдался гистерезис электрической поляризации при перемагничивании Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄.

Из симметрийных соображений в плоскости ab должны существовать домены с тремя эквивалентными направлениями магнитных моментов (как железа, так и редкоземельных ионов). Указать эти направления, исходя из одних только магнитных измерений, невозможно. Действительно, в работе [12] с помощью эффекта Мёссбауэра показано, что в GdFe₃(BO₃)₄ в легкоосном состоянии моменты железа отклоняются от тригональной оси кристалла, а в легкоплоскостном состоянии отклоняются от базисной плоскости. Эксперименты по нейтронному рассеянию показали, что в NdFe₃(BO₃)₄ магнитные моменты подрешеток железа и неодима не коллинеарны, и угол между ними изменяется с температурой [7]. Три направления магнитных моментов энергетически эквивалентны, но между соответствующими доменами существует потенциальный барьер, величина которого характеризуется температурой T = 11 К возникновения петель гистерезиса (рис. 4, 7, 8). (Возможно, правильнее взять температуру 10 К из зависимости дифференциальной восприимчивости в слабом переменном поле.) При $B > 1 \, \text{kG}$ начинается движение доменных стенок. В то же время при обратном уменьшении поля до B < 1 kG энергии магнитной анизотропии оказывается достаточно, чтобы вернуть кристалл к исходному состоянию равновероятного распределения доменов с тремя направлениями моментов. В противном случае начальный участок кривой намагничивания не воспроизводился бы при обратном ходе поля. При $B < 1 \, {\rm kG}$ доменные стенки не двигаются, а магнитные моменты в разных доменах вращаются по-разному вследствие разной взаимной ориентации магнитных моментов и магнитного поля, и эта взаимная ориентация зависит также от направления поля $\mathbf{B} \parallel \mathbf{a}$ или $\mathbf{B} \parallel \mathbf{b}$. В то же время петли гистерезиса в пределах погрешности измерения не зависят от направления поля вдоль a или b, а также кривые $\chi(T)$ слабо зависят от направления поля по осям а или b (рис. 4 и 5). Таким образом, магнитная анизотропия в базисной плоскости невелика. В области полей $1 < B < 3.5 \, \text{kG}$ происходят три процесса.

1) Двигаются доменные стенки, пока не образуется один энергетически выгодный домен.

2) Вектор антиферромагнетизма поворачивается перпендикулярно магнитному полю (спин-флоп-переход), причем это происходит во всех доменах (и доменных стенках), а не только при совпадении направления поля и вектора антиферромагнетизма, но с разными скоростями. Поэтому, по-видимому, спин-флоп-переход оказывается размытым.

 Магнитные моменты подрешеток вращаются в направлении поля.

Величины поля спин-флоп-перехода при разных температурах можно оценить из рис. 8 как среднее из положений максимумов дифференциальной восприимчивости при прямом и обратном ходе поля; в частности, при 2 K имеем ~ 2.5 kG. Величина этого поля монотонно

уменьшается с увеличением температуры (рис. 8), как это происходит при спин-флоп-переходе в GdFe₃(BO₃)₄ в легкоосном состоянии [10]. В кристалле TbFe₃(BO₃)₄ с сильной одноосной анизотропией поле спин-флопперехода изменяется с температурой в противоположном направлении [19]. В работе [2] величина поля спинфлопа в легкой плоскости кристалла NdFe₃(BO₃)₄ была оценена в 10 kG, а в $[14] - \sim 8$ kG. При T > 11 K потенциальный барьер между доменами разрушается тепловым движением, и монотонное движение максимума дифференциальной восприимчивости нарушается (рис. 8 и вставка): вместо дальнейшего уменьшения поля максимума оно увеличивается. При $B > 3.5 \, \text{kG}$ завершается как движение доменных стенок (однодоменное состояние), так и спин-флоп-переход. Одновременно пропадает особенность на температурной зависимости магнитной восприимчивости в базисной плоскости, связанная с возникновением доменной структуры (рис. 4 и 5), и температурные зависимости в полях $\mathbf{B} \parallel \mathbf{a}$ и $\mathbf{B} \parallel \mathbf{b}$ становятся полностью идентичными. Эта зависимость близка к температурной зависимости восприимчивости в поле **B** || **c** (рис. 3). При температуре T > 11 K, когда тепловая энергия превосходит потенциальный барьер между тремя эквивалентными направлениями магнитных моментов, в каждой точке кристалла в любой момент времени три направления равновероятны и система туннелирует по этим состояниям подобно ситуации в динамическом эффекте Яна-Теллера. Но состояние кристалла при T < 11 K отличается от состояния при $T > 11 \, {\rm K}$ не только тем, что возникают стационарные домены. Возникают также новые объекты — доменные стенки — с другими магнитными свойствами. В частности, ориентация магнитных моментов и анизотропия в доменных стенках и в доменах наверняка различаются. Вероятно, с доменными стенками связано различное температурное поведение динамической восприимчивости в слабых полях ($B < 1 \, \text{kG}$), когда доменные стенки еще не двигаются, и при $B > 3.5 \, \mathrm{kG}$, когда кристалл переходит в однодоменное состояние: в слабых полях динамическая восприимчивость не изменяется по крайней мере до 11 K, а при $B > 3.5 \,\mathrm{kG}$ она уменьшается с ростом температуры (рис. 8). Вызывают вопросы два факта: 1) возможность наблюдать гистерезис, несмотря на слабую магнитную анизотропию в плоскости, т.е. несмотря на магнитную идентичность доменов; 2) совпадение области полей существования гистерезиса и области полей спин-флоп-перехода. Вероятно, эти и другие факты связаны со свойствами доменных стенок, отличными от свойств доменов. В частности, в слабых полях (B < 1 kG), когда нет движения доменных стенок, возникновение доменных стенок при $T = 11 \, {\rm K}$ совпадает со скачком скорости изменения магнитной восприимчивости с температурой (рис. 4, 5). Уменьшение температуры скачка (рис. 4) при увеличении поля можно объяснить уменьшением количества доменных стенок и уменьшением их вклада в магнитные свойства кристалла.

3. Заключение

Измерена теплоемкость в интервале 2-300 К. Исследованы магнитные свойства в основных кристаллографических направлениях в полях до 90 kG и в интервале температур 2-300 К. При температуре 32 К обнаружен переход в антиферромагнитное легкоплоскостное состояние, которое сохраняется до T = 2 K. Из температурных зависимостей магнитной восприимчивости в парамагнитной области определены различные параметры Вейсса $\Theta_c = -45$ и $\Theta_{ab} = -70$ в поле, параллельном и перпендикулярном оси третьего порядка, и соответствующие эффективные магнитные моменты: $m_{\text{eff}}(c) = 11.29$, $m_{\rm eff}(ab) = 12.33$. Обнаружен гистерезис при намагничивании кристалла в легкой плоскости, перпендикулярной оси третьего порядка кристалла, в интервале полей 1-3.5 kG и спин-флоп-переход, который при температуре 2К происходит в поле ~ 2.5 kG. При температуре 11 К в поле $B < 1 \, \text{kG}$ наблюдается особенность на температурной зависимости магнитной восприимчивости в легкой плоскости. При этой же температуре появляется упомянутый выше гистерезис, т.е. при более высокой температуре тепловая энергия достаточна для преодоления потенциального барьера между доменами с тремя энергетически эквивалентными направлениями магнитных моментов, и кристалл в каждой точке туннелирует между этими состояниями. В поле $B > 3.5 \, \text{kG}$ кристалл переходит в однодоменное состояние, и особенность на температурной зависимости восприимчивости исчезает. Таким образом, эта особенность связана с появлением стационарных доменов, а значит, и стационарных доменных стенок. Именно наличие стационарных доменных стенок отличает состояние кристалла при T < 11 K от состояния при T > 11 К. Поведение намагниченности в полях 1-3.5 kG определяется движением доменных стенок, а также спин-флоп-переходами и вращением магнитных моментов в направлении магнитного поля не только в доменах, но и в доменных стенках. Магнитные свойства кристалла Nd_{0.5}Gd_{0.5}Fe₃(BO₃)₄ существенно отличаются от магнитных свойств как NdFe₃(BO₃)₄, так и GdFe₃(BO₃)₄.

Список литературы

- А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьёв, Ю.Ф. Попов, А.П. Рятаков, Л.Н. Безматерных. Письма в ЖЭТФ 81, 335 (2005).
- [2] А.К. Звездин, Г.П. Воробьёв, А.М. Кадомцева, Ю.Ф. Попов, А.П. Рятаков, Л.Н. Безматерных. Письма в ЖЭТФ 83, 600 (2006).
- [3] F. Yen, B. Lorenz, Y.Y. Sun, C.W. Chu, L.N. Bezmaternykh, A.N. Vasiliev. Phys. Rev. B 73, 054435 (2006).
- [4] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьёв, А.А. Мухин,
 В.Ю. Иванов, А.М. Кузьменко, Л.Н. Безматерных. Письма
 в ЖЭТФ 87, 45 (2008).
- [5] R.P. Chaudhury, F. Yen, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 80, 104424 (2009).

- [6] А.Н. Васильев, Е.А. Попова. ФНТ 32, 968 (2006).
- [7] P. Fischer, V. Pomjakushin, D. Sheptyakov, L. Keller, M. Janoschek, B. Roessli, J. Schefer, G. Petrakovskii, L. Bezmaternikh, V. Temerov, D. Velikanov. J. Phys.: Cond. Matter 18, 7975 (2006).
- [8] R.Z. Levitin, E.A. Popova, R.M. Chtshebrov, A.N. Vasiliev, M.N. Popova, E.P. Chukalina, S.A. Klimin, P.H.M. van Loosdrecht, D. Fausti, L.N. Bezmaternykh. Письма в ЖЭТФ 79, 531 (2004).
- [9] S.A. Klimin, D. Fausti, A. Meetsma, L.N. Bezmaternykh, P.H.M. van Loosdrecht, T.T.M. Palstra. Acta Cryst. B 61, 481 (2005).
- [10] A.D. Balaev, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov, S.G. Ovchinnikov, S.A. Kharlamova. J. Magn. Magn. Mater. 258–259, 532 (2003).
- [11] А.И. Панкрац, Г.А. Петраковский, Л.Н. Безматерных, О.А. Баюков. ЖЭТФ **126**, 887 (2004).
- [12] S.A. Kharlamova, S.G. Ovchinnikov, A.D. Balaev, M.F. Tomas, I.S. Lyubutin, A.G. Gavriliyuk. ЖЭΤΦ 128, 1252 (2005).
- [13] N. Tristan, R. Klingeler, C. Hess, B. Büchner, E. Popova, I.A. Gudim, L.N. Bezmaternykh. J. Magn. Magn. Mater. 316, e621 (2007).
- [14] Е.А. Попова, Н. Тристан, Х. Хесс, Р. Клингелер, Б. Бюхнер, Л.Н. Безматерных, В.Л. Темеров, А.Н. Васильев. ЖЭТФ 132, 121 (2007).
- [15] J.A. Campá, C. Cascales, E. Gutiérrez-Puebla, M.A. Monge, I. Rasines, C. Ruíz-Valero. Chem. Mater. 9, 237 (1997).
- [16] M.N. Popova, E.P. Chukalina, T.N. Stanislavchuk, B.Z. Malkin, A.R. Zakirov, E. Antic-Fidancev, E.A. Popova, L.N. Bezmaternykh, V.L. Temerov. Phys. Rev. B 75, 224435 (2007).
- [17] Д.В. Волков, А.А. Демидов, Н.Р. Колмакова. ЖЭТФ 131, 1030 (2007).
- [18] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьёв, А.А. Мухин, В.Ю. Иванов, А.М. Кузьменко, А.С. Прохоров, Л.Н. Безматерных, В.Л. Темеров, И.А. Гудим. Сб. тр. XXI Междунар. конф. "Новое в магнетизме и магнитных материалах". М. (2009). С. 316.
- [19] C. Ritter, A. Balaev, A. Vorotynov, G. Petrakovskii, D. Velikanov, V. Temerov, I. Gudim. J. Phys.: Cond. Matter 19, 196 227 (2007).