07,11 Влияние пластической деформации на физические свойства и структуру сплава Ti_{49.5}Ni_{50.5} с эффектом памяти формы

© Н.И. Коуров, В.Г. Пушин, А.В. Королёв, В.А. Казанцев, Ю.В. Князев, Н.Н. Куранова

Институт физики металлов УрО РАН, Екатеринбург, Россия

E-mail: kourov@imp.uran.ru

(Поступила в Редакцию 29 ноября 2010 г.)

Исследуется влияние интенсивностей пластической деформации кручением (ИПДК) в наковальнях Бриджмена под высоким давлением 6 GPa на физические свойства и кристаллическую структуру сплава Ti_{49.5}Ni_{50.5} с эффектом памяти формы. Обсуждается поведение теплового расширения, удельного электросопротивления, абсолютной дифференциальной термоэдс, коэффициента Холла, магнитных и оптических свойств в аморфно-нанокристаллических и субмикрокристаллических сплавах, полученных в результате ИПДК и последующего нагрева до 800 К.

Работа выполнена в Институте физики металлов при финансовой поддержке бюджетных проектов; грантов № 01201064332 (шифр "электрон") и № 01201064335 (шифр "структура").

1. Введение

Сплавы никелида титана, испытывающие термоупругие мартенситные превращения (ТМП), обладают уникальными функциональными механическими свойствами, такими как эффекты памяти формы, сверхупругость, высокая пластичность и ряд других [1-7]. Поэтому они находят широкое практическое применение [1,2,5]. Показано, что в зависимости от технологии получения и последующей обработки структура и физические свойства данных сплавов существенно изменяются, особенно в результате использования экстремальных внешних воздействий такими методами, как закалка из расплава или интенсивная пластическая деформация [7-16]. В настоящей работе исследуется влияние интенсивной пластической деформации кручением (ИПДК) на 5 оборотов в наковальнях Бриджмена под высоким давлением 6 GPa при комнатной температуре на физические свойства и структурное состояние образцов сплава прецизионного состава Ті_{49,5}Ni_{50,5}, полученного из компонентов чистотой 99.99% методом электродуговой плавки в гелиевой атмосфере с минимальным содержанием в полученных слитках углерода, кислорода, азота и серы $(C = 0.04, O_2 = 0.02, N = 0.0003, S = 0.0001 wt.\%)$. ИПДК подвергали образцы в форме дисков диаметром 10 mm, толщиной 0.7 mm. После ИПДК их толщина уменьшилась до 0.5 mm. Изучали образцы в виде удлиненных брусков квадратного сечения 0.5×0.5 mm, вырезанных из центральной части дисков. Более подробно методики получения сплавов изложены в [15-18].

2. Структура сплавов

Электронно-микроскопические и рентгенографические исследования показали, что в исходном закаленном состоянии при температуре выше комнатной сплав Ti_{49.5}Ni_{50.5} имеет обычную микрокристаллическую структуру B2-аустенита, средний размер зерна в которой составляет 30—40 μ m. В результате охлаждения сплав испытывает фазовое превращение в моноклинную мартенситную фазу B19' по обычной для таких сплавов схеме $B2 \rightarrow B19'$ (в интервале температур начала и конца ТМП $M_s = 280$ K, $M_f = 250$ K). При последующем нагреве переход идет в окрестности 300 K по схеме $B19' \rightarrow B2$ (температуры начала и конца обратного ТМП $A_s = 290$ K, $A_f = 310$ K).

В результате ИПДК на 5 оборотов под давлением 6 GPa микрокристаллическая структура сплава Ti_{49.5}Ni_{50.5} переходит в аморфно-нанокристаллическое состояние. Рентгенограммы сплава после ИПДК содержат практически единственный, очень широкий (с $2\theta \sim 10-12^{\circ}$ в основании) диффузный максимум, характерный для "рентгеноаморфного" состояния вещества.

Электронно-микроскопические изображения прямого разрешения структуры сплава демонстрируют наличие в аморфной фазе высокой плотности (до 10¹⁷ cm⁻³) отдельных изолированных нанозерен. Как правило, мартенситные фазы в таких пластически деформированных аморфно-нанокристаллических сплавах не наблюдаются, обнаруживая так называемый размерный эффект ТМП, если размеры нанокристаллов меньше 20 nm [8,9].

