Сечение неупругого рассеяния поляризованных нейтронов сверхпроводящими кольцами

© А.И. Агафонов

02

Российский научный центр "Курчатовский институт", Москва, Россия Московский авиационный институт, Москва, Россия E-mail: aai@isssph.kiae.ru

(Поступила в Редакцию 7 декабря 2010 г.)

Получено общее выражение для сечения неупругого магнитного рассеяния холодных поляризованных нейтронов сверхпроводящим кольцом. В этом процессе рассеяния метастабильный сверхпроводящий ток меняется квантовыми скачками, соответствующими уменьшению флуксоидов в кольце на одну или несколько единиц, а изменение энергии кольца передается в форме кинетической энергии рассеянному нейтрону. Для кольца из сверхпроводника второго рода с толщиной, меньшей глубины проникновения поля, но большей длины свободного пробега электронов, впервые получены сечения рассеяния с переворотом спина нейтрона. Обсуждается возможность увеличения сечения рассеяния системой колец.

1. Введение

Основанные на известных механизмах взаимодействия нейтронов с твердыми телами [1–3] методы рассеяния нейтронов широко применяются для изучения односвязных сверхпроводников [4–6]. Для многосвязных сверхпроводников, в частности сверхпроводящих колец, был предсказан новый канал неупругого магнитного рассеяния нейтронов [7]. Этот канал обусловлен особенностью метастабильных квантованных токовых состояний, которые могут существовать в многосвязных сверхпроводниках в отсутствие внешних магнитных полей. Был проведен анализ сечения при рассеянии холодных нейтронов без переворота спина.

Свойства сверхпроводящего кольца полностью определяются конденсатной волновой функцией $\psi_m(\mathbf{r})$. Так, этой функцией определяется квантование магнитного потока в кольце $\Phi_m = m\Phi_0$, где $\Phi_0 = \frac{h}{2e}$ — флуксоид, m — число флуксоидов в состоянии $\psi_m(\mathbf{r})$. Ток и полная энергия кольца E_m могут меняться лишь квантовыми скачками, при которых число флуксоидов меняется на одну или несколько единиц [8].

Нейтрон, падающий на сверхпроводящее кольцо, создает переменный вектор-потенциал поля **A** внутри кольца с плотностью тока **j**. Взаимодействие между нейтроном и кольцом $V = \int d\mathbf{r} \mathbf{A} \mathbf{j}$ можно также представить в полностью идентичной форме $V = \boldsymbol{\mu}_n \mathbf{B}$, где $\boldsymbol{\mu}_n$ — оператор магнитного момента нейтрона, **B** — магнитное поле, порождаемое током в кольце. В результате этого взаимодействия кинетическая энергия нейтрона может измениться только дискретным образом, $\Delta E_k = E_m - E_{m_1}$, в зависимости от конечного числа флуксоидов m_1 в кольце. Это неупругое рассеяние нейтрона должно сопровождаться переходом сверхпроводящего конденсата из начального состояния ψ_m в конечное состояние ψ_{m_1} . В настоящей работе представлены результаты теоретического исследования неупругого магнитного рассеяния холодных нейтронов тонкими кольцами из сверхпроводника второго рода. В отличие от работы [7] впервые получены сечения рассеяния, сопровождающегося переворотом спина нейтрона.

2. Гамильтониан системы и сечение рассеяния

Для изучаемого процесса гамильтониан системы нейтрон-сверхпроводящее кольцо есть

$$H = \sum_{m} E_{m} a_{m}^{+} a_{m} + \sum_{\mathbf{p}, S} \varepsilon_{\mathbf{p}} c_{\mathbf{p}S}^{+} c_{\mathbf{p}S}$$
$$+ \sum_{\mathbf{p}, S, \mathbf{p}_{1}, S_{1}, m, m_{1}} V_{\mathbf{p}_{1}\mathbf{p}}^{m_{1}m}(S, S_{1}) c_{\mathbf{p}_{1}S_{1}}^{+} c_{\mathbf{p}S} a_{m_{1}}^{+} a_{m}, \qquad (1)$$

где $a_m^+(a_m)$ — операторы рождения (уничтожения) *m*-состояния сверхпроводящего конденсата, $c_{pS}^+(c_{pS})$ операторы рождения (уничтожения) нейтрона с волновым вектором **p** и спином *S*, $V_{p_1p}^{m_1m}(S, S_1)$ является матричным элементом оператора взаимодействия нейтрона с магнитным полем сверхпроводящего кольца. Этот оператор имеет вид

$$\hat{V} = 2\gamma \mu_N \hat{\mathbf{S}} \hat{\mathbf{B}}(\mathbf{r}_n), \qquad (2)$$

где $\gamma = -1.91$, μ_N — ядерный магнетон, $\hat{\mathbf{S}}$ — оператор спина нейтрона, $\hat{\mathbf{B}}(\mathbf{r}_n)$ — оператор магнитной индукции, создаваемой током кольца, в месте нахождения нейтрона \mathbf{r}_n

$$\hat{\mathbf{B}}(\mathbf{r}_n) = \frac{\mu_0}{4\pi} \int d\mathbf{r} \frac{[\hat{\mathbf{j}}(\mathbf{r}), \mathbf{r}_n - \mathbf{r}]}{|\mathbf{r}_n - \mathbf{r}|^3}.$$
 (3)

Здесь \tilde{j} — оператор плотности тока в сверхпроводящем кольце.

Будем полагать, что волновой вектор нейтрона до рассеяния \mathbf{p} направлен вдоль *z*-оси, перпендикулярной плоскости кольца. В борновском приближении теории рассеяния тройное дифференциальное сечение исследу-емого неупругого процесса есть

$$\frac{\partial^{3}\sigma SS_{1}}{\partial \varepsilon_{p_{1_{z}}} \partial \varepsilon_{p_{1_{\rho}}} \partial \varphi_{1}} = 2^{-3}\pi^{-2} \frac{\Omega_{n}^{2}m_{n}^{2}}{\hbar^{4}\varepsilon_{p}^{1/2}}$$
$$\times \sum_{m_{1}} \varepsilon_{p_{1_{z}}}^{-1/2} |V_{\mathbf{p}_{1}\mathbf{p}}^{m_{1}m}(S, S_{1})|^{2} \delta(\varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{p}_{1}} + E_{m} - E_{m_{1}}). \quad (4)$$

Здесь

$$arepsilon_{\mathbf{p}_1} = rac{\hbar^2 p_1^2}{2m_n} = arepsilon_{p_{1_z}} + arepsilon_{p_{1_\rho}}$$

. .

— энергия нейтрона после рассеяния, $\mathbf{p}_1 = \mathbf{p}_{1z} + \mathbf{p}_{1\rho}$ его волновой вектор, φ_1 — полярный угол вектора \mathbf{p}_1 , m_n — масса нейтрона, Ω_n — нормировочный объем волновой функции нейтрона, E_m — энергия кольца в состоянии с квантовым числом *m*. В теории Лондонов энергия E_m складывается из энергии магнитного поля, создаваемого сверхпроводящим током, и кинетической энергии конденсата. В общем случае эта энергия $E_m = E_0 m^2$ с характерной энергией

$$E_0 = \frac{\Phi_0^2}{2L},\tag{5}$$

где *L* — самоиндукция кольца.

