⁰⁵ Состояние спинового стекла в SmFeTi₂O₇

© Г.А. Петраковский^{1,2}, Т.В. Дрокина^{1,2}, А.Л. Шадрина¹, Д.А. Великанов^{1,2}, О.А. Баюков^{1,2}, М.С. Молокеев¹, А.В. Карташев¹, Г.Н. Степанов¹

¹ Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

² Сибирский федеральный университет,

Красноярск, Россия

E-mail: tvd@iph.krasn.ru

(Поступила в Редакцию 9 марта 2011 г.)

Методом твердофазной реакции синтезировано соединение SmFeTi₂O₇. С целью определения магнитного состояния проведены рентгеноструктурные, мессбауэровские, калориметрические и магнитные измерения. В SmFeTi₂O₇ обнаружено состояние спинового стекла с температурой замерзания $T_f = 7$ K.

1. Введение

В связи с постоянным интересом к поиску новых материалов, перспективных для использования в различных устройствах, целенаправленное получение веществ с разнообразными магнитными свойствами, различными типами магнитного упорядочения является одной из актуальных задач в физике конденсированного состояния. Среди сложных многокомпонентных окисных соединений 3d- и 4f-элементов велика вероятность обнаружения материалов с различными типами магнитного упорядочения.

SmFeTi₂O₇ — представитель ряда соединений системы ABTi₂O₇ (A =Sm–Lu, Y; B =Ga, Fe). Известно, что соединение SmFeTi₂O₇ изоструктурно соединению GdGaTi₂O₇ с заменой Gd на Sm, Ga на Fe [1].

Согласно результатам рентгеновского исследования, цирконолит GdGaTi₂O₇ при комнатной температуре кристаллизуется в центросимметричной орторомбической пространственной группе Pcnb с параметрами ячейки a = 9.7804(3) Å, b = 13.605(4) Å, c = 7.4186(2) Å, объемом элементарной ячейки $V = 987.16(1) \text{ Å}^3$ [1]. Структура содержит восемь формульных единиц GdGaTi₂O₇ в элементарной ячейке и построена из четырех-, пяти-, шести- и восьмивершинных кислородных полиэдров. В восьмивершиннике располагается редкоземельный катион. Имеющиеся в структуре три неэквивалентные октаэдрические позиции (01, 02 и 03) в основном заселены титаном. Тетраэдрические позиции (t) заселены галлием. Тетраэдрические катионы могут выходить из тетраэдров и заселять соседние позиции с координацией, равной пяти (f). Опираясь на рентгеноструктурные результаты [1], кристаллохимическую формулу GdGaTi₂O₇ можно записать следующим образом: Gd(Ti_{0.88}Ga_{0.12})^{o1} $(Ti_{0.39}Ga_{0.11})^{o2}(Ti_{0.73}Ga_{0.27})^{o3}(Ga_{0.39})^t(Ga_{0.11})^fO_7.$

Таким образом, в системе GdGaTi₂O₇ реализуется беспорядок в распределении ионов галлия по пяти различным позициям. Можно предположить, что это свойство распространяется на все соединения ряда ABTi₂O₇, и на SmFeTi₂O₇ в частности. Цель настоящей работы состоит в изучении основного магнитного состояния соединения SmFeTi₂O₇ с помощью рентгеновских, мессбауэровских, калориметрических и магнитных измерений.

2. Синтез образцов и техника эксперимента

Соединение SmFeTi₂O₇ синтезировано реакцией в твердой фазе из смеси оксидов Fe₂O₃, Sm₂O₃ и TiO₂, взятых в соотношении 10.23 wt.%, 48.81 wt.%, 40.90 wt.% соответственно. Исходные компоненты смешивались и перетирались вручную. Смесь перед отжигом спрессовывалась в таблетки диаметром 10 mm и толщиной 1.5-2.0 mm, которые подвергались высокотемпературной обработке при температурах $1200-1250^{\circ}$ С и нормальном давлении. Синтез проводился в три этапа с помощью промежуточного перетирания и повторной процедуры прессования. Химический и фазовый состав образцов контролировался методами рентгеноструктурного анализа и ядерного γ -резонанса, а также с помощью оптического микроскопа.

