05,19 Низкотемпературная теплоемкость тетраборидов редкоземельных элементов

© В.В. Новиков¹, А.В. Морозов², А.В. Матовников¹, Д.В. Авдащенко¹, Я.Н. Полесская¹, Н.В. Сахошко¹, Б.И. Корнев¹, В.Д. Соломенник¹, В.В. Новикова³

¹ Брянский государственный университет им. акад. И.Г. Петровского,

Брянск, Россия

² Московский государственный университет природообустройства,

Москва, Россия

³ Хмельницкий национальный университет,

Хмельницкий, Украина

E-mail: vvnovikov@mail.ru

(Поступила в Редакцию 12 января 2011 г.)

Экспериментально исследованы температурные зависимости теплоемкости тетраборидов лантана, диспрозия, гольмия, лютеция в области 2–300 К. Выделены и проанализированы электронный, решеточный, магнитный вклады в полную теплоемкость боридов, рассчитан вклад Шоттки. Определены мультиплетности основных состояний ионов диспрозия и гольмия в тетраборидах.

Работа выполнена при поддержке РФФИ (грант 11-02-97-502р_центр-а) и Минобрнауки РФ в рамках программы "Развитие научного потенциала высшей школы (2009–2011 гг.)" (грант 2.1.1/422).

1. Введение

Тетрабориды редкоземельных (РЗ) элементов RB4 кристаллизуются в тетрагональную структуру типа UB₄, пространственная группа *P4/mbm*–*D*⁵_{4b}, элементарная ячейка которой содержит четыре формульные единицы [1]. Как и другие бориды, тетрабориды РЗ-элементов — твердые, тугоплавкие соединения. Для них характерен металлический тип проводимости [2,3]. Большинство РЗ-тетраборидов при понижении температуры переходит в магнитоупорядоченное состояние. Магнитное превращение парамагнетик-антиферромагнетик, происходящее с понижением температуры, для большинства тетраборидов протекает в несколько этапов через промежуточные магнитные фазы [2,4,5]. Характерная особенность магнитной подсистемы РЗ-тетраборидов состоит в том, что парамагнитные ионы РЗ-металла образуют фрустрированную решетку Шастри-Сазерленда [6], которая сохраняет неупорядоченность атомных магнитных моментов вплоть до абсолютного нуля. Это обусловливает своеобразие протекания процессов магнитного упорядочения в РЗ-тетраборидах.

Целью настоящей работы является исследование особенностей электронной, магнитной, решеточной подсистем РЗ-тетраборидов на основе экспериментальных данных об их теплоемкости в области температур 2–300 К.

2. Объекты исследования и методика эксперимента

Порошкообразные тетрабориды диспрозия, гольмия, лютеция получены боротермическим восстановлением

оксидов металлов при высоких температурах в вакууме. Тетраборид лантана синтезирован по специально разработанной методике [7]. Рентгенограммы синтезированных образцов соответствуют данным картотеки ASTM; рефлексов посторонних фаз на рентгенограммах не обнаружено.

Измерения теплоемкости редкоземельных тетраборидов выполнены на автоматизированном адиабатическом калориметре фирмы "Термакс". Температура в ходе калориметрического опыта измерялась железо-родиевым термометром, изготовленным и проградуированным в ВНИИФТРИ. Погрешность измерения теплоемкости в области 2–20 К составляет 3%. При повышении температуры до 60 К она снижается до 1% и остается в этих пределах при более высоких температурах.

3. Результаты эксперимента и их обсуждение

Экспериментальные температурные зависимости молярной теплоемкости $c_p(T)$ исследуемых тетраборидов РЗ-элементов приведены на рис. 1. Как видно из рисунков, данные настоящей работы близки к результатам других авторов [2,8–10], исследовавших теплоемкость RB_4 при низких температурах на отдельных участках температурного интервала.