С учетом (2) и (3) матричный элемент оператора взаимодействия в (4) приводится к виду

$$V_{\mathbf{p}_{1}\mathbf{p}}^{m_{1}m}(S, S_{1}) = \frac{\gamma \mu_{0}\mu_{N}}{2\pi} \int d\mathbf{r}_{n}\psi_{\mathbf{p}_{1}}^{*}(\mathbf{r}_{n})\psi_{\mathbf{p}}(\mathbf{r}_{n})$$
$$\times \int d\mathbf{r} \frac{[\langle S_{1}|\hat{\mathbf{S}}|S\rangle, \mathbf{r}-\mathbf{r}_{n}]}{|\mathbf{r}-\mathbf{r}_{n}|^{3}} \left(\psi_{m_{1}}^{*}\hat{\mathbf{j}}(\mathbf{r})\psi_{m}(\mathbf{r})\right). \quad (6)$$

Используя функции плоских волн, легко вычислить матричный элемент по начальному состоянию нейтрона $\psi_{\mathbf{p}}$ и его конечному состоянию $\psi_{\mathbf{p}_1}$. В результате получим

$$V_{\mathbf{p}_{1}\mathbf{p}}^{m_{1}m}(S, S_{1}) = -2i \frac{\gamma \mu_{0} \mu_{N}}{\Omega_{n} q^{2}}$$
$$\times \int d\mathbf{r} \big(\psi_{m_{1}}^{*} \hat{\mathbf{j}}(\mathbf{r}) \psi_{m}(\mathbf{r}) \big) e^{i\mathbf{q}\mathbf{r}} [\langle S_{1} | \hat{\mathbf{S}} | S \rangle, \mathbf{q}], \quad (7)$$

где $\mathbf{q} = \mathbf{p} - \mathbf{p}_1$ — вектор рассеяния нейтрона.

Волновую функцию сверхпроводящего конденсата ψ_m в массивном кольце можно представить в виде

$$\psi_m(\mathbf{r}) = \sqrt{n_c} \, e^{i\Theta_m(\mathbf{r})},\tag{8}$$

где n_c — плотность куперовских пар, $\Theta_m(\mathbf{r})$ — фаза волновой функции. Используя (8) и учитывая симметрию кольца, матричный элемент сверхпроводящего тока запишем как

$$\left(\psi_{m_1}^*\hat{\mathbf{j}}(\mathbf{r})\psi_m(\mathbf{r})\right) = j_{m_1m}(\mathbf{r}) \, e^{i\left(\Theta_m(\mathbf{r}) - \Theta_{m_1}(\mathbf{r})\right)} \, \mathbf{i}_{\varphi},\qquad(9)$$

где \mathbf{i}_{φ} — единичный полярный угол. Подставляя (9) в (7), имеем

$$V_{\mathbf{p}_{1}\mathbf{p}}^{m_{1}m}(S, S_{1}) = 2i \, \frac{\gamma \mu_{0} \mu_{N}}{\Omega_{n} q^{2}} \, j_{m_{1}m}^{S_{1}S}(\mathbf{q}), \tag{10}$$

где

$$j_{m_1m}^{S_1S}(\mathbf{q}) = \int d\mathbf{r} \, j_{m_1m}(\mathbf{r}) e^{i(\Theta_m(\mathbf{r}) - \Theta_{m_1}(\mathbf{r})) + i\mathbf{q}\mathbf{r}} \left(\hat{\mathbf{S}}[\mathbf{i}_{\varphi}, \mathbf{q}]\right)_{S_1S}.$$
(11)

3. Спиновые матричные элементы

Спиновой оператор в (11) можно представить в виде

$$\hat{\mathbf{S}}[\mathbf{i}_{\varphi}, \mathbf{q}] = \frac{1}{2} \left(\sigma_x q_z \cos(\varphi) + \sigma_y q_z \sin(\varphi) - \sigma_z q_{\rho} \cos(\varphi - \varphi_q) \right),$$
(12)

где σ — матрицы Паули, φ — полярный угол радиусвектора **r**, φ_a — полярный угол вектора рассеяния **q**.

Как известно, можно экспериментально получать пучки нейтронов, поляризованных как перпендикулярно импульсу, так и параллельно ему. Первый случай будем называть поперечной поляризацией, а второй — продольной поляризацией.

Учитывая, что волновой вектор нейтронов до рассеяния **р** направлен вдоль *z*-оси, перпендикулярной плоскости кольца, из (12) для продольно-поляризованных нейтронов получим

$$(\hat{\mathbf{S}}[\mathbf{i}_{\varphi},\mathbf{q}])_{\alpha\alpha} = -(\hat{\mathbf{S}}[\mathbf{i}_{\varphi},\mathbf{q}])_{\beta\beta} = -\frac{1}{2} q_{\rho} \cos(\varphi - \varphi_{q}),$$

$$(\hat{\mathbf{S}}[\mathbf{i}_{\varphi},\mathbf{q}])_{\alpha\beta} = ((\hat{\mathbf{S}}[\mathbf{i}_{\varphi},\mathbf{q}])_{\beta\alpha})^{*} = \frac{1}{2} q_{z} e^{-i\varphi}.$$
(13)

Здесь α и β — собственные функции σ_z , соответствующие проекциям спина +1/2 и -1/2 соответственно.

Используя (12), для поперечно поляризованных нейтронов имеем

$$\begin{aligned} \left(\hat{\mathbf{S}}[\mathbf{i}_{\varphi}, \mathbf{q}] \right)_{\chi\chi} &= -\left(\hat{\mathbf{S}}[\mathbf{i}_{\varphi}, \mathbf{q}] \right)_{\eta\eta} = \frac{1}{2} \, q_z \cos \varphi, \\ \left(\hat{\mathbf{S}}[\mathbf{i}_{\varphi}, \mathbf{q}] \right)_{\chi\eta} &= \left(\left(\hat{\mathbf{S}}[\mathbf{i}_{\varphi}, \mathbf{q}] \right)_{\eta\chi} \right)^* \\ &= -\frac{1}{2} \, q_\rho \cos(\varphi_q - \varphi) + \frac{i}{2} \, q_z \sin \varphi, \quad (14) \end{aligned}$$

где χ и η — собственные функции σ_x , соответствующие проекциям спина +1/2 и -1/2 соответственно.

Недиагональный матричный элемент тока в кольце

Матричные элементы оператора плотности тока в сверхпроводящем кольце имеют вид

$$\mathbf{j}_{m_1m} = \psi_{m_1}^* \mathbf{j} \, \psi_m$$
$$= \frac{ie\hbar}{m_C} \left(\psi_m \nabla \psi_{m_1}^* - \psi_{m_1}^* \nabla \psi_m \right) - \frac{4e^2}{m_C} \, \psi_{m_1}^* \hat{\mathbf{A}} \psi_m, \quad (15)$$

Физика твердого тела, 2011, том 53, вып. 8

где m_C — масса куперовской пары, заряд которой -2e, $\hat{\mathbf{A}}$ — оператор вектор-потенциала, который можно определить как

$$\hat{\mathbf{A}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d\mathbf{r}_1 \, \frac{\mathbf{j}(\mathbf{r}_1)}{|\mathbf{r} - \mathbf{r}_1|}.$$
 (16)

Учитывая (8), (9) и (15), (16), для диагонального элемента получим

$$j_{mm}(\mathbf{r}) = \frac{2e\hbar n_c}{m_C} \nabla \Theta_m(\mathbf{r}) - \frac{1}{4\pi\lambda^2} \int d\mathbf{r}_1 \frac{j_{mm}(\mathbf{r}_1)\cos(\varphi - \varphi_1)}{|\mathbf{r} - \mathbf{r}_1|}, \quad (17)$$

где *λ* — глубина проникновения поля.

