Анизотропия локального поля в анизотропных пленках сопряженных полимеров

© Е.М. Аверьянов

14

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия Email: aver@iph.krasn.ru

(Поступила в Редакцию 1 марта 2011 г.)

С использованием данных по дисперсии показателей преломления в видимой области получены экспериментальные значения компонент L_j тензора Лорентца для одноосных (кристаллических, ориентированных на подложках и растянутых) пленок сопряженных полимеров от нанометровых до микронных толщин. Выяснена зависимость компонент L_j от осевой или плоскостной ориентаций макромолекул относительно оптической оси пленки, технологии получения пленок, химической структуры макромолекул. Установлена корреляция компонент L_j с измеряемым параметром η и аналитическая зависимость $L_j(\eta)$ для пленок с обоими типами ориентации макромолекул. В видимой области ($0 \le \eta \le 0.5$) показано наличие одной точки ($\eta = 1/3$) изотропизации тензора L и трех точек ($\eta = 0, 1/3, 0.5$) изотропизации тензора локального поля f. Определена точка $\eta = 1/3$ изотропизации тензоров L и f. Дано сравнение значений $L_j(\eta)$ с предсказаниями известных моделей локального поля для сопряженных полимеров.

1. Введение

Анизотропные пленки сопряженных полимеров (СП) используются в полевых диодах и транзисторах [1,2], электролюминесцентных диодах [3], фотогальванических элементах и солнечных батареях [4], полимерных лазерах [5,6] и оптических усилителях [7]. Интенсивность процессов, лежащих в основе оптических свойств СП и их применений, определяется величиной локального поля световой волны $E_j^{
m loc}(\omega) = f_j(\omega) E_j(\omega)$, действующего на молекулу и связанного с макроскопическим полем *E_i*(ω) световой волны в среде тензором локального поля $f_i(\omega) = 1 + L_i[\varepsilon_i(\omega) - 1]$. Здесь $\varepsilon_i(\omega) = \hat{n}_i^2(\omega)$ компоненты тензора диэлектрической проницаемости пленки для поляризаций поля Е световой волны параллельно (j = ||) и перпендикулярно $(j = \bot)$ оптической оси пленки **n**, $\hat{n}_j(\omega) = n_j(\omega) + ik_j(\omega)$ — комплексные показатели преломления, L_j — компоненты тензора Лоренца (SpL = 1) [8]. Экспериментальные значения L_i и $f_i(\omega)$ необходимы для изучения и моделирования свойств данных объектов [9-12].

В теории оптических свойств СП [9–11,13,14], развитой для системы плотноупакованных макромолекул, параллельных оптической оси **n**, используется модель цилиндрической полости Лорентца [9], в которой компонента L_{\perp} дается формулой

$$L_{\perp} = \frac{l}{2(l^2 + d_c^2)^{1/2}}.$$
 (1)

Здесь l и d_c — длина и диаметр цилиндра, вмещающего макромолекулу. Фигурирующие в теории предельные величины $L_{\parallel} = 0$, $L_{\perp} = 0.5$ отвечают условию $l \gg d_c$, или бесконечной цепи π -электронного сопряжения мономеров в линейной макромолекуле, что характерно для кристаллических полимеров [15–17]. Те же значения L_i

используются для СП в кристаллическом [9,10] и аморфном состояниях [11–14]. Однако в аморфном состоянии жесткоцепные макромолекулы СП состоят из относительно коротких линейных фрагментов — конформационных субъединиц (КС) [18], которые различаются длиной и пространственной ориентацией. Это ставит вопрос о применимости предельных значений L_j модели (1) для пленок с неидеальной осевой ориентацией макромолекул и их фрагментов. Для одноосных кристаллов СП с идеальной осевой ориентацией макромолекул предложен микроскопический метод расчета компонент L_j в рамках решеточной модели [19]. Применимость моделей [9,19] можно выяснить при экспериментальном определении компонент L_j .

На практике широко используются пленки с преимущественным расположением КС в плоскости пленки (плоскостная ориентация) и осью **n**, перпендикулярной этой плоскости. В данном случае модель (1) неприменима, а другие модели расчета L_j отсутствуют, и используются приближения невзаимодействующих макромолекул с $L_j = 0$ [20–25] или изотропной полости Лорентца с $L_j = 1/3$ [26–28].

Целью настоящей работы является экспериментальное определение компонент L_j для одноосных пленок СП с осевой и плоскостной ориентациями макромолекул, выяснение взаимосвязи анизотропных свойств тензоров L, f с ориентационным порядком и свойствами макромолекул. Компоненты L_j определяются методом, реализованным ранее для одноосных молекулярных сред различной природы [29] и ряда анизотропных аморфных пленок СП [30]. В настоящей работе изучено большинство известных кристаллических и аморфных СП. Методика определния компонент L_j изложена в разделе 2. Объекты исследования, результаты и обсуждение представлены в разделе 3. Выводы работы суммированы в Заключении.

2. Определение компонент *L_j* для пленок разного оптического знака

Рассмотрим одноосную гомогенную полимерную пленку с осью п в плоскости пленки (планарная ориентация) или перпендикулярно этой плоскости (гомеотропная ориентация). Предположим, что пленка состоит из статистически-одинаковых макромолекул, на каждую из которых в среднем приходится N_i одноосных КС сорта і, которые различаются ориентацией продольных осей \mathbf{l}_i относительно оси \mathbf{n} , длиной ξ_i , средним значением $\bar{\gamma}_i(\xi_i) = (\gamma_{li} + 2\gamma_{ti})/3$ и анизотропией $\Delta \gamma_i(\xi_i) = \gamma_{li} - \gamma_{ti}$ поляризуемости, где γ_{li} и γ_{ti} — продольная и поперечная компоненты поляризуемости КС сорта і. Среднее значение поляризуемости макромолекулы $\bar{\gamma} = \Sigma_i N_i \bar{\gamma}_i = (\gamma_{\parallel} + 2\gamma_{\perp})/3$, где γ_i — усредненные по ансамблю компоненты поляризуемости макромолекул в системе эллипсоида рефракции. Для изолированных макромолекул величины $\bar{\gamma}_i, \Delta \gamma_i$ не зависят от положения КС в молекуле. В пленке анизотропные взаимодействия между КС вызывают изменение $\Delta \gamma_i$, $\bar{\gamma}_i$, $\bar{\gamma}$ и их зависимость от характера и степени структурной упорядоченности КС. Процедура определения компонент L_i зависит от знака $\Delta n = n_{\parallel} - n_{\perp}$ или $\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$ (оптического знака пленки), который совпадает со знаком $\Delta G = \gamma_{\parallel} - \gamma_{\perp}$. Выражение для ΔG зависит от жесткости макромолекул и их ориентации (осевой или плоскостной) в пленке. Рассмотрим два типа макромолекул.