На зависимостях $c_p(T)$ РЗ-тетраборидов проявляется ряд особенностей. Размытый максимум в области умеренно низких температур (60–80 K), обусловленный колебаниями значительно более массивных и слабее связанных между собой атомов РЗ-металла [9], характерен для РЗ-боридов и других бинарных соединений с большой разницей масс атомов в подрешетках [11,12].

Рис. 1. Температурные зависимости теплоемкости редкоземельных тетраборидов лантана (*a*), диспрозия (*b*), гольмия (*c*) и лютеция (*d*). *1* — данные настоящей работы, *2* — [8], *3* — [9], *4* — [2].

Фазовые превращения в тетраборидах диспрозия и гольмия проявляются в резких максимумах на зависимостях $c_p(T)$. Как установлено в работе [10], раздвоенный максимум кривой $c_p(T)$ DyB₄ обусловлен процессами антиферромагнитного упорядочения с понижением температуры. При температуре $T_{c1} = 20.25$ К упорядочиваются атомные магнитные моменты ионов Dy³⁺ в базовой плоскости. При более низкой температуре $T_{c2} = 12.5$ К происходит упорядочение магнитных моментов вдоль оси *с* кристаллической решетки.

Кроме того, при температурах ниже T_{c2} в DyB₄ имеет место антиферроквадрупольное упорядочение, сопровождающееся моноклинным искажением кристаллической решетки.

Профили низкотемпературного (при $T_{c2} = 5.85 \text{ K}$) и высокотемпературного (при $T_{c1} = 7.26 \text{ K}$) максимумов зависимости $c_p(T)$ HoB₄ существенно различны. Амплитуда низкотемпературного максимума значительно больше, чем высокотемпературного; низкотемпературный максимум гораздо более узкий. Указанные особенности

характерны для фазовых превращений первого рода. В тетрабориде гольмия низкотемпературная аномалия теплоемкости может быть обусловлена как процессами в магнитной подсистеме борида, так и структурным превращением [13].

Низкотемпературные участки зависимостей $c_p(T)$ диамагнитных тетраборидов лантана и лютеция удовлетворительно аппроксимированы зависимостями $c_v = a_1T + a_2T^3$. Здесь первое слагаемое обусловлено электронным вкладом, второе — вкладом решетки. Рис. 2 иллюстрирует попытку отделения вклада электронного газа в теплоемкость изучаемых тетраборидов. Координата пересечения аппроксимирующей прямой с осью ординат определяет коэффициент a_1 . Тангенс угла наклона прямой относительно оси абсцисс равен коэффициенту a_2 . Величины коэффициентов a_1, a_2 , а также рассчитанные по их значениям плотности электронных состояний на уровне Ферми $\left(\frac{dn}{dE}\right)_{E=E_{\rm F}}$ и дебаевские характеристические температуры Θ_0 боридов лантана и лютеция приведены в таблице.

Характеристики электронной, решеточной, магнитной подсистем редкоземельных тетраборидов (a_1 — коэффициент электронной теплоемкости, $\left(\frac{dn}{dE}\right)_{E=E_{\rm F}}$ — плотность электронных состояний на уровне Ферми, Θ_0 — характеристическая температура Дебая при абсолютном нуле, V — молярный объем, Θ_R , Θ_B — характеристические температуры подрешеток металла и бора соответственно, ΔH_m — изменение энтальпии при фазовых превращениях, a_3 — коэффициент магнитной теплоемкости при $T > T_{c1}$, Y/k — обменный параметр)

Параметр	LaB ₄	DyB ₄	HoB4	LuB ₄
a_1 , J · mol ⁻¹ · K ⁻²	$5.61 \cdot 10^{-4}$	—	_	$8.46\cdot 10^{-4}$
a_2 , J · mol ⁻¹ · K ⁻⁴	$5.21 \cdot 10^{-5}$	—	—	$6.82\cdot10^{-5}$
$\left(\frac{dn}{dE}\right)_{E=E_{\rm F}} = \frac{3a_1}{\pi^2\kappa^2}, \ \mathrm{eV}^{-1} \cdot \mathrm{at}^{-1}$	1.19	—	—	1.79
Θ_0, K	570*	540**	543**	523*
V, m^2	$0.3376 \cdot 10^{-4}$	$0.3049 \cdot 10^{-4}$	$0.3029 \cdot 10^{-4}$	$0.2960 \cdot 10^{-4}$
Θ_R, K	260	210	230	205
$\Theta_{\rm B},{ m K}$	1100	1200	1235	1170
ΔH_m , J·mol ⁻¹	_	249	93	_
a_3 , J · mol ⁻¹ · K	_	1300	145	_
Y/k, K	_	0.96***	0.56***	_
		0.69****	0.36****	