Выражая из (17) градиентные части диагональных элементов тока и затем подставляя их в (15), для недиагонального матричного элемента получим следующее интегральное уравнение:

$$j_{m_{1}m}(\mathbf{r}) + \frac{1}{4\pi\lambda^{2}} e^{-i(\Theta_{m}(\mathbf{r}) - \Theta_{m_{1}}(\mathbf{r}))} \int d\mathbf{r}_{1} \frac{j_{m_{1}m}(\mathbf{r}_{1})\cos(\varphi - \varphi_{1})}{|\mathbf{r} - \mathbf{r}_{1}|}$$

$$\times e^{-i(\Theta_{m}(\mathbf{r}_{1}) - \Theta_{m_{1}}(\mathbf{r}_{1}))} = \frac{j_{mm}(\mathbf{r}) + j_{m_{1}m_{1}}(\mathbf{r})}{2}$$

$$+ \frac{1}{8\pi\lambda^{2}} \int d\mathbf{r}_{1} \frac{(j_{mm}(\mathbf{r}_{1}) + j_{m_{1}m_{1}}(\mathbf{r}_{1}))\cos(\varphi - \varphi_{1})}{|\mathbf{r} - \mathbf{r}_{1}|}.$$
(18)

Для анализа уравнения Фредгольма второго рода (18) требуются диагональные матричные элементы оператора плотности сверхпроводящего тока в кольце. Известны исследования распределений тока в сверхпроводящих кольцах в определенном квантовом состоянии сверхпроводника [9,10], т.е. диагональные матричные элементы оператора плотности тока в кольце. Как правило, эти результаты были получены численными методами. Однако использование таких подходов не позволяет ясно проанализировать зависимости сечения рассеяния от параметров сверхпроводника, кольца и энергии нейтронов. Далее рассмотрим кольцо с определенной геометрией, для которого можно получить аналитические выражения для матричных элементов плотности сверхпроводящего тока [7].

Рассмотрим кольцо прямоугольного сечения из сверхпроводника второго рода, у которого длина когерентности меньше глубины проникновения поля. Кольцо полагается тонким, так что толщина кольца d больше длины свободного пробега электрона, но меньше λ , его внутренний радиус $a \gg \lambda$ и внешний радиус много больше a. В цилиндрических координатах (z, ρ, φ) ось zперпендикулярна плоскости кольца, которое занимает область $-d/2 \le z \le d/2$. Будем полагать, что магнитные поля в кольце являются слабыми по сравнению с H_{c_1} .

Для нахождения магнитной индукции **B** в кольце можно использовать уравнение Лондонов $\Delta \mathbf{B} = \lambda^{-2} \mathbf{B}$. Поскольку $d < \lambda$, зависимостью магнитной индукции от значения *z* можно пренебречь, а отсутствие зависимости

поля от угла φ обусловлено симметрией задачи. В результате приходим к уравнению

$$t^{2}\mathbf{B}_{tt}'' + t\mathbf{B}_{t}' - t^{2}\mathbf{B} = 0,$$
(19)

где $t = \rho / \lambda$.

В общем случае решение (19) выражается через модифицированные функции Бесселя $I_0(\rho/\lambda)$ и $K_0(\rho/\lambda)$ экспоненциально растет с ростом ρ . Поскольку мы рассматриваем кольцо с внешним радиусом $\gg a$, полем на внешней поверхности кольца можно пренебречь.

Ток в кольце $\mu_0 \mathbf{j} = \operatorname{rot} \mathbf{b}$ определяется лишь *z*-компонентой поля, которая имеет вид

$$\mathbf{B}_{z}(\rho) = B_{m}K_{0}(\rho/\lambda)\mathbf{i}_{z}, \qquad (20)$$

где B_m — величина поля, зависящая от квантового числа *m*. Соответственно ток в кольце есть

$$\mathbf{j}_{mm}(\rho) = \frac{B_m}{\mu_0 \lambda} K_1(\rho/\lambda) \mathbf{i}_{\varphi}, \qquad (21)$$

а фаза Θ_m волновой функции ψ_m (8) определяется только полярным углом φ

$$\Theta_m = m\varphi. \tag{22}$$

Квантование магнитного потока в кольце позволяет определить величину B_m . Действительно, используя (21), получим, что сверхпроводящий ток $J_{mm} = \int \mathbf{j}_{mm} d\mathbf{S}$ (здесь интегрирование проводится по сечению кольца) создает поток магнитной индукции $\Phi_0 m = L J_{mm}$. Отсюда

$$B_m = \frac{\mu_0 \Phi_0}{dL K_0(a/\lambda)} \, m,\tag{23}$$

где на квантовое число *m* имеется ограничение $m < m_{\max} = H_{c1} dL/\Phi_0.$

С учетом (21) и (22) уравнение (18) приводится к виду

$$j_{m_{1}m}(\rho) + \frac{1}{2\pi\lambda^{2}} \int_{a}^{\infty} G_{m_{1}m}(\rho, \rho_{1}) j_{m_{1}m}(\rho_{1}) \rho_{1} d\rho_{1}$$

$$= \frac{j_{mm}(\rho) + j_{m_{1}m_{1}}(\rho)}{2} + \frac{1}{2\pi\lambda^{2}}$$

$$\times \int_{a}^{\infty} G_{mm}(\rho, \rho_{1}) \frac{j_{mm}(\rho) + j_{m_{1}m_{1}}(\rho)}{2} \rho_{1} d\rho_{1}, \quad (24)$$

причем ядро интегрального уравнения (24) есть

$$G_{m_1m}(\rho,\rho_1) = \int_0^\pi \cos((m-m_1)\varphi) \\ \times \ln \frac{\sqrt{\frac{1}{4}d^2 + \rho^2 + \rho_1^2 - 2\rho\rho_1\cos\varphi} + \frac{1}{2}d}{\sqrt{\frac{1}{4}d^2 + \rho^2 + \rho_1^2 - 2\rho\rho_1\cos\varphi} - \frac{1}{2}d} d\varphi.$$
(25)

Далее будем рассматривть только макроскопические кольца с внутренним радиусом a > 1 mm и толщиной $d < \lambda \cong 2 \cdot 10^3 \text{ Å}$. В этом случае легко убедиться, что для величин $m-m_1$ порядка нескольких единиц сумма в (25) по полярному углу φ набирается при малых углах. При этом $\cos((m-m_1)\varphi)$ близок к единице, и соответственно хорошим приближением решения уравнения (24) является

$$j_{m_1m} = \frac{1}{2} \left(j_{mm} + j_{m_1m_1} \right).$$
 (26)

Отметим, что для мезоскопических колец, для которых $a \propto d \propto \lambda$, такое решение будет заведомо непригодным.

Подставляя (13), (21)–(23) в (11) и выполняя интегрирование по φ и *z*, для продольно-поляризованных нейтронов получим

$$j_{m_1m}^{\alpha\beta}(\mathbf{q}) = \pi e^{i(m-m_1+1)(\frac{\pi}{2}+\varphi_q)} \sin\left(\frac{d}{2}q_z\right) \frac{\Phi_0(m+m_1)}{d\lambda L}$$
$$\times \int_a^\infty \rho \, \frac{K_1(\rho/\lambda)}{K_0(a/\lambda)} J_{m-m_1+1}(q_\rho\rho) d\rho, \qquad (27)$$

$$j_{m_{1}m}^{\beta\alpha}(\mathbf{q}) = \pi e^{i(m-m_{1}-1)(\frac{\pi}{2}+\varphi_{q})} \sin\left(\frac{d}{2}q_{z}\right) \frac{\Phi_{0}(m+m_{1})}{d\lambda L}$$
$$\times \int_{a}^{\infty} \rho \, \frac{K_{1}(\rho/\lambda)}{K_{0}(a/\lambda)} J_{m-m_{1}-1}(q_{\rho}\rho) d\rho \tag{28}$$

при рассеянии с переворотом спина и

$$j_{m_1m}^{\alpha(\beta)\alpha(\beta)}(\mathbf{q}) = \mp \frac{q_{\rho}}{2q_z} \left(e^{i\varphi_q} j_{m_1m}^{\beta\alpha}(\mathbf{q}) + e^{-i\varphi_q} j_{m_1m}^{\alpha\beta}(\mathbf{q}) \right) \quad (29)$$

без переворота спина нейтрона.

