05

Растекание и затвердевание капель металлических расплавов в условиях подплавления подложки. Теория и модельный эксперимент

© О.П. Солоненко, А.В. Перфильев, А.В. Смирнов

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск E-mail: solo@itam.nsc.ru

Поступило в Редакцию 14 марта 2013 г.

Растекание и затвердевание капель металлических расплавов при их соударении с поверхностью представляет известный интерес для газотермического напыления, формообразования, спиннингования расплавов для получения аморфных и микрокристаллических порошков и т.п. При этом сценарии формирования сплэтов (растекшихся и затвердевших на подложке частиц) могут существенно различаться и определяются теплофизическими свойствами материалов частицы и подложки, а также ключевыми физическими параметрами (КФП): скорость u_{p0} , размер D_p и температура T_{p0} капли; температура подложки T_{b0} и состояние ее поверхности. Предпринята попытка теоретического и экспериментального исследования формирования сплэтов для случая, когда в процессе растекания и затвердевания капель металлического расплава реализуется подплавление подложки в пятне контакта ее с частицей.

Согласно [1], взаимодействие "капля расплава-подложка" на стадии напорного растекания реализуется по одному из четырех сценариев в зависимости от соотношения между контактной температурой T_c и температурами плавления материалов частицы T_{pm} и основы T_{bm} : 1) растекание и одновременное затвердевание капли расплава на твердой основе $(T_{pm} > T_c < T_{bm})$; 2) растекание, затвердевание капли и одновременное подплавление основы в пятне контакта ее с частицей $(T_{pm} > T_c \ge T_{bm})$; 3) растекание капли на твердой основе $(T_{pm} \le T_c < T_{bm})$; 4) растекание капли при одновременном подплавлении основы $(T_{pm} \le T_c > T_{bm})$.

Неоднократно предпринимались попытки теоретической оценки контактной температуры для 1-го сценария формирования сплэтов — наи-

63

более распространенного в технологии газотермического напыления. Обзор работ в этом направлении представлен в [1,2] и др. Значительно менее изучен 2-й сценарий формирования металлических сплэтов, представляющий большой практический интерес в связи с необходимостью нанесения покрытий с высокой адгезией и когезией. Как правило, исследования в этом направлении носят расчетный характер [3-5] и др., а известные экспериментальные данные весьма немногочисленны, что затрудняет их критериальное обобщение. Следует отметить, что численное решение данной задачи в одномерном приближении для любого сочетания материалов частица-подложка и значений КФП не вызывает принципиальных трудностей. Однако такие расчеты, а тем более расчеты, претендующие на исследование моделей в более полной постановке, необходимо проводить на достаточно детальных, предпочтительно неструктурированных сетках. Так, в работе [6] приведены результаты конечноэлементного моделирования соударения капли никеля $(D_p = 50 \,\mu\text{m}, u_{p0} = 100 \,\text{m/s}, T_{p0} = 2500 \,\text{K})$ с медной подложкой (*T*_{b0} = 293 K) в приближении эквивалентного цилиндра. Показано, что задержка начала затвердевания в расчетах, выполненных на достаточно грубой сетке, может оказаться соизмеримой с длительностью растекания капли $t_d = D_p/u_{p0}$, что может привести к физически необоснованному выводу о задержке начала затвердевания капли или плавления подложки.

При теплообмене капли металла (число Прандтля $\Pr = v_{pm}^{(l)}/a_{pm}^{(l)} \ll 1$) с теплопроводной подложкой при достаточно больших числах Рейнольдса и Вебера ($\operatorname{Re} = D_p u_{p0}/v_{pm}^{(l)} > 10^3$, $\operatorname{We} = \rho_{pm}^{(l)} D_p u_{p0}^2/\sigma_{pm}^{(l)} > 10^2$) можно считать, что формирование сплэта в целом завершается на стадии напорного растекания капли. Здесь и далее: $\rho_{pm}^{(l)}$, $v_{pm}^{(l)}$, $a_{pm}^{(l)}$, $\sigma_{pm}^{(l)}$ — плотность, кинематическая вязкость, температуропроводность и поверхностное натяжение расплава при температуре T_{pm} ; индексы s, l отвечают твердому и жидкому состояниям материала, индексы p, b — частице и основе, дополнительный нижний индекс m характеризует свойство материала при температуре плавления.