* Расчет по закону кубов Дебая: $\Theta_0 = \left(\frac{12}{5} R \pi^4 \frac{1}{a_2}\right)^{\frac{1}{3}}$.

** Определение графической экстраполяцией зависимости $\Theta(T)$ к абсолютному нулю.

*** Расчет по величинам магнитной энтальпии ΔH_m .

**** Расчет по зависимости $c_m(T)$ при повышенных температурах.

Для тетраборидов диспрозия и гольмия линейно зависящий от температуры вклад электронного газа теряется на фоне значительно большего вклада, обусловленного фазовыми превращениями.

Решеточная составляющая теплоемкости $c_{plat}(T)$ тетраборидов диспрозия и гольмия рассчитана методом сравнения с теплоемкостью немагнитного изоструктурного аналога [11]. В качестве образца сравнения использовался диамагнетик LuB₄.

Анализ зависимостей $c_{vlat}(T)$ в приближении независимых подрешеток металла и бора [14] $c_{RB_4}(T) = C_R(T)$ + $4c_B(T)$ позволил определить характеристические температуры подрешеток Θ_R , Θ_B (см. таблицу). На рис. 3 в

Рис. 2. Зависимость c_p/T от T^2 для LuB₄.

Рис. 3. Решеточная теплоемкость тетраборида лютеция в приближении независимых дебаевских подрешеток лютеция и бора. 1 — экспериментальные данные, 2 — теплоемкость подрешетки бора $4c_{\rm B}(T)$, 3 — теплоемкость подрешетки лютеция $c_{\rm Lu}(T)$, 4 — расчетная молярная теплоемкость LuB₄ $c = c_{\rm Lu}(T) + 4c_{\rm B}(T)$.

качестве примера приведены температурные изменения рассчитанных теплоемкостей подрешеток лютеция и бора, полной расчетной теплоемкости LuB₄, сопоставленной с экспериментальными данными. В исследуемом ряду тетраборидов величины Θ_R , Θ_B уменьшаются с увеличением порядкового номера металла (массы редкоземельного элемента) и уменьшением молярного объема. Это свидетельствует о преобладающем влиянии

Рис. 4. Изменение энтропии магнитной подсистемы $\Delta S_m(T)$ тетраборида диспрозия. l — данные настоящей работы, 2 - [10].

Рис. 5. Изменение энтропии магнитной подсистемы $\Delta S_m(T)$ тетраборида гольмия.

массы РЗ-металла на колебания решетки тетраборидов по сравнению с явлением лантаноидного сжатия.

Величина избыточной теплоемкости $\Delta c = c - c_{\rm el} - c_{\rm lat}$ включает в себя составляющую, обусловленную фазовыми превращениями $\Delta c_m(T)$, а также вклад Шоттки $c_{\rm Sch}(T)$, характерный для большинства соединений редких земель. Разделение этих двух вкладов в теплоемкость магнитных тетраборидов DyB₄ и HoB₄ выполнено на основе анализа спада зависимости $\Delta c_{RB_4}(T)$ при температурах выше T_{c1} в приближении