Данный эффект нами был ранее обнаружен на образцах никелида титана, вырезанных из периферийной части дисков, подвергнутых ИПДК с наиболее высокой степенью деформации (величина истинной логарифмической деформации сдвига e = 5.5-6.0) [8–11]. В настоящей работе были изучены образцы, вырезанные из центральной части дисков, испытавших ИПДК с меньшими степенями (e = 4.0-4.5). В этом случае, как показали электронно-микроскопические исследования, в аморфной матрице имеются нанокристаллиты больших размеров, которые могут испытывать ТМП.

Отжиг аморфно-нанокристаллических образцов после ИПДК при температурах выше $T_0 \approx 500 \,\mathrm{K}$ приводит к

их тотальному расстекловыванию, с образованием нанокристаллической структуры *B*2-аустенита [8–15]. Средний размер нанозерен равноосной формы определяется температурой (и длительностью) нагрева. Так, он близок 20–30 nm нагрева до 570 K, 50–60 nm — до 670 K и 120–150 nm — до 770 K [9].

Согласно рентгеноструктурным и электронно-микроскопическим исследованиям in situ в наноструктурированных ИПДК-сплавах, при размерах нанозереннанокристаллитов 20-50 nm образуется только монокристаллический *R*-мартенсит (с ромбоэдрической решеткой). Температуры начала и конца прямого (M'_s) M'_{f}) и обратного (A'_{s}, A'_{f}) ТМП $B2 \leftrightarrow R$ практически не имеют размерной зависимости и равны $M'_{s} = 315 \, \mathrm{K}$, $M'_f = 295$ К, $A'_s = 300$ К, $A'_f = 320$ К, ширина петли температурного гистерезиса составляет всего 5°. В нанозернах размерами 50-100 nm наблюдаются уже последовательные ТМП $B2 \leftrightarrow R \leftrightarrow B19'$ также по совершенно особому структурному механизму: монокристаллмонокристалл, без образования двойников и дефектов упаковки [8-10]. При этом в зависимости от размера нанозерен температуры начала и конца второго ТМП $R \rightarrow B19'$ уменьшаются по сравнению с исходным поликристаллическим состоянием на 70-100 К, тогда как температуры обратного ТМП $B19' \rightarrow R$ снижаются менее заметно: на 20-30 К [3].

3. Тепловые свойства

Изменение структурно-фазового состояния сплава Ti_{49.5}Ni_{50.5} в результате ИПДК наиболее отчетливо проявляется в поведении размерных параметров образцов.

Рис. 1. Относительное удлинение $\Delta L(T)/L_0(a, b)$ и температурный коэффициент теплового расширения $\alpha(T)(c, d)$ пластически деформированного (a, c) и затем отожженного при T = 800 K (b, d) сплава Ti_{49.5}Ni_{50.5}. Стрелки показывают направление изменения температуры.

Из рис. 1, *а* видно, что линейные размеры исследованных образцов после пластической деформации необратимо изменяются в зависимости от температуры. Уменьшение температуры ниже комнатной сопровождается аномальным изменением удлинения $\Delta L(T)/L_0$ и температурного коэффициента теплового расширения $\alpha = 1/L_0 \cdot \Delta L/\Delta T$ в окрестности 225 К (рис. 1, *a*, *c*). Это свидетельствует о присутствии в исходных пластически деформированных образцах нанокристаллитов достаточно больших размеров ($\geq 20-50$ nm), в которых будут реализовываться прямые ТМП типа $B2 \rightarrow R$, и соответственно $R \rightarrow B19'$ с сильно выраженной кристаллографической текстурой кристалов мартенсита (с преимущественной ориентацией их осей с вдоль длинной оси образца).