Действуя аналогично с учетом (14), для поперечнополяризованных нейтронов получим для первых трех матричных элементов тока

$$j_{m-1,m}^{\chi(\eta)\chi(\eta)}(\mathbf{q}) = \pm \pi \sin\left(\frac{d}{2}q_z\right) e^{i\varphi_q} \frac{\Phi_0(2m-1)}{d\lambda L} \int_a^\infty d\rho \rho \, \frac{K_1(\rho/\lambda)}{K_0(a/\lambda)} \\ \times \left[\cos(\varphi_q) \, \frac{\partial}{\partial q_\rho \rho} \, J_1(q_\rho \rho) - i \sin(\varphi_q) \, \frac{1}{q_\rho \rho} \, J_1(q_\rho \rho)\right], \quad (30)$$

$$j_{m-2,m}^{\chi(\eta)\chi(\eta)}(\mathbf{q}) = \pm \pi \sin\left(\frac{d}{2}q_z\right) e^{2i\varphi_q} \frac{\Phi_0(2m-2)}{d\lambda L} \int_a^\infty d\rho \rho \frac{K_1(\rho/\lambda)}{K_0(a/\lambda)} \times \left[i\cos(\varphi_q)\frac{\partial}{\partial q_\rho\rho}J_2(q_\rho\rho) - \sin(\varphi_q)\frac{\partial}{\partial q_\rho\rho}\frac{1}{q_\rho\rho}J_1(q_\rho\rho)\right]$$
(31)

И

$$j_{m-3,m}^{\chi(\eta)\chi(\eta)}(\mathbf{q}) = \mp \pi \sin\left(\frac{d}{2}q_z\right) e^{3i\varphi_q} \frac{\Phi_0(2m-3)}{d\lambda L}$$

$$\times \int_a^\infty d\rho \rho \frac{K_1(\rho/\lambda)}{K_0(a/\lambda)} \left[\cos(\varphi_q) \frac{\partial}{\partial q_\rho \rho} J_3(q_\rho \rho) + 3i\sin(\varphi q) \left(\frac{1}{q_\rho \rho} J_1(q_\rho \rho) - \frac{4}{(q_\rho \rho)^2} J_2(q_\rho \rho)\right)\right] (32)$$

при рассеянии без переворота спина.

Соответственно при рассеянии с переворотом спина имеем

$$j_{m-1,m}^{\chi\eta}(\mathbf{q}) = -\pi e^{i\varphi_q} \frac{\sin\left(\frac{d}{2}q_z\right)}{q_z} \frac{\Phi_0(2m-1)}{d\lambda L} \int_a^\infty d\rho \rho \frac{K_1(\rho/\lambda)}{K_0(a/\lambda)}$$
$$\times \left[q_\rho \frac{\partial}{\partial q_\rho \rho} J_1(q_\rho \rho) + q_z \cos(\varphi_q) \frac{1}{q_\rho \rho} J_1(q_\rho \rho) - iq_z \sin(\varphi_q) \frac{\partial}{\partial q_\rho \rho} J_1(q_\rho \rho) \right], \tag{33}$$

$$j_{m-2,m}^{\chi\eta}(\mathbf{q}) = -i\pi e^{i2\varphi_q} \frac{\sin(\frac{\pi}{2}q_z)}{q_z} \frac{\varphi_0(2m-2)}{d\lambda L}$$

$$\times \int_a^\infty d\rho \rho \frac{K_1(\rho/\lambda)}{K_0(a/\lambda)} \bigg[q_\rho \frac{\partial}{\partial q_\rho \rho} J_2(q_\rho \rho) - 2q_z \cos(\varphi_q)$$

$$\times \frac{\partial}{\partial q_\rho \rho} \frac{1}{q_\rho \rho} J_1(q_\rho \rho) - iq_z \sin(\varphi_q) \frac{\partial}{\partial q_\rho \rho} J_2(q_\rho \rho) \bigg]$$
(34)

И

$$j_{m-3,m}^{\chi\eta}(\mathbf{q}) = \pi e^{i3\varphi_q} \frac{\sin\left(\frac{d}{2}q_z\right)}{q_z} \frac{\Phi_0(2m-3)}{d\lambda L} \int_a^{\infty} d\rho \rho \frac{K_1(\rho/\lambda)}{K_0(a/\lambda)}$$
$$\times \left[q_\rho \frac{\partial}{\partial q_\rho \rho} J_3(q_\rho \rho) - 3q_z \cos(\varphi_q) \left(\frac{1}{q_\rho \rho} J_1(q_\rho \rho)\right) - \frac{4}{(q_\rho \rho)^2} J_2(q_\rho \rho)\right] - iq_z \sin(\varphi_q) \frac{\partial}{\partial q_\rho \rho} J_3(q_\rho \rho) \right]. \tag{35}$$

Отметим, что матричные элементы $j_{m_1m}^{\eta\chi}(\mathbf{q})$ соответствуют (33)–(35) с заменой $q_z \to -q_z$.

5. Продольная поляризация нейтронов

Поскольку радиус кольца $a \gg \lambda$, в выражениях для плотности тока (27)–(35) можно использовать асимптотическое разложение функций Бесселя $K_{0.1}(x) \cong 1.2533 x^{-1/2} e^{-x}$ [11].

Сечение рассеяния является изотропным по полярному углу φ_1 . Используя (4), (10) и (27)–(29), двойное дифференциальное сечение неупругого рассеяния нейтронов без переворота спина можно привести к виду

$$\frac{\partial^{2} \sigma_{\alpha\alpha}}{\partial \varepsilon_{\rho_{1_{z}}} \partial \varepsilon_{\rho_{1_{\rho}}}} = \frac{\pi^{3} \gamma^{2}}{2^{2}} \left(\frac{\mu_{0}}{L}\right)^{2} \frac{a}{d^{2} \lambda^{2} \varepsilon_{p}^{1/2}} \\ \times \sum_{m_{1}=1}^{m-1} \frac{(m+m_{1})^{2} p_{1_{\rho}}^{2}}{\left((p-p_{1_{z}})^{2} + p_{1_{\rho}}^{2}\right)^{2} \varepsilon_{1_{z}}^{1/2}} \frac{\sin^{2}\left(\frac{1}{2}d(p-p_{1_{z}})\right)}{(p-p_{1_{z}})^{2}} \\ \times \left[\int_{a}^{\infty} d\rho \rho^{1/2} e^{-\frac{\rho-a}{\lambda}} \frac{\partial}{\partial p_{1_{\rho}\rho}} J_{m-m_{1}}(p_{1_{\rho}}\rho)\right]^{2} \\ \times \delta\left(\varepsilon_{p_{1_{\rho}}} + \varepsilon_{p_{1_{z}}} - \varepsilon_{p} - E_{0}(m^{2}-m_{1}^{2})\right).$$
(36)

Согласно (36), характерное изменение *z*-компоненты вектора рассеяния $q_z = p - p_{1_z} \approx 2\pi/d$, где *d* порядка λ . При $\lambda = 2 \cdot 10^3$ Å для холодных нейтронов с энергией порядка 2μ eV волновой вектор нейтронов *p* много больше $\frac{2\pi}{\lambda}$. Фактически (36) предсказывает сохранение *z*-проекции волнового вектора нейтрона после рассеяния. Поэтому можно сделать замену $\sin(\frac{1}{2}q_zd)/q_z \cong \pi\delta(q_z)$. В результате после интегрирования по энергиям $\varepsilon_{\rho_{1_z}}$ и $\varepsilon_{\rho_{1_\rho}}$ сечение принимает вид

$$\sigma_{\alpha\alpha} = \frac{\pi^{2}\gamma^{2}}{2^{5/2}} \frac{\mu_{0}^{2}\hbar e^{2}a}{m_{n}^{3/2}d\lambda^{2}L\varepsilon_{p}^{1/2}} \sum_{m_{1}=1}^{m-1} \frac{m+m_{1}}{m-m_{1}} \\ \times \left[\int_{a}^{\infty} d\rho\rho^{1/2}e^{-\frac{\rho-a}{\lambda}} \frac{\partial}{\partial p_{1\rho}\rho} J_{m-m_{1}}(p_{1\rho}\rho)\right]^{2}, \quad (37)$$

где волновой вектор $p_{1_{\rho}}$ рассеянных нейтронов имеет дискретные значения

$$p_{1_{\rho}} = \frac{\sqrt{2m_n E_0}}{\hbar} (m^2 - m_1^2)^{1/2}.$$
 (38)

Минимальное значение аргумента функции Бесселя J_{m-m_1} в (37) есть $p_{1_\rho}a$. Для макроскопических колец с размерами a > 1 mm следует считать $p_{1_\rho}a \gg 1$. Потому можно использовать асимптотическое разложение J_{m-m_1} при больших значениях аргумента [11]. В результате получим

$$\sigma_{\alpha\alpha} = \frac{\pi\gamma^2}{2^{3/2}} \frac{\mu_0^2 e^2 \hbar a}{dL m_n^{3/2} \varepsilon_p^{1/2}} \sum_{m_1=1}^{m-1} \frac{m+m_1}{m-m_1} \\ \times \frac{\left[\sin(a p_{1\rho} - \varphi) + \lambda p_{1\rho} \cos(a p_{1\rho} - \varphi)\right]^2}{p_{1\rho} (1 + \lambda^2 p_{1\rho}^2)^2}, \quad (39)$$

где $\varphi = \frac{\pi}{2} (m - m_1 + \frac{1}{2}).$

Фаза гармонических функций в (39) очень большая, $ap_{1_{\rho}} - \phi \gg \pi$. При малом изменении внутреннего радиуса кольца сечение (39) осциллирует. Так, характерный масштаб этих осцилляций $\Delta a = \pi/p_{1_{\rho}}(m_1 = m - 1) \cong 1.65$ Å при числе флуксоидов m = 51 и характеристи-

ческой энергии кольца $E_0 = 0.0731 \text{ meV}$, что соответствует среднему радиусу кольца a = 5 mm и $d = \lambda/3$ [7].

Конечно, реальные макроскопические кольца можно охарактеризовать лишь средним внутренним радиусом и его среднеквадратичным отклонением. Полагая, что отклонения внутреннего радиуса кольца от его среднего значения много больше масштаба осцилляций (39), и учитывая, что для импульсов (38) $p_{1_o}\lambda \gg 1$, получаем

$$\langle \sigma_{\alpha\alpha} \rangle = \sum_{m_1=1}^{m-1} \langle \sigma_{\alpha\alpha}(m_1) \rangle.$$
 (40)

Здесь $\langle \sigma_{\alpha\alpha}(m_1) \rangle$ — парциальное сечение для конечного состояния системы нейтрон-сверхпроводящее кольцо с энергией рассеянного нейтрона $\varepsilon_{p_1} = \varepsilon_{p_{1_z}} + \varepsilon_{p_{1_p}}$, где $\varepsilon_{p_{1_z}} = \varepsilon_p$ и $\varepsilon_{p_{1_p}} = E_0(m^2 - m_1^2)$, и уменьшенным в конечном состоянии кольца числом флуксоидов на величину $m - m_1$,

$$\langle \sigma_{\alpha\alpha}(m_1) \rangle = \frac{\sigma_0}{(m-m_1)^{5/2}(m+m_1)^{1/2}},$$
 (41)

$$\sigma_0 = \left(\frac{\gamma}{2\pi}\right)^2 \frac{e^5 \mu_0^2 a L^{1/2}}{p m_n^{5/2} d\lambda^2}.$$
(42)

Поскольку $\varepsilon_{p_{1\rho}} \gg \varepsilon_{p_{1z}}$ и сечение рассеяния является изотропным по полярному углу φ_1 , рассеянные нейтроны двигаются вдоль образующих конических поверхностей почти перпендикулярно *z*-оси.

Теперь рассмотрим процесс неупругого рассеяния с переворотом спина нейтрона. Учитывая различие в индексах функций Бесселя (27) и (28), можно было бы ожидать различие в сечении рассеяния для процессов перехода $S_x = \frac{1}{2} \rightarrow S_{1x} = -\frac{1}{2}$ и $S_x = -\frac{1}{2} \rightarrow S_{1x} = \frac{1}{2}$. Однако области интегрирования по энергиям, в которых аргументы этих функций Бесселя порядка $p_{1\rho}\rho \leq \kappa \approx 5$, оказываются очень узкими $\varepsilon_{p_{1\rho}} \leq E_{\kappa} = \hbar^2 \kappa^2 / 2m_n a^2$, $E_0(m^2 - m_1^2) + \varepsilon_p - E_{\kappa} \leq \varepsilon_{p_{1z}} \leq E_0(m^2 - m_1^2) + \varepsilon_p$. В результате разница в сечениях этих процессов рассеяния содержит дополнительную малую величину $\frac{\lambda}{a}$.

В случае параллельной поляризации сечение рассеяния с переворотом спина также является изотропным по полярному углу φ_1 . Используя (4), (10) и (27), двойное дифференциальное сечение неупругого рассеяния с переворотом спина нейтронов можно привести к виду

$$\frac{\partial^{2} \sigma_{\alpha\beta}}{\partial \varepsilon_{\rho_{1_{z}}} \partial \varepsilon_{\rho_{1_{\rho}}}} = \frac{\pi^{3}}{2^{2}} \gamma^{2} \left(\frac{\mu_{0}}{L}\right)^{2} \frac{a}{d^{2} \lambda^{2} \varepsilon_{p}^{1/2}} \\ \times \sum_{m_{1}=1}^{m-1} \frac{(m+m_{1})^{2} \sin^{2}(\frac{1}{2} d(p-p_{1_{z}}))}{((p-p_{1_{z}})^{2} + p_{1_{\rho}}^{2})^{2} \varepsilon_{1_{z}}^{1/2}} \\ \times \left[\int_{a}^{\infty} d\rho \rho^{1/2} e^{-\frac{\rho-a}{\lambda}} J_{m-m_{1}-1}(p_{1_{\rho}}\rho)\right]^{2} \\ \times \delta(\varepsilon_{p} - \varepsilon_{p_{1_{\rho}}} - \varepsilon_{p_{1_{z}}} + E_{m} - E_{m_{1}}).$$
(43)

Полагая $p_{1_{\rho}}a \gg 1$, после интегрирования по $\varepsilon_{1_{\rho}}$ и усреднения по отклонениям внутреннего радиуса кольца от его среднего получим

$$\frac{\partial \langle \sigma_{\alpha\beta} \rangle}{\partial \varepsilon_{\rho_{1_{z}}}} = \left(\frac{\pi\gamma}{2}\right)^{2} \left(\frac{\mu_{0}}{L}\right)^{2} \left(\frac{\hbar^{2}}{2m_{n}}\right)^{7/2} \frac{a}{d^{2}\lambda^{2}\varepsilon_{p}^{1/2}} \times \sum_{m_{1}=1}^{m-1} \frac{(m+m_{1})^{2}\sin^{2}\left(\frac{d}{2\lambda}\frac{1}{\sqrt{\varepsilon_{\lambda}}}\left(\sqrt{\varepsilon_{p}}\mp\sqrt{\varepsilon_{p_{1_{z}}}}\right)\right)}{\sqrt{\varepsilon_{p_{1_{z}}}(E_{mm_{1}}-\varepsilon_{p_{1_{z}}})(E_{\lambda}+E_{mm_{1}}-\varepsilon_{p_{1_{z}}})(E_{mm_{1}}+\varepsilon_{p}\mp2\sqrt{\varepsilon_{p}\varepsilon_{p_{1_{z}}}})^{2}}},$$
(44)

где $E_{mm_1} = E_0(m^2 - m_1^2) + \varepsilon_p$ и $E_{\lambda} = \hbar^2/2m_n\lambda^2$. В (44) отрицательный знак соответствует сечению рассеяния нейтрона вперед $(p_{1z} > 0)$, а положительный знак — процессу рассеяния назад $(p_1 < 0)$.