$$\Delta c_{RB_4}(T) = a_3 T^{-2} + c_{Sch}(T).$$

Здесь первое слагаемое представляет собой магнитную составляющую, а второе — вклад Шоттки в теплоемкость. При этом принималось, что при температурах ниже T_{c1} величины вклада Шоттки пренебрежимо малы. На рис. 4, 5 приведены температурные изменения энтропии магнитной подсистемы $\Delta S_m(T)$ тетраборидов диспрозия и гольмия. Молярная магнитная энтропия $\Delta S_m(T)$ DyB₄ при температуре T_{c1} достигает значения $R \ln 4$, что согласуется с данными [9] и соответствует квартету как основному состоянию ионов Dy³⁺ в DyB₄. При повышении температуры величина $\Delta S_m(T)$ приближается к значению $R \ln 6$. Поскольку максимальная энтропия магнитной подсистемы определяется как $R \ln(2J + 1)$, где J — квантовое число момента импульса электронов парамагнитного иона, разность между этой величиной и максимальной экспериментальной величиной изменения магнитной энтропии представляет собой величину остаточной (нулевой) энтропии подсистемы S_{m0} , обусловленную ее фрустрированностью. Для иона Dy³⁺ (J = 15/2) величина S_{m0} составляет $R \ln 2.6$.

Для тетраборида гольмия HoB₄ величина $\Delta S_m(T)$ при $T_{c1} = 7.25$ K близка к $R \ln 3$; следовательно, основное состояние иона Ho³⁺ в тетрабориде — квазитриплет, состоящий из дублета и близкорасположенного

Рис. 6. Вклад Шоттки $c_{\text{Sxh}}(T)$ в теплоемкость тетраборидов диспрозия (*a*) и гольмия (*b*). *1* — экспериментальные данные, 2 — расчетная зависимость.

синглета. Величина $\Delta S_m(T)$ при повышенных температурах приближается к $R \ln 5$. Остаточная энтропия S_{m0} магнитной подсистемы Ho^{3+} (J = 8) составляет $R \ln 3.5$.

Интегрированием зависимостей магнитной теплоемкости $\Delta c_m(T)$ определены температурные изменения энтальпии $\Delta H_m(T)$ тетраборидов при фазовых превращениях и их максимальные значения ΔH_m (см. таблицу).

Полагая величины магнитной энтальпии ΔH_m и обменную энергию магнитной подсистемы $E_m = zYs^2N_A$ одинаковыми (здесь z = 5 — координационное число, Y — обменный интеграл, s — спин иона, N_A число Авогадро), мы рассчитали величины обменных параметров Y/k в магнитных подсистемах ионов Dy^{3+} и Ho³⁺ (см. таблицу).

Температурные изменения вклада Шоттки в теплоемкость тетраборидов диспрозия и гольмия приведены на рис. 6. Зависимость $c_{\text{Sch}}(T)$ для DyB₄ аппроксимирована в приближении двухуровневого расщепления. Наилучшее соответствие данным эксперимента получено при отношении кратностей вырождения возбужденного и основного уровней, равном 9/7. Величина расщепления δ/k составила 170 К.

Вклад Шоттки в теплоемкость тетраборида гольмия удалось аппроксимировать в трехуровневом приближении. Кратности вырождения основного и возбужденных мультиплетов составили величины $N_1 = 4$, $N_2 = 4$, $N_3 = 9$ соответственно, величины расщепления $\delta_1/k = 50$, $\delta_2/k = 240$ K.

Отделение рассчитанного вклада Шоттки в теплоемкость $c_{\rm Sch}(T)$ от величин избыточной теплоемкости $\Delta c_{RB_4}(T)$ позволило уточнить температурные изменения магнитной составляющей $c_m(T)$ DyB₄, HoB₄ при повышенных температурах $(T > T_{c1})$. Величины $c_m(T)T^{-2}$ тетраборидов диспрозия и гольмия в указанной температурной области аппроксимированы в соответствии с соотношением $c_m(T) = 2Rs^2(s+1)^2 z Y^2/3k^2T^2$, где R универсальная газовая постоянная, s — спин РЗ-иона, z — координационное число решетки (z = 5), k постоянная Больцмана [14]. Величины обменных параметров Y/k изучаемых тетраборидов, определенные по спаду теплоемкости при $T > T_{c1}$, близки к значениям, полученным из магнитной энтальпии (см. таблицу).