При последующем нагреве образцов данная особенность $\Delta L(T)/L_0$, обусловленная обратным ТМП $B19' \rightarrow R \rightarrow B2$, меняет знак и на кривых теплового расширения α смещается в область более высоких температур ($T \approx 275$ K, рис. 1, c), демонстрируя, как и в исходном недеформированном сплаве Ti_{49.5}Ni_{50.5}, температурный гистерезис $\Delta L(T)/L_0$ (ср. рис. 1, *а* и *b*). Дальнейший нагрев пластически деформированных образцов выше комнатной температуры вплоть до $T_0 \approx 500 \,\mathrm{K}$ сопровождается продолжением аномально резкого необратимого уменьшения их линейных размеров (рис. 1, a). Такое поведение линейного размера образцов обусловлено процессами нанокристаллизации аморфной составляющей и интенсивного отжига дефектов в исследованных образцах. При этом нанокристаллическая структура сплавов становится более однородной по размерам нанокристаллов, которые увеличиваются с увеличением времени выдержки и температуры. Как видно из рис. 1, а, при $T \ge T_0 \approx 500 \, \text{K}$ зависимость $\Delta L(T)/L_0$ выходит на насыщение, а затем выше 700 К приобретает практически линейный характер, нормальный для металлических сплавов.

Тепловое расширение образцов, отожженных при $T = 800 \, \text{K}$, имеет поведение, ожидаемое для обычных микрокристаллических сплавов на основе TiNi (рис. 1, b, d). Вне области мартенситного превращения $B2 \leftrightarrow R \leftrightarrow B19'$ зависимость $\Delta L(T)/L_0$ носит обратимый линейный характер. В интервале температур ТМП $B2 \leftrightarrow R \leftrightarrow B19'$ на зависимостях $\Delta L(T)/L_0$ и $\alpha(T)$ присутствуют особенности гистерезисного типа, как правило наблюдаемые при фазовых переходах первого рода. Из рис. 1, *b* видно, что на кривых $\Delta L(T)/L_0$ переходы типа $B2 \leftrightarrow R$ выделяются изломами, а переходы $R \leftrightarrow B 19'$ — скачками. При охлаждении $\Delta L(T)/L_0$ уменьшается скачком в процессе ТМП $B2 \rightarrow R$, с некоторым относительным ростом при ТМП $R \rightarrow B19'$, и, напротив, $\Delta L(T)/L_0$ при нагреве скачком снижается при ТМП $B19' \rightarrow R$, переходя в дальнейший рост при ТМП $R \rightarrow B2$.

4. Кинетические свойства

Результаты измерений удельного электросопротивления $\rho(T)$, абсолютной дифференциальной термоэдс S(T)

Рис. 2. Электросопротивление и термоэдс пластически деформированного (кривые 1, 2) и затем отожженного при T = 800 К (кривые 3) сплава Ti_{49.5}Ni_{50.5}. Стрелки показывают направление изменения температуры.

Рис. 3. Температурные зависимости коэффициента Холла сплава $Ti_{49.5}Ni_{50.5}$: пластически деформированный (*a*) и отожженный при T = 800 K (*b*) образцы. Стрелки показывают направление изменения температуры.

и коэффициента обычного эффекта Холла $R_0(T)$ сплава Ті_{49.5}Ni_{50.5} приведены на рис. 2 и 3. Из данных рис. 2 видно, что в результате ИПДК на 5 оборотов под давлением 6 GPa в аморфно-нанокристаллическом спла-

ве при комнатной температуре происходит значительное возрастание удельного электросопротивления (до $\rho(T) \geq 180 \,\mu\Omega \cdot \mathrm{cm}$). При этом зависимость $\rho(T)$ (кривая 1 на рис. 2) в исследованном интервале температур характеризуется отрицательным наклоном. В области температур ниже комнатной, в которой в исходном сплаве реализуется ТМП, на кривых $\rho(T)$ пластически деформированных образцов, как и на зависимостях $\Delta L(T)/L_0$, наблюдается незначительный размытый по температуре гистерезис. При обратном нагреве образцов выше температуры расстекловывания То происходит аномально резкое падение электросопротивления. Последующее охлаждение образцов от температуры, близкой к 570 К, приводит к возрастанию гистерезисной аномалии на зависимости $\rho(T)$ (кривая 2 на рис. 2) при Т меньше 300 К, что свидетельствует о реализации в сплавах ТМП $B2 \rightarrow R \rightarrow B19'$.

Очевидно, что большая величина $\rho(T)$ в исходном, пластически деформированном сплаве при $T < T_0$ обусловлена значительным уменьшением длины свободного пробега электронов проводимости до значений, близких к параметрам элементарных кристаллических ячеек из-за наличия аморфно-нанокристаллического состояния. В данном случае поведение $\rho(T)$, скорее всего, определяется рассеянием электронов проводимости по механизму типа Маядаса-Шатцкеса [19] на границах нанокристаллитов, статистически распределенных в аморфной фазе. Отрицательный наклон $\rho(T)$ в широком интервале температур можно объяснить в рамках дифракционной модели Займана [20] или двухзонной s-d-модели, предложенной Моттом [21].

Изменения поведения зависимости $\rho(T)$, обнаруженные после нагрева образцов при $T > T_0$, связаны с ростом размеров нанокристаллитов до величины $\geq 20 \, \mathrm{nm}$ и с исчезновением аморфной составляющей. Дальнейший нагрев сплавов до $T \sim 800 \,\mathrm{K}$ приводит к формированию в образцах наноструктуры с размерами зерен более 100 nm (см., например, [8–11]). Поэтому $\rho(T)$ отожженного сплава Ті_{49,5}Ni_{50,5} имеет вид, обычный для поликристаллических сплавов из окрестности стехиометрического состава TiNi с положительным наклоном во всем исследованном интервале температур и с характерной аномалией в области ТМП. Отметим, что резкое возрастание $\rho(T)$ при прямом прохождении ТМП по схеме $B2 \rightarrow R \rightarrow B19'$ связано с наличием области существования промежуточного *R*-мартенсита. Согласно структурным исследованиям [1,2], структурное состояние *R*-фазы характеризуется наличием высокой дефектности в виде антифазных нанодоменов. Скорее всего, рассеяние электронов проводимости на границах этих областей по типу Маядаса-Шатцкеса приводит к возрастанию электросопротивления, экспериментально наблюдаемому именно при прямом прохождении ТМП $B2 \rightarrow R$. При обратном ТМП через промежуточную *R*-фазу в рассматриваемых сплавах кривая $\rho(T)$ при нагреве либо практически совпадает с кривой при охлаждении (кривая 2 на рис. 2), либо данная особенность менее выражена или вообще исчезает (кривая 3 на рис. 2).

Как видно из рис. 2, на температурной зависимости термоэдс пластически деформированного сплава ТМП также практически не выявляется. Только при T < 300 К на кривых S(T) наблюдается размытый температурный гистерезис. Однако в образцах, подвергнутых нагреву до 800 К, в температурной области ТМП имеет место аномально резкое изменение S(T) со значительным температурным гистерезисом. Вне области ТМП зависимости S(T) становятся практически линейными функциями температуры, т.е. термоэдс здесь носит диффузионный характер [22]. Учитывая достаточно большие для металлических сплавов значения термоэдс, описание S(T) в данном случае можно вести в рамках двухдонной модели Мотта, в которой она определяется в основном вторым членом в выражении

$$S_d = \frac{\pi^2 k^2 T}{3|e|} \Big(3/2E_{\rm F} - n'_d(E_{\rm F})/n_d(E_{\rm F}) \Big), \tag{1}$$

где $n_d(E_{\rm F})$ — плотность *d*-состояний на уровне Ферми $E_{\rm F}$, а $n_d(E_{\rm F})$ — первая производная функции плотности состояний *d*-зоны на уровне *E*_F, *e* — заряд электрона, к — постоянная Больцмана. Так как вблизи уровня Ферми определяющими являются параметры *d*-зоны, то положительный знак S объясняется тем, что E_F лежит на левом склоне кривой плотности состояний n(E). Это согласуется с результатами зонных расчетов, проведенных в [23] для сплава TiNi стехиометрического состава. Согласно (1), существенное возрастание термоэдс при образовании мартенситной фазы В19' связано с увеличением отношения n'_d/n_d , и, напротив, уменьшение величины S(T) в результате ИПДК свидетельствует об уменьшении величины n'_d/n_d вследствие атомного разупорядочения (вплоть до аморфизации) и наноструктуризации сплава.

Результаты измерений эффекта Холла в сплаве Ti_{49.5}Ni_{50.5}, приведенные на рис. 3, показывают, что в отожженном при 800 К сплаве при понижении температуры границы широкой области ТМП $B2 \rightarrow R \rightarrow B19'$ выделяются двумя резкими аномалиями на кривой $R_0(T)$. Наоборот, с ростом температуры изза уменьшения интервала ТМП $B19' \rightarrow B2$ наблюдается только единственная особенность $R_0(T)$ вблизи комнатной температуры. В пластически деформированном сплаве соответствующая область температур выделяется более выраженной гистерезисной особенностью на зависимости $R_0(T)$, чем на кривых S(T) и $\rho(T)$ (рис. 2). Вне области ТМП коэффициент R₀ в пластически деформированном и в отожженном образцах имеет безгистерезисную достаточно сильную температурную зависимость вплоть до изменения его знака при переходе из аустенитного состояния в В19'-мартенсит.