Основной вклад в сечение (44) определяется энергиями $\varepsilon_{p_{1_z}}$, очень близкими к $E_{mm_1} \gg \varepsilon_p$, E_λ . Для колец с внутренним радиусом $a \leq 10 \text{ mm}$ и толщиной $d = \lambda/3$ безразмерный параметр $\sqrt{E_{mm_1}/36E_\lambda} \gg 1$, а фаза гармонической функции в (44) велика по сравнению с π . Конечно, обе поверхности кольца имеют шероховатость, по крейней мере атомного масштаба. После усреднения по отклонениям толщины кольца от его среднего легко проводится интегрирование (44) по энергии $\varepsilon_{p_{1_z}}$. В результате сечения рассеяния вперед и назад оказываются одинаковыми, а для парциального сечения, соответствующего уменьшению числа флуксоидов на величину $m - m_1$ в конечном состоянии кольца, получим

$$\langle \sigma_{\alpha\beta}(m_1) \rangle = \frac{\lambda}{d} \frac{\sigma_0}{(m-m_1)^{5/2}(m+m_1)^{1/2}},$$
 (45)

где σ_0 определяется (42).

При рассеянии нейтронов с переворотом спина изменение энергии сверхпроводящего кольца передается в значительной степени составляющей энергии нейтрона $\varepsilon_{p_{1_z}} \cong E_0(m^2 - m_1^2) + \varepsilon_p$, а поперечный импульс рассеянных нейтронов мал: $p_{1_\rho} \ll p_{1_z}$. Рассеянные нейтроны двигаются почти вдоль *z*-оси при рассеянии вперед или в противоположном направлении при рассеянии назад. Энергетические распределения рассеянных кольцом нейтронов определяются выражением (44) с учетом того, что $\varepsilon_{p_{1_\rho}} = E_0(m^2 - m_1^2) + \varepsilon_p - \varepsilon_{p_{1_z}}$.

Сравнивая (41) и (45), находим

$$\frac{\langle \sigma_{\alpha\beta} \rangle}{\langle \sigma_{\alpha\alpha} \rangle} = \frac{\lambda}{d}.$$
(46)

Поэтому для колец с толщиной $d < \lambda$ сечение неупругого рассеяния нейтронов с переворотом спина будет больше сечения неупругого рассеяния нейтронов без переворота спина.

6. Поперечная поляризация нейтронов

Сначала рассмотрим рассеяние без переворота спина. Выражения для матричных элементов тока даются (30)– (32). Как обсуждалось выше, для макроскопических колец следует считать $p_{1\rho}a \gg 1$. В этом случае члены в правых частях этих матричных элементов, стоящие в квадратных скобках при $\sin \varphi_q$, будут иметь малый множитель $(p_{1\rho}a)^{-1}$ по сравнению с членами, стоящими при $\cos \varphi_q$. Опуская эти члены, матричные элементы токов легко вычислить. Затем, подставляя эти полученные величины в (10) и проводя процедуру усреднения по отклонениям внутреннего радиуса и толщины кольца от их средних значений, дифференциальное сечение (4) неупругого рассеяния поперечно-поляризованных нейтронов без переворота спина приводим к виду

$$\frac{\partial^2 \langle \sigma_{\chi\chi} \rangle}{\partial \varepsilon_{\rho_{l_z}} \partial \varphi_q} = \frac{\pi \gamma^2}{4} \left(\frac{\mu_0}{L}\right)^2 \left(\frac{\hbar^2}{2m_n}\right)^{7/2} \frac{a \cos^2 \varphi_q}{d^2 \lambda^2 \varepsilon_p^{1/2}} \times \sum_{m_1=1}^{m-1} \frac{(m+m_1)^2}{\sqrt{\varepsilon_{\rho_{l_z}} (E_{mm_1} - \varepsilon_{\rho_{l_z}})(E_{\lambda} + E_{mm_1} - \varepsilon_{\rho_{l_z}})(E_{mm_1} + \varepsilon_p \mp 2\sqrt{\varepsilon_{\rho} \varepsilon_{\rho_{l_z}}})^2},$$
(47)

где отрицательный знак соответствует сечению рассеяния нейтрона вперед $(p_{1_z} > 0)$, а положительный знак — процессу рассеяния назад $(p_{1_z} < 0)$.

Сравнивая (44) с (47), приходим к заключению, что отличие в рассеянии продольно-поляризованных нейтронов с переворотом спина от случая рассеяния поперечно-поляризованных нейтронов без переворота спина связано с угловыми распределениями. В первом случае сечение (44) является изотропным, а угловые распределения для поперечно-поляризованных нейтронов следуют $\cos^2 \varphi_q$. Энергетические распределения рассеяния нейтронов для двух случаев являются идентичными.

Для холодных нейтронов $E_0 \gg \varepsilon_p$ и сечения рассеяния вперед и назад близки друг другу, а суммарное парциальное сечение есть

$$\langle \sigma_{\chi\chi}(m_1) \rangle = \frac{1}{2} \langle \sigma_{\alpha\beta}(m_1) \rangle,$$
 (48)

где $\langle \sigma_{\alpha\beta}(m_1) \rangle$ определяется (45).

Теперь рассмотрим рассеяние нейтронов на сверхпроводящем кольце с переворотом спина. Опуская члены в квадратных скобках в правых частях недиагональных матричных элементов тока (33)–(35), содержащие множитель $(p_{1_{\theta}}\rho)^{-1}$, получим

$$j_{m_{1},m}^{\chi\eta}(\mathbf{q}) = \pi e^{i\frac{\pi}{2}(m-m_{1}+1+\varphi_{q})} \frac{\sin\left(\frac{d}{2}q_{z}\right)}{q_{z}} \frac{\Phi_{0}(2m-1)}{d\lambda L}$$
$$\times \int_{a}^{\infty} d\rho \rho \frac{K_{1}(\rho/\lambda)}{K_{0}(a/\lambda)} \bigg[q_{\rho} \frac{\partial}{\partial q_{\rho}\rho} J_{m-m_{1}}(q_{\rho}\rho)$$
$$- iq_{z} \sin(\varphi_{q}) \frac{\partial}{\partial q_{\rho}\rho} J_{m-m_{1}}(q_{\rho}\rho) \bigg]. \tag{49}$$

Подставляя (49) в (10) и затем в (4), получаем усредненное по внутреннему радиусу кольца дифференциальное

сечение поперечно-поляризованных нейтронов с переворотом спина

$$\frac{\partial^{3}\sigma_{\chi\eta}}{\partial\varepsilon_{\rho_{1_{c}}}\partial\varepsilon_{\rho_{1_{\rho}}}\partial\varphi_{q}} = \frac{\pi}{2^{3}}\gamma^{2}\left(\frac{\mu_{0}}{L}\right)^{2}\frac{a}{d^{2}\varepsilon_{p}^{1/2}} \\
\times \sum_{m_{1}=1}^{m-1}\frac{(m+m_{1})^{2}}{((p-p_{1_{z}})^{2}+p_{1_{\rho}}^{2})^{2}\varepsilon_{1_{z}}^{1/2}}\frac{\sin^{2}(\frac{1}{2}d(p-p_{1_{z}}))}{(p-p_{1_{z}})^{2}} \\
\times \frac{p_{1_{\rho}}^{2}+(p-p_{1_{z}})^{2}\sin^{2}\varphi_{q}}{p_{1_{\rho}}(1+\lambda^{2}p_{1_{\rho}}^{2})}\delta(\varepsilon_{p}-\varepsilon_{p_{1_{\rho}}}-\varepsilon_{p_{1_{z}}}+E_{m}-E_{m_{1}}).$$
(50)

По угловому распределению выражение (50) можно представить в виде суммы двух членов. Первый член является изотропным по φ_q . Здесь вывод парциального сечения идентичен использованному подходу при получении (41), (42). В результате получим

$$\langle \sigma_{\chi\eta}^{(1)}(m_1) \rangle = \frac{1}{2} \langle \sigma_{\alpha\alpha}(m_1) \rangle,$$
 (51)

где $\langle \sigma_{\alpha\alpha}(m_1) \rangle$ определяется (41).

Энергетическое распределение первой составляющей сечения (50) для рассеяния поперечно-поляризованных нейтронов с переворотом спина полностью соответствует распределению при рассеянии продольно-поляризованных нейтронов без переворота спина, а именно нейтроны рассеиваются кольцом только вперед с постоянной составляющей энергии нейтрона $\varepsilon_{p_{1_z}} = \varepsilon_p$, а энергия $\varepsilon_{p_{1_\rho}}$ меняется дискретно, $\varepsilon_{p_{1_\rho}} = E_0(m^2 - m_1^2)$.

При этом для парциального сечения (51) число флуксоидов в сверхпроводящем кольце уменьшается на величину *m*-*m*₁.

Второй вклад в сечение (50) пропорционален $\sin^2 \varphi_q$. Здесь вывод парциального сечения идентичен использованному подходу при получении сечения (47), (48) с заменой $\cos^2 \varphi_q \rightarrow \sin^2 \varphi_q$. Здесь имеет место рассеяние нейтронов как вперед, так и назад. Причем если $E_0 \gg \varepsilon_p$, то эти сечения рассеяния близки друг другу, а суммарное парциальное сечение есть

$$\langle \sigma_{\chi\eta}^{(2)}(m_1) \rangle = \langle \sigma_{\chi\chi}(m_1) \rangle,$$
 (52)

где $\langle \sigma_{\chi\chi}(m_1) \rangle$ дается (48).

Энергетические и угловые распределения второй составляющей сечения (50) для рассеяния поперечнополяризованных нейтронов с переворотом спина определены (47) с заменой $\cos^2 \varphi_q \rightarrow \sin^2 \varphi_q$ и учетом того, что $\varepsilon_{p_{1\rho}} = E_0(m^2 - m_1^2) + \varepsilon_p - \varepsilon_{p_{1z}}$.

В итоге полное парциальное сечение рассеяния с переворотом спина нейтрона $\langle \sigma_{\chi\eta}(m_1) \rangle = \langle \sigma_{\chi\eta}^{(1)}(m_1) \rangle + \langle \sigma_{\chi\eta}^{(2)}(m_1) \rangle$ имеет вид

$$\langle \sigma_{\chi\eta}(m_1) \rangle = \frac{\lambda + d}{2d} \frac{\sigma_0}{(m - m_1)^{5/2} (m + m_1)^{1/2}}.$$
 (53)

Результаты для сечений и их обсуждение

В расчетах использовалось значение глубины проникновения $\lambda = 2 \cdot 10^3$ Å, характерное для массивных сверхпроводников второго рода Nb₃Sn, V₃Ga, у которых первое критическое поле $H_{c1} \approx 200$ G.

Характерной величиной сечения неупругого рассеяния нейтронов является σ_0 (42). При увеличении внутреннего радиуса кольца индуктивность растет и соответственно "квант" энергии кольца E_0 уменьшается [7]. Поэтому, согласно (42), для увеличения сечения следует использовать кольца с большими радиусами. Были выбраны три значения a = 2, 5 и 10 mm. С уменьшением толщины кольца сечение рассеяния увеличивается. Однако в (42) можно использовать значение глубины проникновения поля, полученное для массивных сверхпроводников, только в том случае, если толщина кольца больше длины свободного пробега электронов. В противном случае глубина проникновения зависит от d и растет с уменьшением толщины сверхпроводящей пленки [12]. Таким образом, на величину d есть ограничение снизу, связанное с длиной свободного пробега. Использовалось значение $d = \lambda/3$. При увеличении исходной энергии падающих нейтронов сечение уменьшается. Расчеты проводились для холодных нейтронов с энергией $\varepsilon_p = 2 \,\mu \text{eV}$. При этом $dp/2\pi = 3.3$, что оправдывает использованный при выводе (37) подход.

Полученные парциальные сечения рассеяния обратно пропорциональны $(m - m_1)^{5/2}(m + m_1)^{1/2}$. Поэтому сечение канала $m_1 = m - 1$, для которого число флуксоидов состояния кольца уменьшается на единицу, дает главный вклад в полное сечение, хотя и сечение канала $m_1 = m - 2$ также является значимым. Число флуксоидов в начальном состоянии кольца следует выбирать относительно небольшим. В расчетах полагалось m = 101, что на много порядков меньше ограничения $m_{\max}(H_{c1})$.

Вычисления индуктивности колец прямоугольного сечения с представленными выше параметрами приводятся в [7]. Так, $L = 0.0709 \,\mu\text{H}$ и $E_0 = 0.189 \,\text{meV}$ для кольца с внутренним радиусом $a = 2 \,\text{mm}$ и распределением плотности сверхпроводящего тока (21). Для кольца с внутренним радиусом $a = 5 \,\text{mm} L = 0.183 \,\mu\text{H}$ и $E_0 = 0.0731 \,\text{meV}$. При значении $a = 10 \,\text{mm}$ имеем $L = 0.375 \,\mu\text{H}$ и $E_0 = 0.0357 \,\text{meV}$. Используя (42), получаем $\sigma_0 = 0.86 \,\mu\text{barn}$ для $a = 2 \,\text{mm}$, $\sigma_0 = 3.46 \,\mu\text{barn}$ для $a = 5 \,\text{mm}$ и $\sigma_0 = 9.91 \,\mu\text{barn}$ для $a = 10 \,\text{mm}$.

В таблице представлены вычисленные сечения неупругого рассеяния нейтронов для канала $m_1 = m - 1$. Этот канал соответствует уменьшению числа квантов магнитного потока в кольце на единицу после рассеяния нейтрона.

Сечения рассеяния продольно-поляризованных нейтронов без переворота их спина $\langle \sigma_{\alpha\alpha} \rangle$ представлены во втором столбце таблицы. Компонента импульса рассеянных нейтронов вдоль *z*-оси, перпендикулярной плоскости кольца, сохраняется. Соответственно энергия ε_{p_1} .

Сечения неупругого рассеяния нейтронов для канала $m_1 = m - 1$

a, mm	$\langle \sigma_{lpha lpha} angle, \ \mu { m barn}$	$\langle \sigma_{lphaeta} angle, \ \mu$ barn	$\langle \sigma_{\chi\chi} \rangle$, μ barn	$\langle \sigma_{\chi\eta} angle,$ μ barn	$\varepsilon_{p_1},$ meV
2	0.06	0.18	0.09	0.12	37.99
5	0.24	0.73	0.37	0.49	14.69
10	0.70	2.10	1.05	1.40	7.18

равна исходной энергии нейтронов $\varepsilon_p = 2 \mu \text{eV}$. В то же время у рассеянных нейтронов появляется поперечная составляющая импульса (38), что соответствует энергии нейтронов $\varepsilon_{p_{1\rho}} = E_0(m^2 - m_1^2) = 37.99 \text{ meV}$ при рассеянии на кольце со средним внутренним радиусом $a = 2 \text{ mm}, \varepsilon_{p_{1\rho}} = 14.69 \text{ meV}$ для кольца с a = 5 mm и $\varepsilon_{p_{1\rho}} = 7.18 \text{ meV}$ при a = 10 mm. Поскольку $\varepsilon_{p_{1\rho}} \gg \varepsilon_{p_{1z}}$ и сечение рассеяния является изотропным по полярному углу φ_1 , рассеянные нейтроны двигаются вдоль образующих конической поверхности, почти перпендикулярных *z*-оси.

При прочих равных условиях наибольшие сечения соответствуют рассеянию сверхпроводящим кольцом продольно-поляризованных нейтронов с переворотом их спина $\langle \sigma_{\alpha\beta} \rangle$, как это демонстрирует третий столбец таблицы. Здесь изменение энергии сверхпроводящего кольца, соответствующее каналу рассеяния $m_1 = m - 1$, передается в значительной степени составляющей энергии нейтрона $\varepsilon_{p_{1_z}} \cong E_0(m^2 - m_1^2) + \varepsilon_p$. Рассеянные нейтроны двигаются почти вдоль z-оси при рассеянии вперед, или в противоположном направлении при рассеянии назад. Сечения рассеяния вперед и назад являются близкими друг к другу. Поперечный импульс рассеянных нейтронов $p_{1_{\rho}} \ll p_{1_z}$. Энергетические распределения рассеянных кольцом нейтронов определяются выражением (44) с учетом того, что $\varepsilon_{p_{1_o}} = E_0(m^2 - m_1^2) + \varepsilon_p - \varepsilon_{p_{1_o}}.$

Сечения рассеяния поперечно-поляризованных нейтронов без переворота спина $\langle \sigma_{\chi\chi} \rangle$, представленные в четвертом столбце таблицы, в 2 раза меньше сечений для продольно-поляризованных нейтронов с переворотом спина, а энергетические распределения рассеянных нейтронов оказываются идентичными. Угловые распределения оказываются различными. Если для продольно-поляризованных нейтронов сечение (44) является изотропным, то угловые распределения для поперечно-поляризованных нейтронов (47) следуют соs² φ_q .

Наконец, в пятом столбце представлены парциальные сечения рассеяния поперечно-поляризованных нейтронов с переворотом спина $\langle \sigma_{\chi\eta} \rangle$ для канала $m_1 = m - 1$. По энергетическому и угловому распределениям рассеянных нейтронов это сечение (50) можно представить в виде суммы двух членов. Первый член (51), являющийся изотропным по углу φ_q , дает половинное сечение рассеяния для продольно-поляризованных нейтронов без переворота спина. Причем энергетическое распределение этой составляющей сечения (50) полностью соответствует распределению при рассеянии продольнополяризованных нейтронов без переворота спина, а именно нейтроны рассеиваются кольцом только вперед с постоянной составляющей энергии нейтрона $\varepsilon_{p_{1_z}} = \varepsilon_p$, а энергия $\varepsilon_{p_{1_o}}$ меняется дискретно; $\varepsilon_{p_{1_o}} = E_0(m^2 - m_1^2)$.

Второй вклад в сечение (50), который пропорционален $\sin^2 \varphi_q$, отличается только угловым распределением от рассеяния поперечно-поляризованных нейтронов без переворота спина (47), (48), которое пропорционально $\cos^2 \varphi_q$. Здесь имеет место рассеяние нейтронов как вперед, так и назад с их энергией $\varepsilon_{p_{1z}} \cong E_0(m^2 - m_1^2) + \varepsilon_p$. Причем если $E_0 \gg \varepsilon_p$, то эти сечения рассеяния близки друг к другу.

Таким образом, рассеяние поперечно-поляризованных нейтронов с переворотом спина характеризуется обоими типами энергетического распределения рассеянных нейтронов. Для первого типа изменение энергии сверх-проводящего кольца $E_0(m^2 - m_1^2)$ передается продольной компоненте кинетической энергии нейтронов $\varepsilon_{p_{1z}}$, а для второго типа — поперечной компоненте $\varepsilon_{p_{1o}}$.

8. Заключение

Как известно, ток в сверхпроводящем кольце, в принципе являющийся метастабильным, может меняться лишь квантовыми скачками, соответствующими изменению квантового числа флуксоидов на одну или несколько единиц. Квантовый скачок осуществляется коллективным переходом всех вовлеченных в ток куперовских пар. Как показано в настоящей работе, такое квантовое макроскопическое состояние сверхпроводящего конденсата в кольце можно изменять одной микрочастицей — нейтроном. При неупругом магнитном рассеянии нейтрона кольцом происходят квантовые скачки числа флуксоидов в кольце, а изменение энергии кольца передается кинетической энергии рассеянного нейтрона. При этом для изначально холодных нейтронов их энергия в конечном состоянии может составлять десятки meV, как показано в таблице.

Конечно, сечения рассеяния являются относительно малыми, от десятых долей до нескольких μ barn. Насколько нам известно, в настоящее время можно говорить об измеримости какого-либо процесса рассеяния нейтрона, если сечение рассеяния больше 0.1 mbarn, т.е. два-три порядка больше предсказываемых для неупругого магнитного рассеяния нейтронов одним сверхпроводящим кольцом.

Для увеличения сечения рассеяния можно использовать системы сверхпроводящих колец. В случае если кольца системы не являются сцепленными магнитным потоком, сечение рассеяния нейтронов системой таких колец будет равно сечениям, представленным в таблице, умноженным на число колец. Такое рассеяние, пропорциональное числу колец, можно назвать некогерентным рассеянием нейтронов системой колец.

Как обсуждалось выше, оптимальная толщина колец оказывается порядка глубины проникновения поля в

сверхпроводник $\lambda \cong 2 \cdot 10^3$ Å. Характерная длина убывания магнитного поля кольца порядка его внутреннего радиуса. Для значения последнего a = 5 mm на характерной длине убывания магнитного поля можно создать систему с большим числом колец с относительно большими коэффициентами взаимной индукции. Тогда, как мы полагаем, сечение рассеяния нейтронов на такой системе колец может содержать член, пропорциональный N^2 . Такое рассеяние следовало бы назвать когерентным рассеянием нейтронов системой сцепленных потоком колец. Однако это требует исследования.

Список литературы

- [1] Ю.А. Изюмов. УФН 80, 635 (1963).
- [2] S.W. Lovesey. In: Dynamics of solids and liquids by neutron scattering / Eds S.W. Lovesey, T. Springer. Springer-Verlag (1977).
- [3] С.В. Малеев. УФН 172, 617 (2002).
- [4] H.A. Mook, G. Aeppli, S.M. Hayden, Z. Fisk, D. Rytz. In: Dynamics of magnetic fluctuations in high temperature superconductors / Eds G. Reiter, P. Horsh, G. Psaltakis. Plenum Press, N.Y. (1991). P. 21.
- [5] D. Haug, V. Hinkov, Y. Sidis, P. Bourgers, N.B. Christensen, A. Ivanov, T. Keller, C.T. Lin, B. Keimer. New J. Phys. 12, 105 006 (2010).
- [6] A.D. Christianson, E.A. Goremychkin, R. Osborn, S. Rosenkranz, M.D. Lumsden, C.D. Malliakas, I.S. Todorov, H. Claus, D.Y. Chung, M.G. Kanatzidis, R.I. Bewley, T. Guidi. Nature 456, 930 (2008).
- [7] A.I. Agafonov. Phys. Lett. A 374, 2383 (2010).
- [8] M. Tinkham. Introduction to superconductivity. McGraw-Hill Book Company (1975).
- [9] M. Pannetier, F.C. Klaasen, R.J. Wijngaarden, M. Welling, K. Heeck, J.M. Huijbregtse, B. Dam, R. Griessen. Phys. Rev. B 64, 144 505 (2001).
- [10] E.H. Brandt, J.R. Chen. Phys. Rev. B 69, 184 509 (2003).
- [11] Handbbok of mathematical functions / Eds M. Abramowitz, I.A. Stegun. National Bureau of Standards. Appl. Math. Ser. Washington (1964). V. 55.
- [12] P.G. de Gennes. Superconductivity of metals and alloys. W.A. Benjamin, Inc., N.Y.–Amsterdam (1996).