4. Заключение

Проведенное исследование теплоемкости ряда тетраборидов редкоземельных элементов в широком низкотемпературном интервале позволило получить комплекс характеристик электронной, магнитной, решеточной подсистем боридов, выявить особенности их изменения с температурой и составом.

В результате аппроксимации температурных зависимостей решеточных вкладов в теплоемкость РЗ-тетраборидов $c_{\text{lat}}(T)$ в приближении невзаимодействующих подрешеток металла и бора при конкурирующем воздействии массы металлического иона и лантаноидного сжатия на частоту колебаний решетки установлено преобладающее влияние первого из указанных факторов.

Фрустрированность магнитных подсистем РЗ-тетраборидов проявляется в заметных величинах остаточной магнитной энтропии, обусловленной неупорядоченностью в системах магнитных моментов при абсолютном нуле.

Заметное влияние на величину теплоемкости РЗ-тетраборидов при низких температурах оказывает вклад Шоттки $c_{\text{Sch}}(T)$. Из анализа магнитной составляющей и составляющей Шоттки теплоемкости тетраборидов диспрозия и гольмия следует, что основным состоянием ионов Dy^{3+} , Ho^{3+} является дублет; вблизи основного мультиплета располагается система возбужденных дублетов и синглетов, на значительном удалении от которой находится следующая система возбужденных подуровней.

Список литературы

- [1] L. Andriex. Am. Chem. Phys. 12, 423 (1929).
- [2] Z. Fisk, M.B. Maple, D.C. Johnston, L.D. Wolf. Solid State Commun. 39, 1189 (1981).
- [3] Е.Н. Северянина, Е.М. Дудник, Ю.Б. Падерно. Порошковая металлургия 10, 83 (1974).
- [4] J.-S. Rhyee, J.Y. Kim, B.K. Cho. J. Appl. Phys. 101, 09D509 (2007).
- [5] S. Matas, K. Siemensmeyer, E. Wheeler, E. Wult, R. Beyer, Th. Hermansdorfer, O. Jgnatchik, M. Uhlarz, K Flachbart, S. Sabani, P. Priputen, A. Efdokimova, N. Shitsevalova. J. Phys. Conf. Ser. 200, 032 041 (2010).
- [6] B.S. Shastry, B. Sutherland. Physica B 108, 1069 (1981).
- [7] В.Б. Муратов, Н.В. Митрошенков, Н.П. Горбачук, В.В. Гарбуз, К.А. Мелешевич, С.В. Тищенко. Тр. Междунар. Самсон. конф. "Материаловедение тугоплавких соединений". Ин-т проблем материаловедения им. И.Н. Францевича, Киев, Украина (2010). С. 41.
- [8] А.С. Болгар, В.Б. Муратов, К.А. Мелешевич, О.Т. Хорпяков. Порошковая металлургия 11, 72 (1990).
- [9] Н.Ю. Шицевалова, В.Е. Ячменев, Ю.Б. Падерно, Е.М. Дудник. Восьмая Всесоюз. конф. по калориметрии и химической термодинамике. Тез. докл. Иваново (1979). С. 362.
- [10] R. Watanuki, G. Sato, K. Suzuki, M. Ishihara, T. Yanagisawa, Y. Nemoto, T. Goto. J. Phys. Soc. Jpn. 74, 2169 (2005).
- [11] Н.Н. Сирота, В.В. Новиков, С.В. Антипов. ФТТ, 39, 913 (1997).
- [12] N.N. Sirota, V.V. Novikov. J. of Materials Proc. Manuf. Sci. 7, 11 (1998).
- [13] D. Okuyama, T. Matsumura, T. Mouri, N. Ishikawa, K. Ohoyama, H. Hiraka, H. Nakao, K. Iwasa, Y. Murakami. J. Phys. Soc. Jpn. 77, 04 479 (2008).
- [14] В.В. Новиков. ФТТ 43, 289 (2001).
- [15] Р. Карлин. Магнетохимия. Мир, М. (1989). 399 с.