Поведение коэффициента $R_0(T)$ во всей исследованной области температур, по-видимому, можно объяснить только используя приближение с двумя типами холловских носителей (электронов и дырок), имеющими разные концентрации n_i и подвижности μ_i . Согласно теории кинетических явлений (см., например, [24]), имеем

$$R_0 = \frac{1}{ec} \left(n_h \mu_h^2 - n_e \mu_e^2 \right) / (n_h \mu_h + n_e \mu_e)^2, \qquad (2)$$

где *е* — заряд электрона, а *с* — скорость света в вакууме.

Отсюда следует, что наблюдаемые изменения величины и знака коэффициента R_0 при атомном и кристаллоструктурном разупорядочении исследованных сплавов и при изменении температуры необходимо связывать с существенной перестройкой их зонной структуры вблизи $E_{\rm F}$. Особо следует отметить близкие к нулевым значения коэффицента Холла в мартенситной фазе для отожженного сплава, что может быть результатом равенства параметров дырочных и электронных носителей $(n_h \mu_h^2 \cong n_e \mu_e^2)$.

5. Магнитные свойства

Результаты исследований магнитных свойств, приведенные на рис. 4, показывают, что сплав $Ti_{49.5}Ni_{50.5}$ в обоих структурных состояниях является парамагнитным. На кривых магнитной восприимчивости можно видеть гистерезисные эффекты, обусловленные ТМП $B2 \rightarrow R \rightarrow B19'$, размытые в широкой области температур для сплава после ИПДК и более выраженные для отожженного сплава. В пластически деформированном

Рис. 4. Полевые зависимости намагниченности при T = 2 (1), 20 (2), 300 K (3) и температурные зависимости магнитной восприимчивости пластически деформированного (вверху) и затем отожженного при T = 800 K (внизу) сплава Ti_{49.5}Ni_{50.5}. Стрелки показывают направление изменения температуры.

и отожженном сплавах из полевых зависимостей намагниченности J(H) определяется незначительный по величине и постоянный в исследованной области температур спонтанный момент, а также слабый кюри-вейссовский вклад в магнитную восприимчивость. Полученный в результате обработки экспериментальных данных незначительный магнитный момент $\mu \sim 0.02\mu_B$ (выраженный в магнетонах Бора) объясняется присутствием примесных магнитных атомов в образцах указанной выше чистоты.

Наблюдаемые изменения парамагнитной паулевской составляющей восприимчивости [25]

$$\chi_{P} = 2\mu_{\rm B}^{2} n(E_{\rm F}) \left\{ 1 - \frac{\pi^{2}}{6} \left[\left(\frac{n'(E_{\rm F})}{n(E_{\rm F})} \right)^{2} - \frac{n''(E_{\rm F})}{n(E_{\rm F})} \right] k^{2} T^{2} \right\}$$
(3)

вблизи ТМП в отожженных образцах подтверждают выводы о перестройке электронной зонной структуры сплавов, полученные из анализа данных по термоэдс и эффекту Холла. Однако согласовать данные по термоэдс и восприимчивости при воздействии ИПДК можно только при учете второго члена в (3), в котором $n'(E_{\rm F})$ и $n''(E_{\rm F})$ — первая и вторая производные плотности состояний на уровне Ферми, а $n(E_{\rm F})$ суммарная плотность *s*- и d-состояний на уровне $E_{\rm F}$. Именно этот член в (3) определяет также температурную зависимость χ_P вне области ТМП. Оценки плотности состояний на уровне Ферми, полученные из усредненных данных относительно $\chi(T)$, дают значения $n(E_{\rm F}) \sim 18.2$ states/(eV·formula unit) для пластически деформированного сплава, а для отожженных сплавов $n(E_{\rm F}) \sim 106$ states/(eV·formula unit) в фазе B2 и $n(E_{\rm F}) \sim 86$ states/(eV·formula unit) в фазе B19'. Для атомно-упорядоченного TiNi зонные спектральные расчеты дают значительно меньшие значения $n(E_{\rm F})$ [23]. Кроме того, согласно этим зонным расчетам, плотность состояний на уровне Ферми при переходе из фазы В2 в фазу В19' возрастает, что противоречит изменениям величины $n(E_{\rm F})$, которые следуют из наших экспериментальных данных по магнитной восприимчивости.

6. Оптические свойства

Дисперсионные зависимости оптической проводимости $\sigma(E)$ — наиболее чувствительного спектрального параметра, характеризующего интенсивность и частотную зависимость электронных возбуждений под действием света — для сплава Ni_{50.6}Ti_{49.4} в пластически деформированном и отожженном состояниях представлены на рис. 5. При энергиях E < 0.5 eV (инфракрасная область) резкий рост $\sigma(E)$ при уменьшении частоты света ω соответствует друдевскому поведению $\sigma_{Dr} \sim \omega^{-2}$, характерному для внутризонного ускорения электронов электромагнитным полем световой волны. С возрастанием частоты ω (видимый и ультрафиолетовый диапазоны) в спектрах $\sigma(E)$ в интервале 1–4 eV формируется

Рис. 5. Оптическая проводимость пластически деформированного (1) и затем отожженного при T = 800 K (2) сплава Ті_{49.5}Ni_{50.5}. На вставке показана величина $\delta \sigma = \sigma - \sigma_{\text{Dr}}$ в инфракрасной области спектра.

интенсивная полоса межзонного поглощения, структура которой определяется реальным строением зонного спектра и зависит от вероятностей квантовых переходов. Существование аналогичной абсорбционной полосы ранее было обнаружено в оптической проводимости эквивалентного сплава NiTi в фазах B2 и B19' [26] и связывалось с наличием щелей соответствующих масштабов, разделяющих пустые и заполненные d-зоны в энергетическом спектре.

Влияние пластической деформации на структуру спектра оптической проводимости сплава $Ti_{49.5}Ni_{50.5}$, как следует из данных рис. 5, сводится главным образом к изменению спектрального профиля фундаментальной полосы в интервале 2–3 eV. Видно, что зависимость $\sigma(E)$ в интенсивно деформированном сплаве характеризуется двумя максимумами, расположенными при 2 и 2.6 eV. В результате релаксационного отжига образцов эти два пика на кривой $\sigma(E)$ сливаются в один максимум при $E \sim 2.2$ eV, что свидетельствует о модификации структуры n(E) при упорядочении сплава.

В низкоэнергетической области спектра аномальное поведение оптической проводимости наблюдается при $E \sim 0.5 \,\mathrm{eV}$ в виде небольшого максимума как для пластически деформированного, так и для отожженного образца (на вставке к рис. 5 представлена межзонная оптическая проводимость $\delta \sigma = \sigma - \sigma_{\mathrm{Dr}}$ при $E < 1 \,\mathrm{eV}$, полученная вычитанием друдевского вклада из экспериментальной кривой). Эта особенность на кривых $\sigma(E)$ исследованного сплава согласуется с выводом о существовании в n(E) низкоэнергетической псевдощели на уровне Ферми между свободными и заполненными состояниями, сделанным в работе [23].

Исследование оптических свойств сплава Ti_{49.5}Ni_{50.5} в инфракрасной области спектра, где влияние квантовых переходов на диэлектрические функции минимально, позволяет определить такие характеристики электронов проводимости, как релаксационная у и плазменная ω_P частоты. Феноменологически параметр $y = \tau^{-1}$ (τ — время свободного пробега электрона) определяет аддитивный вклад всех видов рассеяния электронов при их возбуждении полем световой волны, а значение ω_P^2 пропорционально плотности состояний на уровне Ферми $n(E_{\rm F})$. Соответствующие расчеты релаксационных и плазменных частот приводят к значениям $\gamma = 2.46 \cdot 10^{14} \, \mathrm{s}^{-1}, \ \omega_P^2 = 18.6 \cdot 10^{30} \, \mathrm{s}^{-2}$ для пластически деформированного и $\dot{\gamma} = 0.85 \cdot 10^{14} \, {
m s}^{-1},$ $\omega_P^2 = 27.3 \cdot 10^{30} \, {
m s}^{-2}$ для отожженного сплавов, что качественно коррелирует с изменением удельного электросопротивления (рис. 2) и оценками $n(E_{\rm F})$ на основе данных $\chi(T)$ (рис. 4) для исследованных структурных состояний.

7. Заключение

Проведенные исследования показывают, что в результате ИПДК микрокристаллическая структура сплава Ті_{49.5}Ni_{50.5} переходит в аморфно-нанокристаллическое состояние. Известно [8,9], что при размере нанозерен *d* < 20 nm в подобных пластически деформированных сплавах не происходит термоупругое мартенситное превращение, а следовательно, отсутствуют сопровождающие его эффекты памяти формы. Однако в данном исследовании обнаружены отчетливые признаки ТМП. Поэтому можно заключить, что ИПДК большеразмерного образца сплава толщиной 0.7 mm не обеспечивает в его центральной части необходимое (менее 20 nm) измельчение нанокристаллитов в аморфной матрице и размеры нанозерен превышают критические. Последующий нагрев образцов при T ≥ 500 K приводит к кристаллизации аморфной составляющей и росту размеров нанозерен и их структурного совершенства.

После ИПДК сплава Ті_{49.5}Ni_{50.5} обнаруживаются изменения тепловых, кинетических, магнитных и оптических свойств. При атомном разупорядочении и переходе в аморфно-нанокристаллическое состояние вследствие воздействия ИПДК возрастают величины удельного электросопротивления ρ образцов в 5–6 раз, а релаксационной частоты γ в 2–3 раза. После пластической деформации образцов возникает необратимый температурный гистерезис зависимостей $\rho(T)$ и теплового расширения $\Delta L(T)/L_0$. При этом в широком интервале температур поведение $\rho(T)$ характеризуется отрицательным коэффициентом электросопротивления, а $\Delta L(T)/L_0$ имеет аномальный для металлических сплавов вид.

В результате пластической деформации образцов величины паулевской восприимчивости χ_P и плазменной частоты ω_P уменьшаются, что свидетельствует о падении плотности электронных состояний на уровне Ферми $n(E_{\rm F})$ сплава Ti_{49.5}Ni_{50.5}. Однако наблюдаемое при этом изменение термоэдс *S* и коэффициента Холла R_0 в двухзонной модели Мотта не согласуется с результатами магнитных и оптических исследований. Согласно данным $\chi(T)$, каскад переходов $B2 \rightarrow R \rightarrow B19'$ в исходном недеформированном сплаве сопровождается стадийным уменьшением величины $n(E_{\rm F})$, в то время как зонные расчеты [23] показывают возрастание плотности состояний на $E_{\rm F}$ при переходе из B2- в B19'-фазу.

Список литературы

- К.Ооцука, К. Симидзу, Ю. Судзуки, Ю. Сэкигути, Ц. Тадаки, Т. Хомма, С. Миядзаки. Сплавы с эффектом памяти формы. Металлургия, М. (1990). 224 с.
- [2] В.Н. Журавлев, В.Г. Пушин. Сплавы с термомеханической памятью формы и их применение в медицине. УрО РАН, Екатеринбург (2000). 148 с.
- [3] В.Г. Пушин, С.Д. Прокошкин, Р.З. Валиев, В. Брайловский, Э.З. Валиев, А.Е. Волков, А.М. Глезер, С.В. Добаткин, Е.Ф. Дударев, В.Т. Жу, Ю.Г. Зайнулин, Ю.Р. Колобов, В.В. Кондратьев, А.В. Коралев, А.И. Коршунов, Н.И. Коуров, Н.В. Кудреватых, А.И. Лотков, Л.Л. Мейснер, А.А. Попов, Н.Н. Попов, А.И. Разов, М.А. Хусаинов, Ю.И. Чумляков, С.В. Андреев, А.А. Батурин, С.П. Беляев, В.Н. Гришков, Д.В. Гундаров, А.П. Дюлин, К.В. Иванов, В.И. Итин, М.К. Касымов, О.А. Кашин, И.В. Киреева, А.И. Козлов, Т.Э. Кунцевич, Н.Н. Куранова, Н.Ю. Пушина, Е.П. Рыклина, А.Н. Уксусников, И.Ю. Хмелевская, А.В. Шеляков, В.Я. Шкловер, Е.В. Шороков, Л.И. Юрченко. Сплавы никелида титана с памятью формы. Ч. 1. Структура, фазовые превращения и свойства. УрО РАН, Екатеринбург (2006). 440 с.
- [4] V.G. Pushin. Phys. Met. Metallography 90, Suppl. 1, S68 (2000).
- [5] S.D. Prokoshkin, V.G. Pushin, E.P. Ryklina, I.Yu. Khmelevskaya. Phys. Met. Metallography 97, Suppl. 1, S56 (2004).
- [6] В.Г. Пушин, А.И. Лотков, Ю.Р. Колобов, Р.З. Валиев, Е.Ф. Дударев, Н.Н. Куранова, А.П. Дюпин, Д.В. Гундеров, Г.П. Бакач. ФММ 106, 5, 537 (2008).
- [7] V.G. Pushin, N.I. Kourov, T.E. Kuntsevich, N.N. Kuranova, N.M. Matveeva, L.I. Yurchenko. Phys. Met. Metallography 94, Suppl. 1, S107 (2002).
- [8] V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, N.I. Kourov, N.N. Kuranova, E.A. Prokofiev, L.I. Yurchenko. Phys. Met. Metallography 94, Suppl. 1, S54 (2002).
- [9] V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, N.I. Kourov, N.N. Kuranova, E.A. Prokofiev, L.I. Yurchenko. Ann. Chim. Sci. Mater. 27, 3, 77 (2002).
- [10] V.G. Pushin, R.Z. Valiev, Y.T. Zhu, D.V. Gunderov, N.I. Kourov, T.E. Kuntsevich, A.N. Uksusnikov, L.I. Yurchenko. Mater. Trans. 47, 3, 546 (2006).
- [11] V.G. Pushin, R.Z. Valiev, Y.T. Zhu, D.V. Gunderov, A.V. Korolev, N.I. Kourov, T.E. Kuntsevich, E.Z. Valiev, L.I. Yurchenko. Mater. Trans. 47, 3, 694 (2006).
- [12] E. Prokofiev, D. Gunderov, A. Lukyanov, V. Pushin, R. Valiev. Mater. Sci. Forum 584–586, 470 (2008).
- [13] А.Ю. Дюпин, Н.Н. Куранова, В.Г. Пушин, Р.З. Валиев. Изв. РАН. Сер. физ. 72, 4, 583 (2008).

1331

- [14] Н.Н. Куранова, В.В. Макаров, В.Г. Пушин, А.Н. Уксусников, Р.З. Валиев, Д.В. Гундеров, А.В. Лукьянов, Е.А. Прокофьев. Изв. РАН. Сер. физ. 73, 8, 1179 (2009).
- [15] Н.Н. Куранова, Д.В. Гундеров, А.Н. Уксусников, А.В. Лукьянов, Л.И. Юрченко, Е.А. Прокофьев, В.Г. Пушин, Р.З. Валиев. ФММ 108, 6, 589 (2009).
- [16] Д.В. Гундеров, Н.Н. Куранова, А.В. Лукьянов, А.Н. Уксусников, Е.А. Прокофьев, Л.И. Юрченко, Р.З. Валиев, В.Г. Пушин. ФММ 108, 2, 139 (2009).
- [17] Н.И. Коуров, В.Г. Пушин, Ю.В. Князев, А.В. Королев. ФТТ 49, 9, 1690 (2007).
- [18] Н.И. Коуров, В.Г. Пушин, А.В. Королев, В.А. Казанцев, Е.Б. Марченкова, А.Н. Уксусников. ФММ 103, 3, 280 (2007).
- [19] A.F. Mayadas, M. Shatzkes. Phys. Rev. B1, 4, 1382 (1970).
- [20] J.M. Ziman. Phil. Mag. 6, 68, 1013 (1961).
- [21] N.F. Mott. Phil. Mag. 26, 6, 1249 (1972).
- [22] Ф.Дж. Блатт, П.А. Шредер, К.Л. Фойлз, Д. Грейг. Термоэлектродвижущая сила металлов. Металлургия, М. (1980). 248 с.
- [23] С.Е. Кулькова, Д.В. Валуйский, И.Ю. Смолин. ФТТ 43, 4, 706 (2001).
- [24] Дж. Займан. Электроны и фононы. ИИЛ, М. (1962). 488 с.
- [25] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032с.
- [26] С.А. Шабаловская, И.А. Сасовская, А.И. Лотков. ФТТ 24, 3, 899 (1982).