В работах [2,7] исследована модельная задача сопряженного теплообмена и фазовых превращений при нормальном соударении и растекании слоя металлического расплава ($\Pr \ll 1$) конечной толщины D_p на полубесконечной гладкой подложке, что позволило впервые получить приближенные теоретические зависимости, отвечающие

2-му сценарию и учитывающие все КФП, для безразмерных значений толщины $\overline{h}_s = h_s/D_p$ и диаметра $\overline{D}_s = D_s/D_p$ сплэта, подплавленного слоя основы $\overline{h}_b = h_b/D_p$, а также контактной температуры $\vartheta_c = T_c/T_{pm}$. Данные оценки имеют вид

$$\overline{h}_s = c_{\xi} \sqrt{\mathrm{Fo}^*}, \quad \overline{D}_s = \sqrt{2/(3\overline{h}_s)}, \quad \overline{h}_b = c_{\xi} \sqrt{\mathrm{Fo}^*},$$
(1)

$$\vartheta_{c} = \left(c_{\xi}/c_{\xi} + \lambda_{b,p}^{(l,s)}\vartheta_{bm}\right) / \left(c_{\xi}/c_{\xi} + \lambda_{b,p}^{(l,s)}\right),\tag{2}$$

где Fo^{*} = $[c_{\xi}(\sqrt{1+4\text{Pe}/c_{\xi}^2}-1)/2\text{Pe}]^2$ — безразмерное время встречи фронта затвердевания со свободной поверхностью растекающегося слоя расплава, Fo = $a_{pmt}^{(l)}/D_p^2$ — число Фурье; Pe = $D_p u_{p0}/a_{pm}^{(l)}$ — число Пекле; коэффициенты c_{ξ}, c_{ξ} характеризуют динамику затвердевания расплава и подплавления подложки в окрестности точки торможения $(r \sim D_p/2)$

$$c_{\xi} = P\left[\sqrt{1 + 4Q/P^{2}} - 1\right]/2, \quad c_{\xi} = S_{p,b}\left[c_{\xi} + 2(d_{2} - d_{1})/\mathrm{Ku}_{p}^{(l)}\right], \quad (3)$$

$$P = \frac{2\left[d_{2}\left(2S_{p,b} + \lambda_{b,p}^{(l,s)}\right) - d_{1}S_{p,b}\right]}{\mathrm{Ku}_{p}^{(l)}\left(S_{p,b} + \lambda_{b,p}^{(l,s)}\right)}, \quad (4)$$

$$Q = \frac{2\left[2d_{2}(d_{2} - d_{1})S_{p,b} - \lambda_{b,p}^{(l,l)}\mathrm{Ku}_{p}^{(l)}(1 - \vartheta_{bm})\right]}{\left(\mathrm{Ku}_{p}^{(l)}\right)^{2}\left(S_{p,b} + \lambda_{b,p}^{(l,s)}\right)}, \quad (4)$$

$$d_{1} = K^{(b,p)}(\vartheta_{1} - \vartheta_{1}\varepsilon)(\sqrt{\pi}, d_{2} - (1 + \alpha))\left(\vartheta^{(l)} - 1\right)/\sqrt{\pi}, \quad (5)$$

$$u_1 = K_{\varepsilon}$$
 $(v_{bm} = v_{b0})/\sqrt{\pi}$, $u_2 = (1 + u_c) (v_{p0} = 1)/\sqrt{\pi}$, (5)
 $\operatorname{Ku}_p^{(l)} = L_{pm}/[c_{pm}^{(l)}T_{pm}]$ — критерий Стефана–Кутателадзе; $K_{\varepsilon}^{(b,p)} = \sqrt{(\rho c \lambda)_{\varepsilon}^{(s)}/(\rho c \lambda)^{(l)}}$ — критерий тепловой активности материала

