Исследование механизма химического дедопирования проводящего полипиррола методом ЭПР-спектроскопии

© О.А. Андреева¹, Л.А. Буркова²

¹ Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия ² Государственный университет технологии и дизайна, Санкт-Петербург, Россия

E-mail: olgarno@yandex.ru

14

(Поступила в Редакцию 15 февраля 2011 г.)

Методом ЭПР-спектроскопии изучены механизмы химического дедопирования проводящего полипиррола с значениями исходной проводимости, различающимися на порядок. Изучение температурной зависимости сопротивления высокопроводящего исходного и дедопированного образцов показало, что происходит переход от трехмерной проводимости в исходных образцах к одномерной в дедопированных. Этот переход связан с превращением поперечных биполяронов в продольные биполяроны и поляроны. Установлено, что поперечные и продольные квазичастицы стабилизируются противоионами, в состав которых входят ионы железа в разных спиновых состояниях: спин железа в противоионе поперечного биполярона равен 2 и оно неактивно в ЭПР-спектре, в противоионе продольных квазичастиц спин железа 5/2 и оно становится парамагнитным.

1. Введение

Несмотря на более чем тридцатилетнюю историю изучения механизма переноса заряда в сопряженных полимерах, он до сих пор до конца неясен. Известно, что сопряженные полимеры могут быть переведены в проводящее состояние при допировании донорами или акцепторами электрона. При этом возникает проводимость n- или p-типа, величина которой может достигать металлического уровня. Допирование в полимерах существенным образом отличается от допирования в неорганических соединениях прежде всего тем, что привнесение электрона на цепь или его удаление с цепи сопровождается перераспределением электронной плотности и искажением геометрии, захватывающим несколько элементарных ячеек полимера. Таким образом, вокруг избыточного заряда образуется полярон, делокализованный анион/катион радикал, стабилизированный противоионом допанта. Добавление/удаление второго электрона из того же дефектного участка цепи приводит к появлению биполяронов, имеющих заряд 2е и спин, равный нулю. Электронные состояния биполяронов и поляронов расположены в запрещенной зоне полимера, что и обусловливает появление проводимости [1]. Большинство исследователей сходится на том, что проводимость в полимерах носит прыжковый характер. Согласно теории Мотта, температурная зависимость прыжковой проводимости с переменной длиной прыжка имеет вид [2]

$$\sigma = \sigma_0 \exp(-T_0/T)^{\gamma}, \quad \gamma = 1/(1+d),$$

где d — размерность системы. Хотя строение сопряженных полимеров предполагает одномерный характер проводимости, тем не менее макроскопическая проводимость полимеров оказывается трехмерной. Это сви-

детельствует об эффективной поперечной связи между цепями. Для объяснения этого факта в работах [3,4] были введены так называемые поперечные поляроны и биполяроны. Это квазичастицы, делокализованные на двух или нескольких соседних цепях, связь между которыми осуществляют молекулы допанта. В работе [5] было показано, что по мере увеличения степени допирования наблюдается переход от значения $\gamma = 1/2$, характерного для 1D-системы, к значению $\gamma = 1/4$, описывающему 3D-случай. Результаты этих работ свидетельствуют о том, что допант играет более активную роль, чем первоначально предполагалось. Он не только сообщает квазичастицам заряд и обеспечивает электронейтральность образца, но и принимает активное участие в переносе заряда.

В настоящей работе исследуется роль допанта в формировании электропроводности полипиррола, являющегося одним из самых широко используемых и изучаемых полимеров. Окислительная полимеризация пиррола, в которой хлорное железо используется в качестве инициатора и допанта, приводит к образованию сильно окисленного полимера, характеризующегося высокой проводимостью р-типа. Высокопроводящий полипиррол не обладает парамагнетизмом, поэтому его проводимость связывают с образованием бесспиновых биполяронов. Проводимость полипиррола можно варьировать химическим способом. Восстановление исходного образца в основной среде (дедопирование) приводит к уменьшению проводимости, сопровождающемуся ростом парамагнитного сигнала, что свидетельствует о появлении в образце поляронов. В работе [6] было показано, что при обработке полимера щелочью его л электронная система не изменяется. Это означает, что уменьшение проводимости при дедопировании не связано с измене-

Puc. 1. Температурные зависимости сопротивления исходного образца с проводимостью 8 S/cm (*a*) и дедопированного в течение 30 min, (*b*), а также зависимости $\lg R$ от $T^{1/4}$ для исходного (*c*) и от $T^{1/2}$ для дедопированного образца (*d*).

нием химической структуры полимера. Процесс дедопирования обратим: выдерживание образца в кислой среде (редопирование) приводит к уменьшению ЭПР-сигнала и частичному восстановлению проводимости. Появление поляронов при восстановлении полимера и их исчезновение при окислении означает, что на цепь обратимым образом передается электрон, но природа донора электрона неизвестна. Естественно предположить, что донором электрона являются молекулы допанта. Если допант участвует в проводимости, уменьшение проводимости должно сопровождаться изменением состояния молекул допанта. Однако, насколько нам известно, этот вопрос остается до сих пор совершенно неизученным.

2. Экспериментальная часть

Исследовали образцы полипиррола, сформированные на пористой полиэтиленовой подложке методом окислительной полимеризации *in situ* в растворе мономера и окислителя — хлорного железа [7]. Следует отметить, что хлорное железо выполняет также роль допанта.

11* Физика твердого тела, 2011, том 53, вып. 9

Использовали образцы с двумя значениями проводимости, различающимися на порядок: образец с проводимостью $\sigma = 0.9$ S/cm и образец с проводимостью $\sigma = 8$ S/cm. Восстановление (дедопирование) окисленного полипиррола проводили в 1*M* растворе NaOH. Спектры ЭПР получали на спектрометре RADIOPAN SE/x 2547 при комнатной температуре. Исследовали образцы одинаковой массы. Измерение сопротивления проводили по стандартной четырех зондовой схеме на постоянном токе на установке, описанной в работе [8], в температурном интервале 80–350 К.

3. Экспериментальные результаты

На рис. 1 представлены температурные зависимости сопротивления исходного образца с проводимостью 8 S/cm (*a*) и образца дедопированного в течение 30 min (*b*), а также результаты аппроксимации, позволившие определить параметры γ в уравнении Мотта для этих образцов. Для этой цели были построены зависимости lg *R* от $T^{-\gamma}$. Как следует из рис. 1, *c*,

температурная зависимость сопротивления исходного образца описывается законом Мотта с показателем степени $\gamma = 1/4$, что свидетельствует о трехмерном характере проводимости. При дедопировании образца в течение 30 min его сопротивление при комнатной температуре увеличивается на пять порядков по сравнению с исходным образцом, что существенно снижает качество измерений. Тем не менее из рис. 1, *d* видно, что имеется область температур, в которой сопротивление следует закону Мотта с показателем степени v = 1/2, что свидетельствует об изменении трехмерного характера проводимости на одномерный в процессе дедопирования. К сожалению, при дальнейшем дедопировании сопротивление образцов при комнатной температуре становится столь большим, что проведение качественных измерений практически невозможно.

На рис. 2 представлены ЭПР-спектры пленки полиэтилена после выдерживания ее в растворе хлорного железа и последующего высушивания (кривая 1) и спектры исходных образцов с проводимостью 0.9 S/cm (кривая 2) и 8 S/cm (кривая 3). Спектр хлорного железа на полиэтиленовой пленке представляет собой суперпозицию ряда широких линий с g-факторами, лежащими в интервале от 2.2 до 2.8. Наиболее интенсивной является линия с g-фактором 2.2. Эти линии относятся к парамагнитным состояниям железа. Вид спектра свидетельствует также об анизотропии g-фактора, что делает разложение спектра на составляющие практически невозможным. В спектре низкопроводящего образца (кривая 2) наблюдается ряд довольно интенсивных перекрывающихся линий с *g*-факторами 2.1-2.8 и линия с g = 4.3. Очевидно, что все эти линии также связаны с парамагнитными состояниями железа, их разнообразие указывает на более сложное строение парамагнитных центров, чем это

Рис. 2. Спектры ЭПР хлорного железа на пленке полиэтилена (1), образца с проводимостью 0.9 S/cm (2) и образца с проводимостью 8 S/cm (3).

Рис. 3. Спектры ЭПР образца с проводимостью 8 S/cm до дедопирования (1) и после дедопирования в течение $20 \min (2)$ и $3 \ln (3)$.

было в случае хлорного железа на пленке полиэтилена. В спектре высокопроводящего образца (кривая 3) имеются те же линии, что и в спектре низкопроводящего образца, но их интенсивность очень незначительна.

С первых минут дедопирования в обоих образцах наблюдается падение проводимости, сопровождающееся резким нарастанием в центральном поле узкой одиночной линии с *g*-фактором 2.0 и полушириной 0.7 mT, которую относят к поляронам. Рост узкой линии в спектре ЭПР сопровождается также существенными изменениями широких линий, представленными на рис. 3–5.

Как видно из рис. 3 (кривые 2,3), при допировании в ЭПР-спектре высокопроводящего образца растут широкие перекрывающиеся линии с *g*-факторами 2.1–2.8; кроме того, можно отметить рост сигналов в области низких полей $g \sim 3.6$ и g = 4.3. Рост всех этих линий однозначно указывает на то, что в высокопроводящем образце железо присутствовало в непарамагнитной форме, а при дедопировании произошел переход от железа в парамагнитное состояние.

На рис. 4, 5 представлены ЭПР-спектры низкопроводящего образца. При дедопировании образца в течении 10 min в центральном поле резко возрастает интенсивность линии с g = 2.3, в низких полях отмечается рост интенсивности линии с $g \sim 3.6$. Таким образом, можно заключить, что хотя в низкопроводящем образце и присутствовало железо в парамагнитной форме, но при дедопировании появляются новые парамагнитные центры с участием железа. ЭПР-спектр низкопроводящего образца, дедопированного в течение 4 h (рис. 5, кривая 1), идентичен спектру образца, полученного дедопированием высокопроводящего образца в течение 3 h (рис. 3, кривая 3). Это означает, что независимо от начального состояния железа при дедопировании в об-

4.

Рис. 4. Спектры ЭПР образца с проводимостью 0.9 S/cm до дедопирования (1) и после дедопирования в течение $10 \min (2)$ и 1 h (3) (усиление $2 \cdot 10^4$).

Рис. 5. Спектры ЭПР образца с проводимостью 0.9 S/ст после дедопирования в течение 4 h (1) и 4 дней (2) (усиление $2 \cdot 10^3$).

разцах происходит образование индентичных парамагнитных центров с участием железа.

При дедопировании образцов более 2h начинается постепенное уменьшение узкой одиночной линии, отнесенной к поляронам, что указывает на их разрушение, вероятно связанное с окислением полимерной цепи и, следовательно, изменением ее химического строения. На рис. 5 кривой 2 представлен вид спектра ЭПР низкопроводящего образца, дедопированного в течение 4 дней. Как видно из рисунка, спектр представляет собой широкую симметричную линию с g = 2.1 и полушириной порядка 70 mT. Таким образом, можно заключить, что при длительном дедопировании все многообразие парамагнитных центров свелось к какой-то одной равновесной структуре.

В настоящее время нет единого мнения насчет того, в какой форме остается противоион в образце. В работе [9] показано, что структура иона зависит от используемого при синтезе растворителя. При использовании FeCl₃ в качестве оксиданта в метаноле противоионами остаются ионы Cl^{-1} , а в эфире — [FeCl₄]⁻. Наши данные свидетельствуют о том, что в состав противоиона обязательно должно входить железо, поскольку сигналы ЭПР железа либо есть в исходном образце, либо появляются при дедопировании.

Обсуждение результатов

ляроны превращаются в продольные.

Изменение показателя степени с $\gamma = 1/4$ на $\gamma = 1/2$ в температурных зависимостях сопротивления при дедопировании (рис. 1) свидетельствует о том, что трехмерная проводимость сменяется одномерной. Если следовать гипотезе, предложенной в работах [3,4], согласно которой трехмерная проводимость обеспечивается участием допанта, то естественно предположить, что при дедопировании состояние допанта меняется таким образом, что осуществляемая им связь между соседними полимерными цепями разрывается, и поперечные бипо-

Мы предлагаем следующую схему образования продольных и поперечных поляронов при взаимодействии полипиррола (PPy) с FeCl₃

$$Ppy + 2FeCl_3 \rightarrow PPy^+ + [FeCl_4]^- + FeCl_2.$$

В нейтральной среде окислительно-восстановительный потенциал реакции $Fe^{3+} + e \rightarrow Fe^{2+}$ положителен $(V = 0.77 \, \text{V})$, поэтому полипиррол в этой реакции окисляется, одна из молекул хлорного железа восстанавливается до $FeCl_2$, а вторая превращается в противоион [FeCl₄]⁻, стабилизирующий продольный полярон.