Рентгенографическое исследование поликристаллических образцов проведено на дифрактометре D8-ADVANCE (Cu K_{α} -излучение, θ -2 θ -сканирование) с использованием линейного детектора VANTEC при T = 130, 300 К. Шаг сканирования по углу 2 θ равен 0.016°. Параметры ячеек определены и уточнены в ходе подгонки профилей при помощи программ WTREOR [2] и DDM [3].

Мессбауэровские исследования проведены на спектрометре MC-1104Eм института физики им. Л.В. Киренского CO PAH при комнатной температуре с источником $Co^{57}(Cr)$ на порошках толщиной 5–10 mg/cm² по естественному содержанию железа. Изомерные химические сдвиги измерены относительно металлического α -Fe.

Магнитные измерения осуществлены на магнитометре MPMS-XL Сибирского федерального университета

Позиции Fe ³⁺	IS, mm/s ± 0.05	QS, mm/s ± 0.02	W , mm/s ± 0.02	$A \pm 0.03$	r, Å	V_{zz} , Å ⁻³
01 02 f t 03	0.372 0.370 0.343 0.212 -	0.53 0.78 1.32 2.50	0.25 0.26 0.44 0.24	0.30 0.20 0.22 0.28	1.971 1.969 2.018 1.872 2.047	$\begin{array}{r} -0.076 \\ -0.117 \\ -0.195 \\ 0.262 \\ 0.256 \end{array}$

Мессбауэровские параметры SmFeTi₂O₇ (T = 300 K)

в интервале температур 2-300 К в магнитном поле 500 Ос.

Калориметрические исследования выполнены на установке Quantum Design PPMS 600 Центра коллективного пользования Красноярского научного центра в интервале температур 2.0–300 К в магнитных полях до 5 Т.

3. Экспериментальные результаты

Данные, полученные методом рентгеновской дифракции, свидетельствуют о том, что синтезированный материал имеет ромбическую кристаллическую структуру, пространственную групу Pbcn с параметрами элементарной ячейки a = 7.4718(1) Å, b = 13.6904(2) Å, c = 9.8338(2) Å, объемом элементарной ячейки $V = 1005.72(4) Å^3$. Рентгенографические исследования не обнаруживают в полученных образцах примесей, все исходные вещества прореагировали, и получилось однофазное вещество. Учитывая, что исследуемое соединение имеет пространственную группу и состав, аналогичные известным соединениям ряда ABTi2O7 (A = Sm-Lu, Y; B = Ga, Fe) [1], можно утверждать, что получившееся соединение является чистым SmFeTi₂O₇. Кристаллическая структура сохраняется при понижении температуры до $T = 130 \, \text{K}$.

Рис. 1. Мессбауэровский спектр образца $SmFeTi_2O_7$ при T = 300 K.

На рис. 1 приведен мессбауэровский спектр соединения SmFeTi₂O₇, измеренный при комнатной температуре. Он представляет собой сумму нескольких квадрупольных буклетов, параметры которых представлены в таблице. Подгонка модельного спектра к экспериментальному показала, что ионы железа в исследуемом соединении заселяют четыре неэквивалентные кристаллографические позиции: o1, o2, f, t (см. таблицу), характеризуемые различными величинами изомерного сдвига IS, квадрупольного расщепления QS, ширины линии W и заселенности А. Величины изомерных химических сдвигов в SmFeTi₂O₇ характерны для ионов железа Fe³⁺, находящихся в высокоспиновом состоянии (S = 5/2). Химсдвиги ~ 0.37 mm/s обычно наблюдаются для октаэдрически координированного железа. Величина IS ~ 0.21 mm/s характерна для железа, находящегося в тетраэдре.

В приближении идентичности локальной симметрии окислов SmFeTi₂O₇ и GdGaTi₂O₇ с помощью рентгеновских данных из работы [1] были оценены градиенты электрического поля (ГЭП) V_{zz} (V_{zz} = $=\sum (3\cos^2\theta_i - 1)/r_i^3$, где r_i — расстояние от центрального катиона анионов, формирующих координационный полиэдр, θ_i — угол между главной осью тензора ГЭП и вектором \mathbf{r}_i), создаваемые координационным полиэдром на центральном катионе. Пропорциональность квадрупольного расщепления величине градиента электрического поля позволяет идентифицировать неэквивалентные кристаллографические позиции ионов железа. В экспериментальном спектре не обнаружено октаэдрической позиции оЗ с большим квадрупольным расщеплением. Видимо, этот сильно искаженный октаэдр заселяют только катионы Ті. Обращает на себя внимание относительно большая величина ширины линии W = 0.44 mm/sдля позиции f. Видимо, это связано со следующим обстоятельством. На каждую t-позицию приходятся две смежные *f*-позиции. Дублеты этих двух *f*-позиций не разрешаются из-за близости их параметров, и хаотическое заселение этих позиций приводит лишь к уширению линий общего дублета.

УчитываяотносительныезаселенностиAиндивидуальныхпозиций,приходимкследующейкристаллохимическойформуле: $Sm(Fe_{0.3}Ti_{0.7})^{o1}(Fe_{0.2}Ti_{0.3})^{o2}(Ti_1)^{o3}(Fe_{0.28})^t(Fe_{0.22})^fO_7.$

Тепловые измерения, результаты которых приведены на рис. 2, показывают, что на зависимости удельной теп-

Рис. 2. Зависимость удельной теплоемкости от температуры в полях H = 0 и 5 Т. На вставке показана низкотемпературная область $C_p(T)$ при H = 0 Т.

Рис. 3. Температурная зависимость намагниченности соединения SmFeTi₂O₇. FC — охлаждение образца в поле H = 0.05 T, ZFC — охлаждение образца без поля.

лоемкости C_p от температуры T в интервале 2.0–300 К аномалий, характерных для термодинамического фазового перехода, не наблюдается. Это свидетельствует об отсутствии дальнего магнитного порядка в SmFeTi₂O₇. Заметим, что зависимость $C_p(T)$ в области низких температур (ниже 7 К) близка к линейной, при $T \approx 7$ К наблюдается плавный максимум (вставка на рис. 2). Температурная зависимость теплоемкости в магнитном поле H = 5 T похожа на аналогичную зависимость в отсутствие поля.

Результаты магнитных измерений керамических образцов SmFeTi₂O₇ приведены на рис. 3, 4. На рис. 3 представлена зависимость намагниченности соединения SmFeTi₂O₇ от температуры (измерение проводилось в магнитном поле H = 0.05 T) для двух случаев: 1) образец охлажден в отсутствие магнитно-

го поля H = 0 (ZFC); 2) образец охлажден в поле $H = 0.05 \,\mathrm{T} \,(\mathrm{FC})$. Эксперимент показывает, что в области низких температур для случая ZFC в образце появляется намагниченность, она растет при понижении температуры, достигая максимального значения при $T = 7 \, \text{K}$. Намагниченность в случае FC увеличивается при понижении температуры, достигая в температурном интервале 2-7К большего значения, чем в случае охлаждения образца без магнитного поля. Таким образом, в области низких температур имеет место зависимость намагниченности образца не только от температуры, но и от условий охлаждения (в нулевом магнитном поле и в поле $H = 0.05 \,\mathrm{T}$), т.е. магнитный момент, наведенный в исследуемой системе SmFeTi₂O₇ внешним полем, зависит от предыстории образца. В области низких температур наблюдается магнитный гистерезис. При температурах выше $T = 7 \, \text{K}$ процесс намагничивания обратим.

На рис. 4 приведена температурная зависимость обратной магнитной восприимчивости $\chi^{-1}(T)$ при охлаждении образца SmFeTi₂O7 без поля. Поведение кривой $\chi^{-1}(T)$ в высокотемпературной области можно описать законом Кюри-Вейсса. Асимптотическая температура Нееля, определяемая как точка пересечения оси T с асимптотой к кривой $\chi^{-1}(T)$ в области высоких температур, имеет значение $\Theta = -95 \,\mathrm{K}$ и свидетельствует о преимущественно антиферромагнитном взаимодействии в магнитной подсистеме образца. Константа Кюри–Вейсса C = 0.0093 K, что соответствует значению эффективного магнитного момента (молярное значение) $\mu_{\rm eff\,exp} = 5.545\,\mu_{\rm B}$. Используя известные величины эффективных магнитных моментов ионов Fe³⁺ $\mu_{effcalc}^{Fe^{3+}} = 5.91 \, \mu_{B}$ (фактор спектроскопического расщепления g=2) и Sm³⁺ $\mu_{\mathrm{eff calc}}^{\mathrm{Sm}^{3+}}=1.55\,\mu_{\mathrm{B}}~(g=2/7)$ [4], можно рассчитать значение эффективного магнитного момента формульной единицы SmFeTi₂O₇: $\mu_{eff calc} = 6.10 \mu_{B}$. Сопоставление расчетного и экспериментального значений эффективного магнитного момента и удовлетворительное их совпадение свидетельствуют об основной роли ионов железа Fe³⁺ и самария Sm³⁺, входящих

Рис. 4. Температурная зависимость обратной магнитной восприимчивости образца $SmFeTi_2O_7$, охлажденного без поля (асимптотическая температура Нееля $\Theta = -95$ K).

в систему SmFeTi₂O₇, в формировании парамагнитных свойств исследуемого образца.

Особенности зависимостей удельной теплоемкости и намагниченности образца от температуры и его магнитной предыстории, а также возможность существования метамиктного состояния позволяют предположить, что в соединении SmFeTi₂O₇ с преимущественно антиферромагнитным обменным взаимодействием при температурах $T < T_f = 7$ К реализуется состояние спинового стекла, детально описанное, например, в [5]. Фазовый переход в спин-стекольное состояние наблюдался ранее в ряде оксидных соединений, например в CrNbO4 [6], CuGa₂O₄ [7], Ba₂Fe₂GeO₈, и имеет схожие признаки.

Природа "замороженного" пространственного распределения ориентаций спиновых магнитных моментов системы магнитных ионов Fe^{3+} , Sm^{3+} , по-видимому, связана с наличием своеобразной топологии обменных связей в структуре $\mathrm{SmFeTi}_2\mathrm{O}_7$, обусловленной неоднозначностью в расположении магнитных моментов Fe^{3+} , со сложностью картины конкурирующих магнитных взаимодействий между ближайшими соседями и обусловленной ими фрустрацией магнитных моментов.

4. Заключение

Методом твердофазной реакции синтезировано поликристаллическое соединение SmFeTi₂O₇. С целью определения его магнитного состояния проведены рентгеноструктурные, мессбауэровские, калориметрические и магнитные исследования. Экспериментальные данные, полученные в настоящей работе, позволяют предположить, что в SmFeTi₂O₇ при температуре ниже $T_f = 7$ K реализуется термодинамическое неравновесное метастабильное магнитное состояние — спиновое стекло. Выше температуры замерзания $T_t = 7$ K в образце устанавливается равновесная парамагнитная фаза, характеризуемая асимптотической температурой Нееля $\Theta = -95$ К. Показана неэквивалентность кристаллографических позиций высокоспинового катиона Fe³⁺ в SmFeTi₂O₇ и проведена их идентификация.

Следует отметить, что полученные результаты указывают на существование в образцах, содержащий 3d- и 4f-элементы и изоструктурных соединению GdGaTi₂O₇, свойств атомно-неупорядоченных систем, которые представляют интерес для дальнейших исследований.

Список литературы

- Е.А.Генкина, В.И. Андианов, Е.Л. Белоконева, Б.В. Милль, Б.А. Максимов, Р.А. Тамазян. Кристаллография 36, 1408 (1991).
- [2] A. Le Bail. Powder Diffraction 19,3, 249 (2004).
- [3] L.A. Solovyov. J. Appl. Cryst. 37, 743 (2004).
- [4] К.П. Белов, М.А. Белянчикова, Р.З. Левитин, С.А. Никитин. Редкоземельные ферромагнетики и антиферромагнетики. Наука, М. (1965). 420 с.

- [5] K.H. Fischer. Phys. Status Solidi B 116, 357 (1983).
- [6] A.N. Christensen, T. Johansson, B. Lebech. J. Phys. C 9, 2601 (1976).
- [7] G.A. Petrakovskii, K.S. Aleksandrov, L.N. Bezmaternikh, S.S. Aplesnin, B. Roesli, D. Semadeni, A. Amato, C. Baines, J. Bartolome, M. Evangelisti. Phys. Rev. B 63, 184425 (2001).
- [8] Г. Петраковский, Л. Безматерных, И. Гудим, О. Баюков, А. Воротынов, А. Бовина, Р. Шимчак, М. Баран, К. Риттер. ФТТ 48, 1795 (2006).