 $= \sqrt{(\rho c \lambda)_{bm}^{(s)}/(\rho c \lambda)_{pm}^{(t)}}$ — критерий тепловой активности материала основы к расплаву частицы; $S_{p,b} = \rho_{pm}^{(l)} L_{pm}/\rho_{bm}^{(s)} L_{bm}$; λ — теплопроводность, $\lambda_{b,p}^{(l,s)} = \lambda_{bm}^{(l)}/\lambda_{pm}^{(s)}$, $\lambda_{b,p}^{(l,l)} = \lambda_{bm}^{(l)}/\lambda_{pm}^{(l)}$; L_{pm} и L_{bm} — теплота плавления материала частицы и основы соответственно; параметр $\alpha_c \approx 0.26$ характеризует осредненный, за время напорного растекания капли, дополнительный вклад конвекции расплава.

Рис. 1. Схематическое представление стадии деформационного перехода капли к потенциальному течению расплава в окрестности точки торможения.

При получении оценок (1), характеризующих \overline{h}_s и \overline{h}_b , предполагалось, что вершина растекающейся капли $z_p(t)$ движется с постоянной скоростью u_{p0} , т.е. $z_p(t) = D_p - u_{p0}t$, или в безразмерном виде $\overline{z}_p(Fo) = 1 - Pe$ Fo. Однако для более корректного прогнозирования безразмерных значений толщин \overline{h}_s , \overline{h}_b и диаметра \overline{D}_s следует учесть начальную стадию деформации капли металлического расплава, в течение которой формируется потенциальное течение в окрестности точки торможения нормально натекающего расплава (рис. 1). Длительность t_0 данной стадии с учетом сохранения объема частицы составляет $t_0 = t_d/6$ или в безразмерном виде Fo₀ = Fo_d/6, Fo_d = 1/Pe.

Если в момент соударения капли контактная температура

$$\vartheta_{c0} = \left(\vartheta_{p0} + K_{\varepsilon}^{(b,p)}\vartheta_{b0}\right) / \left(1 + K_{\varepsilon}^{(b,p)}\right)$$
(6)

удовлетворяет двойному неравенству $\vartheta_{bm} < \vartheta_{c0} < \vartheta_{pm}$, то будем считать, что сразу начинается равновесное затвердевание частицы и подплавление подложки, при этом на границе раздела устанавливается эффективная температура ϑ_c , рассчитываемая согласно (2). Следовательно, по завершению начальной стадии средние значения относительных толщин \overline{h}_{s0} и \overline{h}_{bo} затвердевшего слоя расплава и подплавленного слоя подложки соответственно равны $\overline{h}_{s0} = c_{\xi}\sqrt{Fo_0}$ и $\overline{h}_{b0} = c_{\xi}\sqrt{Fo_0}$, а координата вершины частицы $\overline{z}_p(Fo_0) = 5/6$. Далее считаем, что при Fo > Fo вершина капли перемещается со скоростью $u_{p0}/2$ навстречу продолжающему движение фронту затвердевания. Решая полученное уравнение $11/12 - \text{Pe Fo}/2 = c_{\xi}\sqrt{Fo_0}$, находим полное время Fo* формирования сплэта, его толщину и толщину подплавленного поверхностно-

Теплофизические свойства материалов частицы и подложки

Материал	Свойство						
	$ ho_m^{(s)}/ ho_m^{(l)},$	$c_m^{(s)}/c_m^{(l)},$	$\lambda_m^{(s)}/\lambda_m^{(l)},$	T_m ,	L_m ,	$\mu_m^{(l)},$	$\sigma_m^{(l)}$,
	kg/m ³	$J/(kg \cdot K)$	$W/(m \cdot K)$	K	J/kg	Pa∙s	N/m
Pb	11058/10686	142.2/146.6	30/15	600.6	23021	0.00265	0.468
In	7210/7000	255.7/255.8	76/38	429.8	29094	0.00189	0.556