Поперечный полярон образуется в том случае, если в непосредственной близости от иона [FeCl₄]⁻ оказывается еще одна полимерная цепь

$$\mathbf{PPy^{+}} + [\mathbf{FeCl_4}]^- + \mathbf{Ppy^{\cdot}} \rightarrow \mathbf{PPy^{+}} + [\mathbf{FeCl_4}]^{2-} + \mathbf{PPy^{+}}.$$

Ион Fe³⁺ забирает электрон с этой цепи, превращаясь в единый для двух поляронов противоион [FeCl₄]²⁻. Этот допант может передавать электрон как на одну цепь, так и на другую, что является выражением квантовомеханического резонанса, при котором волновая функция полярона оказывается делокализованной на две соседние цепи. Продольные и поперечные биполяроны образуются аналогичным образом, при удалении электронов с другого конца дефектного участка цепи.

Таким образом, согласно приведенным уравнениям реакций, продольные и поперечные квазичастицы стабилизируются противоионами с различным спиновым состоянием иона железа. В состав противоиона продольных квазичастиц [FeCl₄]⁻ железо входит в ЭПР активной форме Fe³⁺ с полуцелым значением спина S = 5/2. В случае же образования поперечных квазичастиц железо в противоионе [FeCl₄]²⁻ оказывается в ЭПР неактивной форме Fe^{2+} с целочисленным спином S = 2 [10].

Экспериментальные данные подтверждают предложенную схему образования квазичастиц. В ЭПР-спектре исходного образца с высокой проводимостью сигналы железа практически отсутствуют (рис. 2, кривая 3), что свидетельствует в пользу образования в процессе синтеза в основном поперечных биполяронов. В образце с низкой проводимостью наряду с поперечными биполяронами имеется некоторое количество продольных, вследствие чего в спектре исходного образца наблюдаются полосы иона Fe³⁺ (рис. 2, кривая 2).

При дедопировании образцов в щелочной среде окислительно-восстановительный потенциал реакции $Fe^{3+} + e \rightarrow Fe^{2+}$ становится отрицательным (V = -0.56 V), и реакция протекает справа налево. Противоионы [FeCl₄]²⁻, стабилизирующие поперечный биполярон, распределенный по двум соседним цепям, могут передать два электрона на одну из соседних цепей, что приведет к образованию одного продольного биполярона и гибели второго

$$PPy^{++} + 2[FeCl_4]^{2-} + PPy^{++} \rightarrow PPy^{+} + 2[FeCl_4]^{-} + PPy^{+}.$$

В обоих случаях ион железа переходит в парамагнитную форму, и в спектрах образцов с высокой проводимостью появляются сигналы, относящиеся к поглощению железа (рис. 3), а в спектрах образцов с низкой проводимостью эти сигналы растут (рис. 4). Кроме того, в спектрах появляются и растут сигналы поляронов. Подчеркнем еще раз, что переход железа из неактивной ЭПР формы Fe^{2+} в активную Fe^{3+} при дедопировании не может произойти без участия полимерной цепи, на которую ион железа только и может передать электрон. Таким образом, полученные спектральные закономерности доказывают существование поперечных биполяронов и проясняют механизм их превращения в продольные биполяроны и поляроны.

Сложный характер спектра ЭПР исходного низкопроводящего образца свидетельствуют о разнообразии структур парамагнитных ионов, стабилизирующих продольные биполяроны. Наблюдающаяся в спектре линия с g = 4.3 является наиболее достоверно отнесенной [11] к поглощению железа в высокоспиновом состоянии в кристаллическом поле лигандов с максимально возможной степенью ромбического искажения симметрии на центральном ионе. Мы относим эту линию к иону [FeCl₄]⁻. На первый взгляд может показаться, что ионы [FeCl₄]⁻ характеризуются тетраэдрической симметрией. Однако в нашем случае анионы хлора в противоионе могут быть структурно неэквивалентны, вследствие взаимодействия одного из них с положительным зарядом биполярона, что приводит к искажению геометрии комплексного иона и понижению его симметрии.

В спектре исходного образца с малой производительностью наблюдаются также сигналы с *g*-факторами в области 2.8–2.1. Отметим, что аналогичные сигналы наблюдаются в спектре хлорного железа на полиэтиленовой пленке (рис. 2, кривая 1). Сигналы в этой области полей чаще всего относят к поглощению ионов железа, находящихся в кристаллическом поле с искаженной октаэдрической симметрией. На основании этого мы предполагаем, что сигналы с g = 2.8 - 2.1 связаны с кристаллгидратами хлорного железа. Образование кристаллгидратов в полипирроле объясняется тем, что при наличии остаточной влаги в образце может происходить отрыв смещенного аниона хлора от комплексного иона [FeCl₄]⁻ и сольватация последнего, так что образуется соединение FeCl₃ · 3H₂O, характеризующееся искаженной октаэдрической симметрией. Противоионом биполярона при этом становится Cl⁻. Таким образом, наши данные показывают, что допант может иметь структуру как [FeCl₄]⁻, так и Cl⁻.

При дедопировании в спектре ЭПР обоих образцов кроме перечисленных выше, появляется также сигнал с $g_{\rm eff} = 3.6$. Как показано в ряде работ [12–14], сигналы в этой области полей относятся к ионам железа в поле лигандов с различной степенью ромбического искажения. Можно предположить, что при разрушении поперечных биполяронов наряду с парамагнитными ионами [FeCl4]⁻ с максимальной степенью ромбичности возникают также ионы с меньшим вкладом ромбического искажения. Таким образом, отнесение сигналов пармагнитного железа в области низких полей подтверждает предположение о том, что при дедопировании ион [FeCl4]^{2–} превращается в ион [FeCl4]⁻, являющийся противоионом продольных квазичастиц.

Дедопирование образцов в течение нескольких суток приводит к появлению в спектре широкой симметричной линии с g = 2.1, что, на наш взгляд, может свидетельствовать о сольватации иона [FeCl₄]⁻ с молекулами воды и образовании кристаллгидрата хлорного железа.

5. Заключение

Наши исследования показали, что высокая изотропная проводимость полипиррола возникает при непосредственном участии молекул допанта, которые связывают биполяроны на соседних цепях в единую квазичастицу — поперечный биполярон. Дедопирование образцов сводится к передаче электрона с железа на цепь, что приводит к разрушению поперечных биполяронов и появлению продольных биполяронов и поляронов, сопровождающемуся резким падением проводимости. Отнесение сигналов ЭПР железа свидетельствует о том, что при дедопировании непарамагнитный противоион поперечных биполяронов [FeCl₄]²⁻ превращается в парамагнитный противоион продольных квазичастиц [FeCl₄]⁻. При хранении образцов на воздухе или при длительном дедопировании в водном растворе щелочи противоион $[FeCl_4]^-$ постепенно замещается на Cl⁻, а хлорное железо превращается в кристаллогидрат FeCl₃ · H₂O.

Список литературы

- [1] О.А. Андреева, Л.А. Буркова, М.А. Смирнов, Г.К. Ельяшевич. Высокомолекуляр. соединения А **48**, 1 (2006).
- [2] N. Mott. Conduction in non-crystalline materials. Clarendon Press Oxford, (1993). 150 p.
- [3] M.N. Bussac, L. Zuppiroli. Phys. Rev. B 49, 5876 (1994).
- [4] L. Zuppiroli. M.N. Bussac, S. Paschen, O. Chauvet, L. Forro. Phys. Rev. B 50, 5196 (1994).
- [5] J.A. Reedijk, H.C.F. Martens, H.B. Brom. Phys. Rev. Lett. 83, 3904 (1999).
- [6] J. Fink, B. Scheerer, W. Wernet, M. Monkenbusch, G. Wegner, H.J. Freund, H. Conska. Phys. Rev. B 34, 1101 (1986).
- [7] М.А. Смирнов, Н.В. Боброва, Z. Pientka, Г.К. Ельяшевич. Высокомолекуляр. соединения Б **47**, 1231 (2005).
- [8] A.T. Burkov, A. Heinrich, P.P. Konstantinov, T. Nakama, K. Yagasaki. Measurement Sci. Technol. 12, 264 (2001).
- [9] J.A. Walker, L.F. Warren, E.F. Witucki. J. Polym Sci. A: Polym Chem. 26, 1285 (1988).
- [10] M.P. Hendrich, P.G. Debrunner. Biophys. J. 56, 489 (1989).
- [11] J. Typek, N. Guskos, E. Filipek, M. Piz. Rev. Adv. Mater. Sci. 23, 196 (2010).
- [12] J.M. Gaite, P. Ermakoff, Th. Allard, J.P. Moller. Clay Clay Minerals 45, 496 (1997).
- [13] H. Rager, H. Scheneider. Am. Mineral. 71, 105 (1986).
- [14] I. Petrov, S.S. Hafner. Am. Mineral. 73, 97 (1988).