1) Для жесткоцепных макромолекул форма которых близка к стержнеобразной, можно выделить продольную ось I, соединяющую концы молекулы. Ориентационная упорядоченность КС сорта і в макромолекуле характеризуется параметром $S_i = \overline{P_2(\cos \vartheta_i)}$ [31]. Здесь ϑ_i угол между осями l_i и $l, P_2(x)$ — полином Лежандра, а черта означает усреднение по ориентациям КС сорта *і* относительно оси І. Анизотропия поляризуемости макромолекулы равна $\Delta \gamma = \gamma_l - \gamma_t = \Sigma_i N_i \Delta \gamma_i S_i > 0.$ Здесь $\gamma_{l,t}$ — продольная и поперечная компоненты поляризуемости макромолекулы. Степень ориентационного порядка макромолекул относительно n дает параметр $S = \langle P_2(\cos \theta) \rangle$, где θ — угол между осями l и **n**, скобки (...) означают усреднение по ансамблю макромолекул. Знак $\Delta G_r = S \Delta \gamma$ совпадает со знаком S. Значения 0 < S < 1 (-0.5 < S < 0) отвечают осевой (плоскостной) ориентации $O_A(O_P)$ макромолекул в пленке.

Пленки с планарной ориентацией **n** и осевой ориентацией макромолекул получают на ориентирующих подложках в нематической фазе (O_A) [25,32,33] или при одноосном растяжении в аморфном состоянии (O_{AS}) [12,34,35]. Пленки с гомеотропной ориентацией **n** и ориентацией макромолекул O_P получают при центробежном растекании капли раствора полимера по поверхности вращающейся подложки [20,25,32] либо при выравнивании гелевого раствора полимера по поверхности подложки с помощью специальной лопаткискребка [36].

2) Нежесткие макромолекулы находятся в растворе в состоянии, близком к состоянию статистического клубка [31]. Формирование пленок с ориентацией макромолекул O_P и гомеотропной ориентацией **n** сопровождается уплощением клубка в плоскости пленки и уплотнением вдоль оси **n** после испарения растворителя. Для пленок с толщинами, сравнимыми или меньше диаметра статистического клубка, макромолекулы нельзя считать одноосными. Оптическая анизотропия пленки определяется ориентационным порядком КС относительно n. Для одноосной пленки имеем $\Delta G_{nr} = \sum_i N_i \Delta \gamma_i R_i$, где $R_i = \langle P_2(\cos \phi_i) \rangle, \phi_i$ — угол между осями \mathbf{l}_i и **n**, скобки $\langle \ldots \rangle$ означают усреднение по всем КС сорта *i* всех макромолекул. Для одноосных макромолекул в одноосной пленке с учетом $R_i = S_i S$ величина ΔG_{nr} переходит в ΔG_r . Осевой (плоскостной) ориентации макромолекул в пленке отвечают значения $\Delta G_{nr} > 0$ ($\Delta G_{nr} < 0$).

3) Оптически-положительные пленки. Для таких пленок с $\Delta \varepsilon > 0$ в видимой области введем параметры $\bar{\varepsilon} = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3, Q = \Delta \varepsilon / (\bar{\varepsilon} - 1)$ и величины

$$r_{0} = 1 - \frac{2Q^{2}(\bar{\varepsilon} - 1)}{3(3+Q)(\bar{\varepsilon} + 2)}, \quad b = \frac{3(\bar{\varepsilon} - 1)}{4\pi N \bar{\gamma}(\bar{\varepsilon} + 2)} - r_{0},$$
$$b_{1} = \frac{2r_{0}Q^{2}}{(3-Q)(3+2Q)}, \quad b_{2} = b_{1} \left(\frac{6+Q}{Q}\right)^{2}.$$
(2)

Искомое значение L_{\perp} $(L_{\parallel} = 1 - 2L_{\perp})$ связано с этими величинами выражением [29]

$$L_{\perp} = L_{\perp k} - \frac{(\bar{\varepsilon} + 2)}{12(\bar{\varepsilon} - 1)} \\ \times \left[(b_1 b_2)^{1/2} - b - \left[(b_1 - b)(b_2 - b) \right]^{1/2} \right].$$
(3)

Знаки величин $\Delta f = f_{\parallel} - f_{\perp}$ и *b* совпадают. Значение $L_{\perp k} = (3 + 2Q)/[3(3 + Q)]$ отвечает условиям $\Delta f = b = 0$. При заданном состоянии пленки, характеризуемом индексом *T*, в выражение (3) входит неизвестная функция $b(\lambda, T)$, зависящая от неизвестной функции $\bar{p}(\lambda, T)$. Определение $L_{\perp}(T)$ состоит в следующем. При известных значениях $n_j(\lambda, T)$ для дискретного набора величин λ_q (q = 1 - p) в видимой области функция $b(\lambda, T)$ в интервале $\lambda_1 - \lambda_p$ аппроксимируется полиномом

$$b(\lambda, T) = a_0(T) + a_1(T)\lambda + \ldots + a_m(T)\lambda^m.$$
(4)

Величина $L_{\perp}(T)$ не зависит от λ и каждому состоянию T отвечают m+2 неизвестных $(L_{\perp}^{(m)}, a_0 - a_m)$. Они находятся из системы m+2 = p уравнений (3), каждое из которых отвечает одному из значений λ_q . Повышение степени m в (4) требует повышения точности величин $n_j(\lambda, T)$, иначе система уравнений на $(L_{\perp}^{(m)}, a_0 - a_m)$ может не иметь физических решений. Критерием адекватности используемого приближения в (4) служит согласие значений $L_{\perp}^{(m)}$ с величинами $\langle L_{\perp}^{(m-1)} \rangle$, усредненными по значениям $L_{\perp}^{(m-1)}$, которые отвечают сочетаниям p-1 реперов λ_q из набора $\lambda_1 - \lambda_p$.

4) Оптически-отрицательные пленки. Для них в видимой области $\Delta \varepsilon < 0$ и используются величины $Q_d = -Q$,

$$r_{0d} = 1 - \frac{2Q_d^2(\bar{\varepsilon} - 1)}{3(3 - Q_d)(\bar{\varepsilon} + 2)}, \quad d = \frac{3(\bar{\varepsilon} - 1)}{4\pi N \bar{\gamma}(\bar{\varepsilon} + 2)} - r_{0d},$$
$$d_1 = \frac{2r_{0d}Q_d^2}{(3 + Q_d)(3 - 2Q_d)}, \quad d_2 = d_1 \left(\frac{6 - Q_d}{Q_d}\right)^2.$$
(5)

Они связаны с компонентой L_{\perp} выражением [29]

$$L_{\perp} = L_{\perp k} + \frac{(\bar{\epsilon} + 2)}{12(\bar{\epsilon} - 1)} \times \left[(d_1 d_2)^{1/2} + d - \left[(d_1 - d)(d_2 - d) \right]^{1/2} \right].$$
(6)

Знаки величин Δf и d противоположны. Значение $L_{\perp k} = (3 - 2Q_d)/[3(3 - Q_d)]$ в (6) отвечает условиям $\Delta f = d = 0$. Для функции $d(\lambda, T)$ используется аппроксимация (4). Значения $(L_{\perp}^{(m)}, a_0 - a_m)$ находятся аналогично изложенному выше по известным величинам $n_j(\lambda, T)$ для набора значений $\lambda_q(q = 1 - p)$ из системы уравнений (6), каждое из которых отвечает одному из значений λ_q .

3. Объекты исследования, результаты и обсуждение

На рис. 1 приведены структурные формулы мономерных звеньев исследованных полимеров с общепринятыми аббревиатурами названий. Формула мономера RECP в работе [37] и на рис. 1 отсутствует. Выбранные полимеры имеют макромолекулы трех типов: жесткие линейные молекулы (P3OT, PPY, PFO, PF2/6, PE2/6am5, F8BT), молекулы с фрагментами CH = CH (PPV, BuEH–PPV, MEH–PPV, OC1C10–PPV, DE15, DE42), которые обеспечивают возможность вращений вокруг C = C-связей с изломами полимерной цепи и облегчают разбиение макромолекулы на KC; молекулы с изломами полимерной цепи в силу химической структуры мономеров (PPY.Xm, TFB, PFB).

Для одноосных пленок этих СП с разными типами ориентации макромолекул в таблице указаны работы с табулированными (графическими) зависимостями $n_j(\lambda)$ или $\varepsilon_{1j}(\lambda)$ ($\varepsilon_j = \varepsilon_{1j} + i\varepsilon_{2j}$) в области прозрачности. Толщина пленок варьируется от 50 nm до 5 (trans-PA, cis-PA [15], PPV [34]) и 15 μ m (PPV [12,35]). Для монокристаллических пленок полиацетиленов (trans-PA, cis-PA) с линейными макромолекулами и осью **n** || **l** || *Z* малое различие показателей преломления $n_{X,Y}$ не учитывается и принимается одноосное приближение $n_{X,Y} = n_{\perp}$ [15]. В соответствии с результатами работ [16,17] то же приближение используется для объемных монокристаллов полимера PTS.

Для большинства пленок значения $n_j(\lambda_q)$ при пяти реперах λ_q позволили определить приведенные в таблице

величины $L_{\perp}^{(3)}$ и $\langle L_{\perp}^{(2)} \rangle$. Для пленок PPV [34] и кристалла PTS [17] указаны значения $L_{\perp}^{(1)}$ и $\langle L_{\perp}^{(0)} \rangle$. Для пленок PPV [36], *m*-LPPP [24] и двух пленок DCHD–HS [49], полученных с использованием разных растворителей и различающихся величинами $n_j(\lambda_q)$, даны значения $L_{\perp}^{(0)}$. В основном величины $L_{\perp}^{(3)}$ согласуются с $\langle L_{\perp}^{(2)} \rangle$ в пределах ошибки определения последних. Для пленок trans-PA, PPV [12,35], PFO, TFB, PFB и PTS [16] точность величин $\langle L_{\perp}^{(2)} \rangle$ достигает $10^{-3}-10^{-4}$. Для пленок P3OT [38], PPY, PF2/6ат5 и F8BT [33] точность $n_j(\lambda_q)$ адекватна степени m < 2 в (4).

Величина $L_{\perp}^{(3)}$ весьма чувствительна к изменениям значений $n_i(\lambda_a)$, зависящих от химической и электронной структуры мономеров. Переход от линейных молекул РРҮ к молекулам РРҮ.18*m* со ступенеобразными изломами полимерной цепи сопровождается значительным ростом $\langle L_{\perp}^{(2)} \rangle$ и снижением анизотропии тензора L. В менее выраженной форме это наблюдается для пленок PPV [40], BuEH-PPV [41] и MEH-PPV [21] с близкой толщиной и ориентацией О_Р. Появление боковых объемных заместителей в фенильных кольцах при переходе от PPV к BuEH-PPV и MEH-PPV приводит к росту $L_{\perp}^{(3)}$. При переходе от МЕН-РРV к МЗЕН-РРV с близким молекулярным весом [44] исчезновение боковой алкильной цепи в каждом втором фенильном кольце полимерной молекулы сопровождается снижением $L_{\perp}^{(3)}$ $\langle L_{\perp}^{(2)} \rangle$ и ростом анизотропии тензора L. Как и следовало ожидать, для полимера MEH-M3EH-PPV, в котором каждое четвертое фенильное кольцо лишено разветвленной боковой алкильной цепи, значения $L_{\perp}^{(3)}$, $\langle L_{\perp}^{(2)} \rangle$ промежуточны между теми же для полимеров МЕН-РРV и МЗЕН-РРV. Для пленок РFO и PF2/6 с ориентациями макромолекул O_A и O_P малое различие в боковых заместителях мономерного звена проявляется в различии значений $L_{\perp}^{(3)}$. Близость величин $\langle L_{\perp}^{(2)} \rangle$ для пленок PF2/6 и PF2/6am5 показывает слабое влияние концевых заместителей в макромолекулах PF2/6am5 на $\langle L_{\perp}^{(2)} \rangle$. Различие химической структуры мономеров TFB и PFB не влияет на $L_{\perp}^{(3)}$.

Для пленок одного полимера с одинаковым типом ориентации макромолекул значения $n_j(\lambda_q)$ [25] и $L_{\perp}^{(m)}$ могут заметно различаться в зависимости от молекулярного веса полимера M_W , технологии получения и термической обработки пленок. Для полимера MEH–PPV последовательное снижение M_W от $1.6 \cdot 10^6$ g/mol [21,43] до $4.2 \cdot 10^5$ ($L_{\perp}^{(3)} = 0.186$) [42], $2.76 \cdot 10^5$ [43], $2.65 \cdot 10^5$ ($L_{\perp}^{(3)} = 0.222$) [42] и $4.03 \cdot 10^4$ g/mol [44] сопровождается монотонным ростом $L_{\perp}^{(3)}$, $\langle L_{\perp}^{(2)} \rangle$. Для пленки F8BT [47] величины $L_{\perp}^{(3)}$ чувствительны к изменению $n_j(\lambda_q)$ при термическом отжиге пленки.

Полученные данные отражают корреляцию L_{\perp} с приведенными в таблице значениями $\eta = \langle L_{\perp k}(\lambda_q) \rangle$, где скобки $\langle \ldots \rangle$ означают усреднение по интерва-

Рис. 1. Структурные формулы мономеров для исследованных сопряженных полимеров.

лу $\lambda_1 - \lambda_p$ [30]. Для выяснения физического смысла параметра η отметим, что, например, для пленок с ориентацией макромолекул O_A из выражений $L_{\perp k} - 1/3 = Q/[3(3+Q)], Q \propto \Delta \gamma S/\bar{\gamma}$ [29] следует, что разность $L_{\perp k} - 1/3$ является индикатором изменения значений $\Delta \gamma$ и/или *S*. С учетом слабой зависимости $L_{\perp k}(\lambda)$ в области $\lambda_1 - \lambda_p$ динамика разности $\eta - 1/3$ может отражать зависимость *S* при фиксированном $\Delta \gamma$ от технологии получения или термической обработки

пленки или изменения ΔG при изменении химической структуры макромолекул и M_W .

Для пленок СП с ориентацией макромолекул O_P выполняются неравенства $L_{\perp} < \eta < 1/3$, а рост η отвечает снижению $|\Delta n|$ и $\Delta \gamma |S|$ ($|\Delta G_{nr}|$). Так, при переходе от линейных молекул РРУ к молекулам РРУ.18*m* с изломами полимерной цепи рост η и L_{\perp} коррелирует со снижением $|\Delta n|(\lambda_{1-5})$ и обусловлен снижением $\Delta \gamma |S|$. Это подтверждается снижением величины |S| [23],

Рис. 1 (продолжение).

коротковолновым смещением полосы длинноволнового электронного $\pi - \pi^*$ -перехода, поляризованного вдоль осей \mathbf{l}_i KC, а также снижением силы осциллятора этого перехода [23], что отвечает уменьшению величины $\Delta \gamma(\lambda_{1-5})$. Последовательный рост η , L_{\perp} при переходе от МЗЕН–РРV к МЕН–МЗЕН–РРV и МЕН–РРV с увеличением числа фенильных колец полимерной цепи с боковыми объемными заместителями коррелирует с последовательным снижением $|\Delta n|(\lambda_{1-5})$ и |S| [44]. Для полимера МЕН–РРV монотонный рост η , L_{\perp} при монотонном снижении M_W [21,42–44] отвечает монотонному снижению $|\Delta n|(\lambda_{1-5})$ и объясняется подобным снижение M_S [42,43]. Для пленок DCHD–HS, *m*-LPPP значения η , L_{\perp} показывают переход к изотропным тензорам L = 1/3, $f = (n^2 + 2)/3$ при $\Delta \gamma$, $|\Delta n| \to 0$.

Характер корреляции $L_{\perp}(\eta)$ виден на рис. 2, где приведены значения $L_{\perp}^{(3)}$, $\langle L_{\perp}^{(2)} \rangle$ и η для СП. Вертикальные штрихи дают стандартное отклонение значений $L_{\perp}^{(2)}$ от $\langle L_{\perp}^{(2)} \rangle$, горизонтальные — отклонение значений $L_{\perp k}(\lambda_q)$ от η . Величины $\langle L_{\perp}^{(2)} \rangle$ приведены для пленок, у которых значения $L_{\perp}^{(3)}$ отсутствуют или отличаются от $\langle L_{\perp}^{(2)} \rangle$ больше стандартного отклонения. Там же даны значения $L_{\perp}^{(3)}(\eta)$ для дискотических жидких кристаллов (ЖК) производных пирена (Ру) и бензоперилена (Вр), пленки поливинилового спирта (РVА), мультислойной пленки Лэнгмюра—Блоджетт арахидата кадмия (Сd-A), свободно-подвешенных пленок смектика A для ЖК МНРОВС [29], а также для смектической фазы A холестерического ЖК ЕСh8 [50]. Для пленки

Значения λ_q (μ m), $L_{\perp}^{(m)}$, $\langle L_{\perp}^{(m-1)} \rangle$ и η для пленок указанных полимеров с осевой ориентацией макромолекул на ориентирующих подложках (O_A), в одноосно-растянутом состоянии (O_{AS}) и в кристаллическом состоянии (O_{AC}), а также для неотожженных (O_P) и отожженных (O_P^*) образцов с плоскостной ориентацией макромолекул

Полимер	Ориентация	λ_1	λ_2	λ_3	λ_4	λ_5	$L_{\perp}^{(m)}$	$\langle L_{\perp}^{(m-1)} angle$	η
trans-PA	O_{AC} [15]	1.000	1.143	1.333	2.000	4.000	0.5224	0.5220 ± 0.0004	0.462
cis-PA	O_{AC} [15]	0.827	1.000	1.333	2.000	4.000	0.492	0.520 ± 0.023	0.467
P3OT	O_P [38]	0.653	0.689	0.729	0.775	0.827	_	0.231 ± 0.009	0.298
P3OT	O_P [39]	0.653	0.689	0.729	0.827	1.033	0.100	0.141 ± 0.022	0.276
PPY	O_P [23]	0.496	0.551	0.620	0.709	1.240	_	0.100 ± 0.032	0.265
PPY.18m	O_P [23]	0.451	0.496	0.551	0.709	1.240	0.156	0.159 ± 0.003	0.273
PPV	O_{AS} [12]	0.540	0.580	0.620	0.700	0.800	0.5178	0.5164 ± 0.0005	0.460
PPV	O _{AS} [35]	0.588	0.625	0.714	0.833	1.053	0.513	0.510 ± 0.002	0.454
PPV	O_{AS} [34]	0.589	0.602	0.609	_	_	0.479	0.494 ± 0.001	0.450
PPV	O_P [36]	0.633	1.064	_	_	_	0.163	_	0.250
PPV	O_P [40]	0.550	0.600	0.700	0.800	0.900	0.116	0.179 ± 0.027	0.242
BuEH-PPV	O_P [41]	0.525	0.535	0.545	0.560	0.590	0.136	0.136 ± 0.037	0.270
MEH-PPV	O_{P}^{*} [21]	0.590	0.620	0.663	0.775	1.000	0.120	0.106 ± 0.011	0.262
MEH-PPV	O_{P} [42]	0.633	0.700	0.800	0.900	1.000	0.186	0.196 ± 0.003	0.282
MEH-PPV	O_P [43]	0.633	0.700	0.800	0.900	1.000	0.203	0.229 ± 0.011	0.296
MEH-PPV	O_P [42]	0.633	0.700	0.800	0.900	1.000	0.222	0.246 ± 0.012	0.300
MEH-PPV	O_P [44]	0.633	0.700	0.800	0.900	1.000	0.280	0.301 ± 0.003	0.322
M3EH-PPV	O_P [44]	0.633	0.700	0.800	0.900	1.000	0.196	0.221 ± 0.011	0.296
MEH-M3EH-PPV	O_P [44]	0.633	0.700	0.800	0.900	1.000	0.258	0.252 ± 0.005	0.306
OC1C10-PPV	O_{P}^{*} [22]	0.600	0.650	0.696	0.777	0.858	0.090	0.102 ± 0.011	0.250
DE15	O_{P} [45]	0.539	0.590	0.653	0.775	1.033	0.217	0.242 ± 0.022	0.303
DE42	O_P [45]	0.539	0.590	0.653	0.775	1.033	0.164	0.194 ± 0.018	0.290
PFO	O_{A} [25]	0.466	0.500	0.600	0.700	0.850	0.4527	0.4530 ± 0.0002	0.394
PFO	O_P [25]	0.466	0.500	0.600	0.700	0.850	0.267	0.274 ± 0.007	0.319
PF2/6	O_{A} [32]	0.425	0.450	0.500	0.600	0.750	0.475	0.468 ± 0.006	0.397
PF2/6	O_P [32]	0.450	0.475	0.500	0.600	0.750	0.231	0.210 ± 0.019	0.309
PF2/6am5	O_P [46]	0.450	0.475	0.500	0.600	0.750	_	0.219 ± 0.020	0.299
F8BT	O_{A} [25]	0.550	0.576	0.650	0.750	0.850	0.470	0.452 ± 0.018	0.399
F8BT	O_A [33]	0.550	0.600	0.650	0.700	0.780	_	0.475 ± 0.023	0.398
F8BT	O_P [47]	0.565	0.646	0.727	0.808	0.889	0.183	0.200 ± 0.008	0.295
F8BT	O_P^* [47]	0.565	0.646	0.727	0.808	0.889	0.214	0.200 ± 0.007	0.293
F8BT	O_{P}^{*} [22]	0.532	0.615	0.696	0.777	0.858	0.186	0.171 ± 0.010	0.292
F8BT	O_P [48]	0.530	0.550	0.600	0.650	0.700	0.130	0.187 ± 0.023	0.290
TFB	O_P [47]	0.484	0.565	0.646	0.727	0.808	0.2969	0.2969 ± 0.0001	0.321
PFB	O_P [47]	0.484	0.565	0.646	0.727	0.808	0.299	0.300 ± 0.001	0.320
RECP	O_P [37]	0.638	0.675	0.750	0.825	0.900	0.2682	0.2681 ± 0.0076	0.311
PTS	O_{AC} [16]	0.642	0.653	0.670	0.689	0.729	0.5243	0.5239 ± 0.0003	0.456
PTS	O_{AC} [17]	0.650	0.675	0.700	_	_	0.521	0.502 ± 0.006	0.447
DCHD-HS	O_P [49]	0.849	1.321	_	_	_	0.328	_	0.331
DCHD-HS	O_P [49]	0.849	1.321	_	_	_	0.323	_	0.328
<i>m</i> -LPPP	O_{P}^{*} [24]	0.632	0.800	_	-	—	0.319	_	0.326

РVА с ориентацией макромолекул O_P и оптическиотрицательных дискотических ЖК справедливы соотношения $L_{\perp} < \eta < 1/3$. Отметим близость величин η , L_{\perp} для пленок сопряженного полимера *m*-LPPP и несопряженного полимера РVА. Для оптически-положительных смектиков *A*, пленок Лэнгмюра–Блоджетт и пленок СП с ориентацией макромолекул O_A имеем $L_{\perp} > \eta > 1/3$.

Росту η отвечает рост L_{\perp} , а в окрестности $\eta = 1/3$ выполняется линейная корреляция

$$L_{\perp} = A_p \eta + B_p. \tag{7}$$

В интервале 0.28 < η < 1/3 коэффициенты A_p = 3.473 и B_p = -0.826 связаны соотношением $(1-A_p)/3$ = = -0.824 $\approx B_p$, откуда следует условие

$$A(\eta) = (L_{\perp} - 1/3)/(\eta - 1/3) = \text{const} = A_p.$$
 (8)

Можно ожидать выполнения зависимостей (7), (8) для пленок СП при $\eta > 1/3$, как для оптическиположительных низкомолекулярных соединений. Тогда при Q, $Q_d \rightarrow 0$ и $\eta \rightarrow 1/3$ имеем $L_{\perp} \rightarrow 1/3$. При $\eta < 0.28$ связь $L_{\perp}(\eta)$ нелинейная и снижению η отвечает снижение $A(\eta)$, а значения $L_{\perp}(\eta)$ для пленок СП согласуются с теми же для дискотических ЖК Ру и Вр. При $(\varepsilon_{\perp} - 1) \gg (\varepsilon_{\parallel} - 1)$ величина Q_d близка к $Q_d^{\max} = 1.5$, который отвечают значения $L_{\perp k} = \eta = 0$. При ограничениях $0 < L_{\perp} < \eta$ и $\eta \to 0$ имеем $L_{\perp}(\eta) \to 0$. Значение $\eta = 0$ ($\varepsilon_{\parallel} = 1$) отвечает поляризации всех молекулярных переходов вдоль осей КС \mathbf{l}_i и их совершенному плоскостному упорядочению с $\mathbf{l}_i \perp \mathbf{n}$ ($R_i = -0.5$). Это возможно для нежестких макромолекул (см. раздел 2), но предел $\eta = 0$ недостижим из-за требования к поляризации молекулярных переходов.

Для пленок СП с ориентацией макромолекул O_A и низкомолекулярных соединений Cd-A, ECh8, MHPOBC при $\eta > 0.35$ связь $L_{\perp}(\eta)$ нелинейна и с ростом η величина $A(\eta)$ снижается. При $(\varepsilon_{\parallel}-1) \gg (\varepsilon_{\perp}-1)$ величина Q близка к $Q_{\max} = 3$, которой отвечают значения $L_{\perp k} = \eta = 0.5$. При ограничениях $0.5 > L_{\perp} > \eta$ и $\eta \rightarrow 0.5$ имеем $L_{\perp}(\eta) \rightarrow 0.5$. Величина $\eta = 0.5$ ($\varepsilon_{\perp} = 1$) недостижима по указанным выше требованиям к поляризации молекулярных переходов, соосности $\mathbf{l}_i \parallel \mathbf{l}$ всех КС и их полному упорядочению с $\mathbf{l} \parallel \mathbf{n}$.