го слоя подложки

$$Fo^* = (c_{\xi}/Pe)^2 \left[\sqrt{1 + 11Pe/6c_{\xi}^2} - 1 \right]^2,$$

$$\overline{h}_s = c_{\xi}\sqrt{Fo^*}, \quad \overline{h}_b = c_{\xi}\sqrt{Fo^*}, \quad (7)$$

а диаметр сплэта \overline{D}_s и эффективная температура ϑ_c рассчитываются согласно (1), (2).

Для экспериментального изучения сплэтов, осажденных на подложки при соударении одиночных капель легкоплавких металлов в условиях полного контроля КФП, создана модельная физическая установка.

Для проверки адекватности развитых теоретических основ были выполнены модельные эксперименты по формированию сплэтов при соударении капель свинца с полированными подложками из индия. На рис. 2, а приведены результаты сравнения экспериментально измеренных и теоретически предсказанных диаметров сплэтов. Ось абсцисс на рис. 2 отвечает безразмерному комплексу Pe Fo*, а ось ординат — безразмерным значениям диаметра сплэта (рис. 2, *a*), его толщины (рис. 2, b) и толщины подплавленного слоя основы (рис. 2, c). На рис. 2, d приведены соответствующие значения контактной температуры. На рис. 2, а представлены также характерные фотографии сплэтов, приведенные к единому масштабу. Можно констатировать вполне удовлетворительное согласие экспериментальных и теоретических диаметров сплэтов. Расхождение (~ 10%) обусловлено допущением теории о цилиндрической форме сплэта, в то время как экспериментальные сплэты на периферии имеют либо форму валика, либо нерегулярную границу, связанную с "пальцеобразованием". Была выполнена также проверка применимости зависимостей [8-10], широко используемых в практике газотермического напыления. На рис. 2, а,

Письма в ЖТФ, 2013, том 39, вып. 20

Рис. 2. Сравнение относительных экспериментальных диаметров сплэтов с теоретически предсказанными и рассчитанными согласно зависимостям, предложенным в работах [8,9] (*a*); соответствующие теоретические оценки относительной толщины сплэтов свинца (*b*), и подплавленного слоя подложек из индия (*c*), при различных температурах основы ($T_{p0} = \text{const}$) и температурах капель свинца ($T_{b0} = \text{const}$); соответствующие теоретические значения температур в контакте "частица–подложка" (*d*).

89

приведены диаметры сплэтов, рассчитанных с помощью зависимостей, предложенных в [8,9]. Можно констатировать их значительное расхождение с экспериментом. Существенно большее расхождение с экспериментом наблюдается при использовании зависимости, предложенной в [10]. Из данных, представленных на рис. 2, c, можно сделать вывод о неравнозначном влиянии перегрева капли выше T_{pm} и подогрева подложки на глубину ее подплавления, что обусловлено поведением контактной температуры (рис. 2, d). Теплофизические свойства свинца и индия, при которых выполнены расчеты, приведены в таблице.

Таким образом, впервые предложена и экспериментально апробирована физическая модель, позволившая получить теоретические зависимости для оценки параметров металлических сплэтов, глубины подплавления подложки в пятне контакта ее с частицей и температуры в контакте "частица-поверхность", учитывающие все ключевые физические параметры взаимодействия "капля-поверхность". Данные зависимости могут быть положены в основу критериального обобщения экспериментальных данных.

Результаты работы получены при финансовой поддержке президиума СО РАН (Междисциплинарный интеграционный проект № 2 СО РАН на 2012–2014 гг.).

Список литературы

- Solonenko O.P. // