11 Об интерференционном усилении в электронно-волновой лампе (линейная теория)

© Д.И. Трубецков, А.В. Титов, А.А. Фунтов

Саратовский государственный университет им. Н.Г. Чернышевского E-mail: titovav88@gmail.com

Поступило в Редакцию 18 июня 2013 г.

Рассмотрена возможность нового режима усиления в электронно-волновой лампе, названного интерференционным, перспективного в коротковолновой части сверхвысокочастотного диапазона.

Интерес исследователей к способам усиления и генерации электромагнитных сигналов в коротковолновой части сверхвысокочастотного диапазона в настоящее время сместился в терагерцовый диапазон. При этом обсуждаются электронные системы, казалось бы, ушедшие в прошлое. В частности, в работах [1–3] анализируется модель, в которой два попутных электронных потока взаимодействуют с продольной составляющей гауссова пучка в открытом резонаторе. Известная двухпучковая неустойчивость используется как механизм группирования. К сожалению, все указанные работы носят заявочный характер и не содержат конкретных результатов. Более того, в наиболее полной по объему работе [3] излагается известная линейная теория электронно-волновой лампы (ЭВЛ) (см., например, самые первые работы [4,5]) даже без ссылок на первоисточники.

Заметим также, что аналогичная [1–3] схема была предложена Л.В. Дэвисом и Дж. Патсакосом и независимо В.П. Сазоновым (см. [6]). Однако в такой конструкции необходимо либо использовать ультрарелятивистские пучки, либо замедлять фазовую скорость излучаемой волны. В книге [6] такие способы обсуждаются. В данной работе для перехода в терагерцовый диапазон предлагается новый режим работы ЭВЛ, который мы называем интерференционным.

Начнем с необходимых напоминаний. Для модели двух бесконечно широких попутных электронных потоков, движущихся с разными, но

86

мало различающимися постоянными скоростями v_{01} и v_{02} , в приближении слабых сигналов легко получить уравнения для переменных составляющих токов пучков i_1 и i_2 (см., например, [7]):

$$\frac{d^2 i_1}{dx^2} + 2j\beta_{e1}\frac{di_1}{dx} - (\beta_{e1}^2 - \beta_{p1}^2)i_1 = -\beta_{p1}^2i_2,$$

$$\frac{d^2 i_2}{dx^2} + 2j\beta_{e2}\frac{di_2}{dx} - (\beta_{e2}^2 - \beta_{p2}^2)i_2 = -\beta_{p2}^2i_1,$$
 (1)

где $\beta_{e1,e2} = \frac{\omega}{v_{01,02}}, \ \beta_{p1,p2} = \frac{\omega_{p1,p2}}{v_{01,02}}$, ω — частота сигнала, $\omega_{p1,p2}$ — плазменные частоты пучков.

Дисперсионное уравнение, соответствующее системе уравнений (1) в предположении, что i_1 и i_2 изменяются по закону $e^{-j\beta x}$, имеет вид

$$\frac{\omega_{p1}^2}{(\omega - \beta v_{01})^2} + \frac{\omega_{p2}^2}{(\omega - \beta v_{02})^2} = 1,$$
(2)

уравнение (2) можно переписать следующим образом:

$$\frac{1}{\left(\frac{\delta\omega}{\upsilon\omega_p} + \frac{\gamma\upsilon}{\omega_p}\right)^2} + \frac{1}{\left(\frac{\delta\omega}{\upsilon\omega_p} - \frac{\gamma\upsilon}{\omega_p}\right)^2} = 1.$$
 (3)

При получении (3) введены средняя скорость $v = \frac{v_{01} + v_{02}}{2}$ и разброс скоростей $\delta = \frac{v_{01} - v_{02}}{2}$, а также $\beta = \frac{\omega}{v} + \gamma$. Кроме того, предположено, что $\omega_{p1} = \omega_{p2} = \omega_p$ и $\gamma \delta \ll \gamma v$. Тогда при $\chi = \frac{\omega \delta}{\omega_p v}$ (параметр неоднородности) и $\xi = \frac{\gamma v}{\omega_p}$ уравнение (3) имеет аналитическое решение

$$\xi = \pm \sqrt{(\chi^2 + 1) \pm \sqrt{4\chi^2 + 1}}.$$
 (4)

Двухпучковая неустойчивость имеет место при $0 < \chi \sqrt{2}$. В этом случае любая из переменных величин есть суперпозиция четырех парциальных волн — нарастающей, затухающей с расстоянием и двух волн постоянной амплитуды. Очевидно, что на достаточно большой длине будет превалировать нарастающая волна и возможно усиление начального возмущения.

Из определения параметра неоднородности χ видно, что при увеличении ω , для того чтобы не выйти из области неустойчивости $0 < \chi \sqrt{2}$, необходимо либо уменьшать δ , либо увеличивать ω_p . Однако уменьшение δ ограничено разбросом электронов по скоростям, а увеличение ω_p приводит к провисанию потенциала по сечению электронного потока.

При увеличении χ только за счет увеличения частоты система выходит за пределы области неустойчивости, и переменные величины описываются суперпозицией четырех волн постоянной амплитуды, распространяющихся с разными фазовыми скоростями, т. е., например:

$$i_1(x) = \sum_{i=1}^4 C_i e^{-j\beta_1 x},$$
(5)

где корни дисперсионного уравнения равны

$$\beta_1 = \frac{\omega}{v} \pm \frac{\omega_p}{v} \sqrt{\left(\frac{\omega\delta}{v\omega_p}\right)^2 + 1 \pm \sqrt{4\left(\frac{\omega\delta}{v\omega_p}\right)^2 + 1}}.$$
 (6)

Используя соотношение (5) и первое уравнение системы (1), легко получить, что

$$i_2(x) = \sum_{i=1}^4 C_i \, \frac{(\beta_i - \beta_{e1})^2 - \beta_{p1}^2}{\beta_{p1}^2} \, \mathrm{e}^{-j\beta_i x}.$$
(7)

Покажем, что за счет интерференции четырех волн может иметь место увеличение $i_1(x)$ и $i_2(x)$ по сравнению с начальным возмущением. Предположим, что при x = 0 выполняются следующие начальные условия:

$$i_{1}|_{x=0} = i_{1}(0), \quad i_{2}|_{x=0} = i_{2}(0),$$

$$\frac{di_{1}}{dx}|_{x=0} = i'_{1}(0), \quad \frac{di_{2}}{dx}|_{x=0} = i'_{2}(0); \quad (8)$$

$$i_2(x) = \sum_{i=1}^4 C_i A_i e^{-j\beta_i x}, \quad A_i = \frac{(\beta_i - \beta_{e_1})^2 - \beta_{p_1}^2}{\beta_{p_1}^2}.$$
 (9)

С учетом соотношений (5), (8) и (9) получим систему алгебраических уравнений для определения амплитуд парциальных волн C_i :

$$\sum_{i=1}^{4} C_{i} = i_{1}(0), \quad \sum_{i=1}^{4} A_{i}C_{i} = i_{2}(0),$$
$$\sum_{i=1}^{4} \beta_{i}C_{i} = ji_{1}'(0), \quad \sum_{i=1}^{4} \beta_{i}A_{i}C_{i} = ji_{2}'(0). \tag{10}$$

Суммарный ток двух потоков имеет вид

$$i(x) = \sum_{i=1}^{4} (A_i + 1) C_i e^{-j\beta_i x}.$$
(11)

Определим коэффициент усиления системы как

$$G(L) = 20 \operatorname{Log} \frac{i(L)}{i(0)},\tag{12}$$

где L — длина пространства взаимодействия. Окончательно имеем

$$G = 20 \text{Log} \frac{\sum_{i=1}^{4} (A_i + 1) C_i e^{-j\beta_i L}}{\sum_{i=1}^{4} (A_i + 1) C_i}.$$
 (13)

Можно показать, что учет релятивистских эффектов в приближении слабых сигналов приводит к уравнениям (1), если в них заменить ω_{p1}^2 на $\omega_{q1}^2 = \frac{\omega_{p1}^2}{\gamma_{01}^3}$ и ω_{p2}^2 на $\omega_{q2}^2 = \frac{\omega_{p2}^2}{\gamma_{02}^3}$, где $\gamma_{01,02} = \frac{1}{\sqrt{1-(\upsilon_{01,02/c})^2}}$. Тогда в предположении $\frac{\omega_{p1}^2}{\gamma_{01}^3} = \frac{\omega_{p2}^2}{\gamma_{02}^3} = \omega_q^2$ решение дисперсионного уравнения имеет вид выражения (6) с указанной заменой. Заметим, что данное решение соответствует пучкам с разной постоянной плотностью.

Описанный выше механизм для случая $\chi = 1.5$ проиллюстрирован на рис. 1. При этом имеют место четыре волны постоянной амплитуды (*a*). На некотором расстоянии от входа в систему в зависимости от соотношения фазовых скоростей парциальных волн будет наблюдаться их интерференция, что приведет к суммарному увеличению тока. На векторной диаграмме (*b*) показано, как векторы, соответствующие каждой парциальной волне, в сумме дают вектор, модуль которого значительно превышает модули слагаемых векторов. На графике (*c*) приведено пространственное распределение тока, имеющее характер биений. Локальные максимумы на этом графике означают приблизительное равенство набега фаз парциальных волн в данной точке пространства: чем выше максимум, тем точнее совпадают фазы.

Рис. 1. a — зависимость каждой парциальной волны тока, нормированной на начальное возмущение от безразмерной координаты $l = \frac{x}{\lambda}$, где λ — длина волны; b — векторная диаграмма демонстрирует сложение парциальных волн, приводящее к увеличению выходного сигнала в точке l = 2.5, символом Σ обозначен вектор суммарного тока; c — зависимость суммарного тока, нормированного на начальное возмущение, от безразмерной координаты l.

Рассмотрим случай дальнейшего увеличения х лишь за счет увеличения частоты. На рис. 2 приведена зависимость коэффициента усиления от длины пространства взаимодействия для различных частот. При расчетах предполагались следующие значения основных величин: среднее ускоряющее напряжение $U_0 = 1500 \text{ V}$, линейная плазменная частота $f_p = 100 \text{ MHz}$, разность скоростей пучков δ — 5% от средней скорости. Видно, что при увеличении частоты, а вместе с ней и параметра неоднородности, максимальное значение коэффициента усиления увеличивается. Можно отметить, что если при значении $\chi = 5$ максимальный (для этого случая) коэффициент усиления в 18 dB достигается при длине системы около 5 cm, то при $\chi = 15$ это же значение коэффициента усиления будет достигнуто при значительно меньшей длине системы. Таким образом, путем увеличения χ можно либо добиться увеличения усиления на заданной длине, либо сократить рабочую длину, сохранив уровень усиления. Также следует отметить, что для различных значений параметра неоднородности (начиная приблизительно с $\chi = 5$ и выше) максимум коэффициента усиления наблюдается примерно при одной и той же длине системы. Дело в том, что при увеличении частоты фазовые скорости парциальных волн попарно сближаются. Одновременно с этим у двух волн возникают значительные различия в амплитуде с двумя оставшимися. Это приводит к тому, что при больших χ фактическую роль в интерференции играют только две парциальные волны. Таким образом, биения при больших параметрах неоднородности имеют более простой характер.

Рис. 2. Зависимость коффициента усиления (в dB) от длины системы (в m) для различных значений частоты сигнала f (в GHz): I - 3 GHz ($\chi = 1.5$), 2 - 10 GHz ($\chi = 5$), 3 - 30 GHz ($\chi = 15$), 4 - 100 GHz ($\chi = 50$), 5 - 300 GHz ($\chi = 150$). На врезке чуть ниже показана эта же зависимость, но на более коротком интервале от 0 до 0.05 m.

Рис. 3. Зависимость коффициента усиления (в dB) от частоты сигнала при длине системы L = 0.06 m. Данный диапазон частот соответствует изменению значений параметра неоднородности от 1.5 до 150.

Если вновь говорить об увеличении χ за счет частоты, фазовые скорости двух волн остаются приблизительно одними и теми же. Именно это и является причиной совпадения максимумов и минимумов для различных частот на графике зависимости коэффициента усиления от длины системы.

На рис. 3 показана зависимость коэффициента усиления от частоты при длине системы L = 0.06 m. Характер зависимости довольно гладкий, но невооруженным взглядом можно заметить скачок в области низких частот. Это связано с тем, что при некоторой частоте в точке L = 0.06 может наблюдаться незначительный провал токовой характеристики, причиной которого является интерференция четырех волн сравнимой амплитуды.

Работа выполнена при поддержке гранта президента РФ по поддержке ведущих научных школ (проект № НШ-1430.2012.2), РФФИ (проект № 11-02-00047, 13-02-01209).

Список литературы

- [1] Bishofberger K., Kip A. // Vacuum Electronics Conference, 2008. IVEC 2008. IEEE International. P. 164.
- [2] Svimonishvili T., Bishofberger K., Faehl R.J., Carlsten B.E. // Plasma Science. 2010. Abstracts IEEE International Conference on. P. 1.
- [3] Bishofberger K., Carlsten B., Faehl R. // Proceedings of LINAC08. Victoria, BC, Canada, 1D-FELs, 504–505.
- [4] Nergaard L.E. // RCA Rev. 1948. V. 9. P. 585-601.
- [5] *Haeff A*. The Electron-Wave Tube A novel method of Generation and Amplification of Microwave Energy. P.I.R.E. 1949 January. P. 4.
- [6] Вайнштейн Л.А., Лесик Н.И., Рожнев А.Г., Трубецков Д.И. // Лекции по электронике СВЧ и радиофизике (6-я зимняя школа-семинар инженеров). Саратов: Изд-во Саратовского ун-та, 1983. С. 147–148.
- [7] Шевчик В.Н., Трубецков Д.И. Аналитические методы расчета в электронике СВЧ. М.: Сов. радио, 1970. 584 с.