06 Диэлектрическая релаксация в керамике PbFe_{1/2}Nb_{1/2}O₃

© А.В. Павленко¹, А.В. Турик¹, Л.А. Резниченко¹, Л.А. Шилкина¹, Г.М. Константинов²

¹ Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия

² Региональный филиал Центрального экспертного криминалистического таможенного управления,

Ростов-на-Дону, Россия

E-mail: turik@sfedu.ru

(Поступила в Редакцию 1 марта 2011 г.)

Исследованы температурно-частотные зависимости действительной и мнимой частей комплексной диэлектрической проницаемости ε^* керамики PbFe_{1/2}Nb_{1/2}O₃. Показано, что в параэлектрической фазе на этих зависимостях формируются релаксационные экстремумы. Удовлетворительное описание экспериментальных спектров ε^* возможно с помощью модели диэлектрика с функцией распределения времен релаксации в виде прямоугольника.

1. Введение

Феррониобат свинца PbFe_{1/2}Nb_{1/2}O₃ (PEN) является мультиферроиком, в нем сосуществуют электрический и магнитный порядки [1–5]. Ранее при исследовании керамики PEN [6] было отмечено аномальное поведение относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь в окрестности температур Нееля ($T_N = -(100-130)^{\circ}$ C) и Кюри ($T_C \sim 98^{\circ}$ C), подробного изучения которого не проводилось. Целью настоящей работы явилось установление закономерностей формирования диэлектрических свойств керамики PFN в температурном диапазоне 20–400°C на основе детального изучения диэлектрических спектров в интервале частот 1–10⁵ Hz.

2. Методы получения и исследования образцов

Синтез образцов керамики PEN осуществляли методом твердофазных реакций с использованием оксидов PbO, Fe₂O₃ и Nb₂O₅ высокой степени чистоты (ч, чда) обжигом в две стадии с промежуточным помолом при температурах $T_1 = T_2 = 850^{\circ}$ С и временах выдержки $t_1 = t_2 = 4$ h. Спекание керамических заготовок проводили при температуре $T_{sin} = 1100^{\circ}$ С в течение 2 h.

Рентгеноструктурные исследования выполняли на измельченных керамических спеках методом порошковой рентгеновской дифракции на дифрактометре ДРОН-3 с использованием отфильтрованного $Co_{K_{\alpha}}$ -излучения (фокусировка по Брэггу–Брентано).

Исследования зеренного строения образцов проводились на электронном сканирующем микроскопе "Hitachi TM-1000".

Измерения комплексной диэлектрической проницаемости $\varepsilon^* = \varepsilon' - i\varepsilon''(\varepsilon' \, u \, \varepsilon'' -$ действительная и мнимая части ε^* соответственно) производили в диапазоне частот $f = 1-10^5$ Hz с помощью универсального измерительного моста Novocontrol ALPHA High-Resolution Dielectric Analyzer, оборудованного системой для высокотемпературных измерений. Расчет удельной проводимости производили по формуле $\gamma^* = i\omega\varepsilon^* = \gamma' + i\gamma''$, где $\omega = 2\pi f$.

3. Экспериментальные результаты и обсуждение

Рентгенофазовый и микроструктурный анализы показали, что получены однофазные (с ромбоэдрической симметрией при комнатной температуре) беспримесные керамические образцы PFN с практически беспористой мелкозернистой структурой (рис. 1).

Температурные зависимости $\varepsilon'/\varepsilon_0$ и $\varepsilon''/\varepsilon_0$ (ε_0 — диэлектрическая постоянная) представлены на рис. 2. Максимумы $\varepsilon'/\varepsilon_0$ и $\varepsilon''/\varepsilon_0$ при температуре $T = T_c$ связаны с переходом из сегнетоэлектрической в параэлектрическую фазу [3] (в керамиках PFN, исследованных в [2,3], $T_C \approx 110^{\circ}$ C). При $T > T_C$ в параэлектрической фазе на

Рис. 1. Фрагмент микроструктуры керамики PFN.

Рис. 2. Зависимости $\varepsilon'/\varepsilon_0(T)$ (*a*) и $\varepsilon''/\varepsilon_0(T)$ (*b*) керамики PbFe_{1/2}Nb_{1/2}O₃ при $T = 20-400^{\circ}$ C и f = 1, 6, 10, 60, 10², $6 \cdot 10^2$, 10^3 , $6 \cdot 10^3$, 10^4 , $6 \cdot 10^4$, 10^5 Hz. Стрелки указывают направление роста f. На вставке более подробно показана область вблизи $T_C = 98^{\circ}$ C.

зависимостях $\varepsilon'/\varepsilon_0$ и $\varepsilon''/\varepsilon_0$ формируются дополнительные экстремумы (максимумы и минимумы), сдвигающиеся в область высоких температур и уменьшающиеся при увеличении f в интервале температур 130–400°С. Характерной особенностью зависимостей $\varepsilon''/\varepsilon_0(T)$ при $T > T_C$ является быстрый рост $\varepsilon''/\varepsilon_0$ при температурах, повышающихся по мере увеличения f. Это вызвано ростом сквозной проводимости, дающей значительный вклад в $\varepsilon''/\varepsilon_0$. Следствием роста проводимости является и отсутствие максимумов $\varepsilon''/\varepsilon_0(T)$ при $T = T_C$ на низких частотах.

На рис. З представлены зависимости $\varepsilon'/\varepsilon_0(\omega)$, $\varepsilon''/\varepsilon_0(\omega)$, $\gamma'(\omega)$ и $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ (диаграммы Коула–Коула) при температурах 200 и 250°С и частотах 1–10⁵ Hz. Из рис. З видно, что в спектрах $\varepsilon'/\varepsilon_0(\omega)$ наблюдается формирование плато при низких и высоких частотах, тогда как в спектрах $\varepsilon''/\varepsilon_0(\omega)$ отмечается монотонный рост при уменьшении ω (светлые символы), обусловленный очень большой сквозной проводимостью керамики PFN при этих температурах (вставка на рис. 3, *a*). Для четкого выделения релаксационных максимумов $\varepsilon''/\varepsilon_0(\omega)$ мы исключили из мнимой части диэлектричес-

Рис. 3. Зависимости $\varepsilon'/\varepsilon_0(\omega)$ (*a*) и $\varepsilon''/\varepsilon_0(\omega)$ (*b*), $\gamma'(\omega)$ (вставка на части *a*) и $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ (*c*) керамики PFN при температурах 200 и 250°С. Темными символами показаны значения $\varepsilon''/\varepsilon_0$ после исключения сингулярных (расходящихся при $\omega \to 0$) членов.

кой проницаемости $\varepsilon''/\varepsilon_0$ сингулярный член $\gamma'_{\omega\to 0}/(\varepsilon_0\omega)$, определяемый вкладом сквозной проводимости. В результате в спектрах $\varepsilon''/\varepsilon_0(\omega)$ появились максимумы, сдвигающиеся в область более высоких частот и уменьшающиеся по величине при повышении температуры (рис. 3, *b*, темные символы), а на диаграммах Коула–Коула при T = 200 и 250°С — дуги (рис. 3, *c*, темные символы), которые изначально не наблюдались. Это свидетельствует о протекании в PFN при этих температурах релаксационного процесса. Форма зависимостей $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ свидетельствует о том, что в керамике PFN наблюдается недебаевская релаксация.

Для аппроксимации экспериментальных релаксационных спектров $\varepsilon'(\omega)$ и $\varepsilon''(\omega)$, проводившейся по формулам [7]

$$\varepsilon' = \varepsilon_{\infty} + (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{f(\tau)d\tau}{1 + (\omega\tau)^{2}},$$
$$\varepsilon'' = (\varepsilon_{s} - \varepsilon_{\infty}) \int_{0}^{\infty} \frac{\omega\tau f(\tau)d\tau}{1 + (\omega\tau)^{2}}, \quad \int_{0}^{\infty} f(\tau)d\tau = 1, \quad (1)$$

где ε_s и ε_{∞} — статистическая и высокочастотная диэлектрические проницаемости соответственно, нами была выбрана одна из самых простых моделей для диэлектрика с функцией распределения времен релаксации $f(\tau)$ в виде прямоугольника: $f(\tau) = \text{const}$ в интервале $\tau_1 < \tau < \tau_2$, тогда как при $\tau < \tau_1$ и $\tau > \tau_2$ $f(\tau) = 0$ [8,9]. В таком диэлектрике релаксатор на микроскопическом уровне не может быть описан моделью глубокой потенциальной ямы с двумя положениями равновесия (релаксатор Фрелиха [7] с функцией распределения времен релаксации $f(\tau)$ в виде гиперболы). Результаты выполненной по формулам (1) подгонки зависимостей $\varepsilon'/\varepsilon_0(\omega)$, $\varepsilon''/\varepsilon_0(\omega)$ и $\varepsilon''/\varepsilon_0(\varepsilon'/\varepsilon_0)$ для $T = 250^{\circ}$ С иллюстрируются рис. 4. $f(\tau) = \text{const}$ рассчитывалась по последней формуле (1).

Видно, что выбранная модель равновероятного распределения времен релаксации позволяет удовлетворительно аппроксимировать экспериментальные результаты. Согласно [10], физической основной модели может быть максвелл-вагнеровская поляризация и релаксация в электрически неоднородной матричной системе с ячейками из приблизительно изодиаметричных зерен керамики, окруженных тонкими слоями (оболочками) с малой [10] или большой [2,3] проводимостью и отличной от зерен диэлектрической проницаемостью. Вариация проницаемостей, проводимостей и толщин зерен и оболочек приводит к широкому распределению времен релаксации и обусловливает большие величины диэлектрической проницаемости и проводимости и недебаевскую релаксацию в керамике PFN. Очевидно, что наряду с равновероятным распределением времен релаксации в случае максвелл-вагнеровской релаксации, возможно и распределение времен релаксации вокруг

Рис. 4. Зависимости $\varepsilon'/\varepsilon_0(\omega)$ (*a*) и $\varepsilon''/\varepsilon_0(\omega)$ (*b*) и диаграмма Коула–Коула (на вставке) для керамики PFN при температуре 250°С. Сплошные линии — результаты расчета для $\tau_1 = 0$ s, $\tau_2 = 7.5 \cdot 10^{-5}$ s, $\varepsilon_s = 42\,000$, $\varepsilon_{\infty} = 3000$.

наиболее вероятного или наименее вероятного значения. Простейший вариант последнего распределения парабола с минимумом при $\tau_0 = (\tau_1 + \tau_2)/2$, посредине интервала распределения времен релаксации — обеспечивает наилучшую аппроксимацию экспериментальных данных для керамики PFN.

4. Заключение

Установлено, что в параэлектрической фазе керамики PFN на зависимостях $\varepsilon'/\varepsilon_0(T)$ и $\varepsilon''/\varepsilon_0(T)$ образуются экстремумы, являющиеся следствием недебаевской релаксации и сдвигающиеся в область высоких температур при увеличении частоты f измерительного электрического поля. Для объяснения релаксации использована модель максвелл-вагнеровской поляризации и релаксации в электрически неоднородной матричной системе с ячейками из приблизительно изодиаметричных зерен керамики, окруженных тонкими слоями (оболочками) с малой проводимостью и отличной от зерен диэлектрической проницаемостью.

Список литературы

- [1] Г.А. Смоленский, И.Е. Чупис. УФН 137, 415 (1982).
- [2] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros. J. Appl. Phys. 97, 084 107 (2005).
- [3] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros. J. Appl. Phys. 97, 084 108 (2005).
- [4] M.H. Lente, J.D.S. Guerra, G.K.S. de Souza, B.M. Fraygola, C.F.V. Raigoza, D. Garcia, J.A. Eiras. Phys. Rev. B 78, 054 109 (2008).
- [5] H. Schmid. J. Phys.: Cond. Matter 20, 434 201 (2008).
- [6] Ю.М. Гуфан, А.В. Павленко, Л.А. Резниченко, К.П. Андрюшин, О.А. Бунина, Ю.Д. Заворотнев, И.Н. Захарченко, Г.М. Константинов, С.П. Кубрин, Ю.А. Куприна, И.А. Осипенко, А.В. Пащенко, О.Н. Разумовская, А.Н. Садков, Д.А. Сарычев, С.А. Симоненко. Изв. РАН Сер. физ. 74, 1181 (2010).
- [7] Г. Фрёлих. Теория диэлектриков. ИИЛ, М. (1960). 252 с.
- [8] А.В. Турик, М.Ю. Родинин. Письма в ЖТФ **36**, *1*, 37 (2010).
- [9] А.В. Турик, М.Ю. Родинин. Термодинамика неупорядоченных сред и пьезоматериалов. Первый Междунар. Междисциплинар. симп. (TDM&PM). Изд-во ЮФУ, Ростов н/Д (2009). С. 217.
- [10] I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003).