С учетом установленных значений $L_{\perp}(\eta)$ при $\eta = 0, 1/3$ и 0.5, соотношений между L_{\perp} и η , величины $dL_{\perp}/d\eta = A_p$ при $\eta = 1/3$ и требования монотонного роста $L_{\perp}(\eta)$ можно зависимость $L_{\perp}(\eta)$ аппроксимировать полиномами $P_1(\eta)$ ($0 \le \eta \le 1/3$) и $P_2(\eta)$ ($1/3 \le \eta \le 0.5$), которые имеют вид [30]

$$P_1(\eta) = \eta + \eta(\eta - 1/3)(2.724 + 14.085\eta), \qquad (9)$$

$$P_2(\eta) = \eta + (\eta - 1/3)(0.5 - \eta)(33.617 - 56.337\eta).$$
(10)

Как видно из рис. 2, они хорошо аппроксимируют зависимость $L_{\perp}(\eta)$ для аморфных пленок СП и низкомолекулярных соединений со смектической структурой. Жесткость макромолекул проявляется при $\eta < 0.3$, где становится заметным различие функций (7) и (9). Для пленок линейных макромолекул без фрагментов CH = CH (P3OT, PPY, PFO, PF2/6, PE2/6am5, F8BT), а также для пленки полимера DE42 с длинными жесткими участками мономеров без этих фрагментов значения $L_{\perp}(\eta)$ лежат на прямой (7). Для пленок макромолекул с фрагментами CH = CH (PPV, BuEH–PPV, MEH–PPV, OC1C10–PPV) значения $L_{\perp}(\eta)$ близки к зависимости (9). При переходе от пленок PPY с линейными молекулами к пленке PPY.18m с изломами полимерной цепи точка $L_{\perp}(\eta)$ смещается с прямой (7) на кривую (9).

Для пленок СП с осевой ориентацией макромолекул в жидкокристаллическом состоянии на ориентирующих подложках (PFO, PF2/6, F8BT [25,33]) величины L_{\perp} совпадают между собой, лежат на кривой $P_2(\eta)$ (10) и близки к предельному значению 0.5 в модели (1) при $l \gg d_c$. Однако модель (1) не учитывает корреляции $L_{\perp}(\eta)$ и того, что равенство $L_{\perp} = \eta = 0.5$ реально недостижимо. Сравним значения L_{\perp} для кристаллических образцов trans-PA, cis-PA и PTS с результатами микроскопического расчета компонент L_j в модели мономеров как точечных диполей [19]. Для одноосного кристалла

Рис. 2. Корреляция величин $L_{\perp} = L_{\perp}^{(3)}$ (кружки с горизонтальными штрихами) и $\langle L_{\perp}^{(2)} \rangle$ (кружки с горизонтальными и вертикальными штрихами) со значениями η для сопряженных полимеров (*I*), а также аналогичные данные для $L_{\perp}^{(3)}$ дискотических ЖК Ру и Вр (*2*), пленки РVA (*3*), лэнгмюровской пленки Сd-*A* [29] (*4*), смектической фазы *A* для ЖК ECh8 [50] (*5*) и МНРОВС [29] (*6*). Сплошная линия отвечает зависимостям (9) при $\eta \leq 1/3$ и (10) при $\eta \geq 1/3$, штриховая линия соответствует зависимости (7).

СП с одним мономером в кубической элементарной ячейке и осью сопряжения мономеров $\mathbf{l} \parallel \mathbf{n}$ величина L_{\parallel} дается выражением [19]

$$L_{\parallel} = 1/3 - \xi(3)/\pi, \tag{11}$$

где $\xi(3)$ — дзета-функция Римана. С учетом $\xi(3)/\pi \approx 0.3826$ отсюда следуют значения $L_{\parallel} \approx -0.0493$, $L_{\perp} \approx 0.5246$, совпадающие с полученными для кристаллических пленок trans-PA, cis-PA и объемных кристаллов PTS. Однако данные и другие СП в кристаллическом состоянии имеют низкосимметричные элементарные ячейки с несколькими неэквивалентными мономерными единицами. Полученные значения $L_{\perp} > 0.5$ могут отражать отличие реальной оптической двуосности этих кристаллов от их одноосной модели, принятой авторами работ [15–17] при определении зависимостей $n_j(\lambda)$ и использованной в настоящей публикации, а также отличие кристаллической структуры этих объектов от модели одноосного ансамбля статистически-упорядоченных макромолекул, для которой справедливы формулы (3), (6).

Для пленок PPV [12,35] со степенью вытяжки r = 5 и толщиной $h = 15 \,\mu$ m значения $L_{\perp} = 0.510 - 0.516$ завышены относительно $P_2(\eta) < 0.5$ при $\eta \approx 0.46$, тогда как для пленки PPV [34] с r = 6, $h = 5 \,\mu$ m величина $\langle L_{\perp}^{(0)} \rangle < 0.5$ совпадает с $P_2(\eta)$. Вероятной причиной завышенных значений L_{\perp} для пленок PPV [12,35] может быть их известная гетерогенность с большой объемной фракцией кристаллитов [51].

Для анализа изменения $\Delta f(\eta)$ учтем, что зависимость $\Delta f(\lambda)$ в области $\lambda_1 - \lambda_q$ слабая, и используем пред-

Рис. 3. Зависимости $\Delta f_1(\eta)$ при $\eta \le 1/3$ (1), $\Delta f_2(\eta)$ при $\eta \ge 1/3$ (2) и $\Delta f_3(\eta)$ (3), рассчитанные по формулам (15)-(17), и экспериментальное значение Δf_3 для пленки РРҮ (4).

ставление

$$\Delta f = (L_{\perp k} - L_{\perp})(\bar{\varepsilon} - 1)(3 + Q).$$
 (12)

Для каждой полимерной пленки введем свое значение λ_{η} , при котором в формулах (3), (12) выполняется равенство $L_{\perp k}(\lambda_{\eta}) = \eta$, и используем обозначения $\bar{\epsilon}(\lambda_{\eta}) = \bar{\epsilon}(\eta)$, $Q(\lambda_{\eta}) = Q(\eta)$, $\Delta f(\lambda_{\eta}) = \Delta f[\eta, L_{\perp}(\eta)]$. Из выражения $L_{\perp k}(Q)$ в формуле (3) при $\lambda = \lambda_{\eta}$ следует зависимость $Q(\eta) = 3(3\eta - 1)/(2 - 3\eta)$, подстановка которой в (12) дает

$$\Delta f[\eta, L_{\perp}(\eta)] = \frac{3[\bar{\varepsilon}(\eta) - 1]}{2 - 3\eta} [\eta - L_{\perp}(\eta)].$$
(13)

Форма этой зависимости одинакова для оптическиположительных и отрицательных пленок. Для большинства изученных пленок характерен рост $\bar{\varepsilon}(\eta)$ с ростом разности |η-1/3|. Для пленок с ориентацией O_P в ряду DCHD-HS — RECP — MEH-PPV [42] — ОС1С10-PPV снижению η отвечает ряд 2.449 -2.622 - 2.877 - 3.020 возрастающих значений $\bar{\epsilon}(\eta)$. Для пленок с ориентацией O_A росту η в ряду Cd-A [29] — РF2/6 — PPV [34] — PPV [35] — PPV [12] соответствует рост $\bar{\varepsilon}(\eta)$ в ряду 2.389 — 2.665 — 4.561 — 4.679 — 5.377. Однако для ряда пленок имеются отклонения от этой тенденции. Так, для пленки РРУ с более высоким значением *η*, чем для пленки OC1C10-PPV, величина $\bar{\varepsilon}(\eta) = 3.685$ больше той же для OC1C10-PPV, а для пленок PF2/6 и F8BT [33] с одинаковыми значениями η величины $\bar{\epsilon}(\eta) = 2.665$ и 3.082 заметно различаются. Для исключения подобных аномалий используем функции

$$\Delta f_1(\eta) = \frac{\Delta f[\eta, P_1(\eta)]}{\bar{\varepsilon}(\eta) - 1}, \quad \Delta f_2(\eta) = \frac{\Delta f[\eta, P_2(\eta)]}{\bar{\varepsilon}(\eta) - 1}.$$
(14)

Подстановка в (14) формул (9), (10), (13) дает

$$\Delta f_1(\eta) = \frac{\eta(1-3\eta)}{2-3\eta} \left(2.724 + 14.085\eta\right), \quad (15)$$

$$\Delta f_2(\eta) = \frac{(1 - 3\eta)(1 - 2\eta)}{2(2 - 3\eta)} (33.617 - 56.337\eta).$$
(16)

Линейная корреляция (7) с учетом (8) соответствует функции

$$\Delta f_3(\eta) = \frac{2.473(1-3\eta)}{2-3\eta}.$$
(17)

На рис. 3 приведены зависимости $\Delta f_r(\eta)$, рассчитанные по формулам (15)–(17). Функция $\Delta f_1(\eta)$ имеет максимум $\Delta f_1^{\max} \approx 0.325$ при $\eta_1 \approx 0.224$. Максимум функции $\Delta f[\eta, P_1(\eta)]$ смещен в область $\eta < \eta_1$ вследствие зависимости $\bar{\epsilon}(\eta)$. Асимптотика $\Delta f_1(\eta = 0) = 0$ отвечает значениям $f_j = 1$. Для пленок СП с ориентацией O_P узкому интервалу $\eta_1 < \eta < 1/3$ соответствует широкий интервал изменения функций $\Delta f_1(\eta)$ и $\Delta f_3(\eta)$. Для пленки РРУ со значением $L_{\perp}(\eta) = 0.1$, лежащим на прямой (7), величина $\Delta f_3 = 0.421$ значительно превосходит $\Delta f_1 = 0.291$.

Функция $\Delta f_2(\eta)$ имеет минимум $\Delta f_2^{\min} \approx -0.283$ при $\eta_2 \approx 0.412$. Минимум функции $\Delta f[\eta, P_2(\eta)]$ смещен в область $\eta > \eta_2$ из-за зависимости $\bar{\varepsilon}(\eta)$. Для пленок аморфных и кристаллических СП с ориентацией O_A значения $\Delta f_2(\eta)$ локализованы в окрестности минимума функций $\Delta f_2(\eta)$ и $\Delta f[\eta, P_2(\eta)]$. При этом малому отличию $P_2(\eta_2)$ от 0.5 соответствует большое отлчие Δf_2^{\min} от асимптотического знчения $\Delta f_2(\eta = 0.5) = 0$, при котором $f_j = 1$. Величины $L_{\parallel} = 0$, $L_{\perp} = 0.5$ [9,10,14] для реальных пленок с $\varepsilon_{\perp} > 1$ и $\eta < 0.5$ отвечает компонентам $f_{\parallel} = 1$ и $f_{\perp} \neq 1$.

4. Заключение

Изложенное выше показывает возможность определения компонент L_i с высокой точностью для пленок СП от нанометровых до микронных толщин с планарной или гомеотропной ориентациями оптической оси. Точность современных методов измерения значений n_i(λ) достаточная для выявления тонких особенностей изменения L_i в зависимости от химической структуры мономеров, молекулярного веса полимера, жесткости макромолекул, технологии получения и термической обработки пленок. Зависимости (9), (10) позволяют определять величину $L_{\perp}(\eta)$ по значениям $n_i(\lambda)$ в видимой области прозрачности. Корреляция $L_{\perp}(\eta)$ имеет универсальный характер для одноосных статистически-упорядоченных молекулярных сред разной природы (сопряженные и несопряженные полимеры, слоистые смектические ЖК и пленки Лэнгмюра-Блоджетт, колоночные дискотические ЖК), состоящих из разных по природе структурных единиц (жестко- и гибкоцепные макромолекулы, молекулы стержнеобразной или дискообразной формы). Связь параметра η с анизотропией $\Delta \gamma$ поляризуемости молекул, *п*-электронным сопряжением молекулярных фрагментов и делокализацией электронной плотности показывает необходимость учета в теории локального поля в СП этих факторов наряду с нелокальностью молекулярной поляризуемости.

В отличие от монотонно возрастающей зависимости $L_{\perp}(\eta)$ зависимость $\Delta f(\eta)$ немонотонная знакопеременная, а наиболее упорядоченным состояниям известных пленок СП с плоскостной (осевой) ориентацией макромолекул отвечают максимальные положительные (отрицательные) значения $\Delta f(\eta)$. Это показывают неприменимость для СП модели $L_j = 1/3$, которой отвечают отрицательные (положительные) значения $\Delta f = \Delta \varepsilon/3$ для пленок СП с плоскостной (осевой) ориентацией макромолекул. Функция $\Delta f(\eta)$ обращается в нуль в точках $\eta = 0, 1/3$ и 0.5, из которых экспериментально достижима и здесь определена точка $\eta = 1/3$ совместной изотропизации тензоров L и f. Зависимости (15)-(17) решают задачу определения величин $\Delta f(\eta)$ по значения $m_j(\lambda)$ в видимой области прозрачности.

Список литературы

- H. Siringhaus, R.J. Wilson, R.H. Friend, M. Inbasekaran, W. Wu, E.P. Woo, M. Grell, D.D.C. Bradley. Appl. Phys. Lett. 77, 406 (2000).
- [2] M. O'Neil, S.M. Kelly. Adv. Mater. 15, 1135 (2005).
- [3] R.H. Friend, R.W. Gimer, A.B. Holmes, J.H. Burroughes, R.H. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck. Nature **397**, 121 (1999).
- [4] C.J. Brabec, N.S. Sariciftci, J.C. Humnelen. Adv. Funct. Mater. 11, 15 (2001).
- [5] M.D. McGehee, A.J. Heeger. Adv. Mater. 12, 1655 (2000).
- [6] Y. Yang, I.D.W. Samuel, G.A. Turnbull. Adv. Mater. 21, 3205 (2009).
- [7] D. Amarasinghe, A. Ruseckal, A. Vasdekis, G.A. Turnbull, I.D.W. Samuel. Adv. Mater. 21, 107 (2009).
- [8] Е.М. Аверьянов. Эффекты локального поля в оптике жидких кристаллов. Наука, Новосибирск (1999). 552 с.
- [9] C. Cojan, G.P. Agrawal, C. Flitzanis. Phys. Rev. B 15, 909 (1977).
- [10] D. Comoretto, G. Dellepiane, G.F. Musso, R. Torbino, R. Dorsinville, A. Walser, R.R. Alfano. Phys. Rev. B 46, 10041 (1992).
- [11] D. Comoretto, G. Dellepiane, F. Marabelli, J. Cornel, D.A. Dos Santos, J.L. Bredas, D. Moses. Phys. Rev. B 62, 10173 (2000).
- [12] C. Soci, D. Comoretto, F. Marabelli, D. Moses. Phys. Rev. E 75, 075 204 (2007).
- [13] G. Lanzani, S. Luzzati, R. Tobino, G. Dellepiane. J. Chem. Phys. 91, 732 (1989).
- [14] D. Comoretto, R. Tobino, G. Dellepiane, G.F. Musso, A. Borghesi, A. Piaggi, G. Lanzani. Phys. Rev. B 41, 3534 (1990).
- [15] G. Leising. Phys. Rev. B 38, 10313 (1988).
- [16] D. Bloor, F.H. Preston. Phys. Status Solidi A 37, 427 (1976).
- [17] M.R. Drury, D. Bloor. J. Phys. D: Appl. Phys. 23, 108 (1990).
- [18] G.D. Scholes, G. Rumbles. Nature Mater. 5, 683 (2006).
- [19] R.W. Munn. Synth. Met. 64, 117 (1994).

- [20] D. McBranch, I.H. Campbell, D.L. Smith, J.P. Ferraris. Appl. Phys. Lett. 66, 1175 (1995).
- [21] M. Tammer, A.R. Monkman. Adv. Mater. 14, 210 (2002).
- [22] S.M. Ramsdale, N.C. Greenham. Adv. Mater. 14, 212 (2002).
- [23] M. Tammer, L. Horsburgh, A.P. Monkman, W. Brown, H. Burrows. Adv. Funct. Mater. 12, 447 (2002).
- [24] J. Sturm, S. Tasch, A. Nico, G. Leising, E. Toussaere, J. Zyss, T.C. Kowalchuk, K.D. Singer, U. Scherf, J. Huber. Thin Solid Films 298, 138 (1997).
- [25] M. Campoy-Quiles, P.G. Etchegoin, D.D.C. Bradley. Phys. Rev. B 72, 045 209 (2005).
- [26] C. Bubeck. In: Electronic materials: the oligomer approach / Eds K. Müllen, G. Wegner. Wiley–VCH, Weinheim, Germany (1998). Ch. 8. P. 449.
- [27] U. Gubler, C. Bosshard. Adv. Polym. Sci. 158, 123 (2002).
- [28] A. Bahtiar, K. Koynov, T. Ahn, C. Bubeck. J. Phys. Chem. B 112, 3605 (2008).
- [29] Е.М. Аверьянов. ЖЭТФ 137, 705 (2010).
- [30] Е.М. Аверьянов. Письма в ЖЭТФ 91, 501 (2010).
- [31] В.Н. Цветков, Е.И. Рюмцев, И.Н. Штенникова. В кн.: Жидкокристаллический порядок в полимерах / Под. ред. В.Н. Цветкова. Мир, М. (1981). С. 57.
- [32] B.P. Lyons, A.P. Monkman. J. Appl. Phys. 96, 4735 (2004).
- [33] D.-X. Zhu, W.-D. Shen, H.-Y. Zhen. J. Appl. Phys. 106, 084 504 (2009).
- [34] J. Swiatkiewicz, P.N. Prasad, F.E. Karasz. J. Appl. Phys. 74, 525 (1993).
- [35] M. Galli, F. Marabelli, D. Comoretto. Appl. Phys. Lett. 86, 201 119 (2005).
- [36] R. Burzynski, P.N. Prasad, F.E. Karasz. Polymer 31, 627 (1990).
- [37] A.M. Adawi, L.G. Connolly, D.M. Whittaker, D.G. Lidzey, E. Smith, M. Roberts, F. Qureshi, C. Foden, N. Athanassopoulou. J. Appl. Phys. 99, 054 505 (2006).
- [38] U. Zhokhavets, G. Gobsch, H. Hoppe, N.S. Sariciftci. Thin Solid Films 451–452, 69 (2004).
- [39] U. Zhokhavets, R. Goldhahn, G. Gobsch, W. Sliefke. Synth. Met. 138, 491 (2003).
- [40] W.M.V. Wan, N.C. Greenham, R.H. Friend. J. Appl. Phys. 87, 2542 (2000).
- [41] E.K. Miller, M.D. McGehee, M. Diaz-Garsia, V. Shrikant, A.J. Heeger. Synth. Met. 102, 1091 (1999).
- [42] K. Koynov, A. Bahtiar, T. Ahn, R.M. Cordeiro, H.-H. Hörnhold, C. Bubeck. Macromol. 39, 8692 (2006).
- [43] K. Koynov, A. Bahtiar, T. Ahn, C. Bubeck, H.-H. Hörnhold. Appl. Phys. Lett. 84, 3792 (2004).
- [44] A. Bahtiar, K. Koynov, Y. Mardiyati, H.-H. Hörnhold, C. Bubeck. J. Mater. Chem. 19, 7490 (2009).
- [45] U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H.-K. Roth, S. Sensfuss, E. Klemm, D.A.M. Egbe. Thin Solid Films 444, 215 (2003).
- [46] M. Tammer, R.W.H. Higgins, A.P. Monkman. J. Appl. Phys. 91, 4010 (2002).
- [47] S.M. Ramsdale, N.C. Greenham. J. Phys. D: Appl. Phys. 36, L29 (2003).
- [48] J.M. Winfield, C.L. Donley, J.-S. Kim. J. Appl. Phys. 102, 063 505 (2007).
- [49] E. Giorgetti, G. Margheri, S. Sottini, X. Chen, A. Gravino, D. Comoretto, C. Cuniberti, C. Dell'Erba, G. Dellepiane. Synth. Met. 115, 257 (2000).
- [50] Е.М. Аверьянов. Письма в ЖЭТФ **89**, 381 (2009).
- [51] C.Y. Yang, K. Lee, A.J. Heeger. J. Mol. Struct. 521, 315 (2000).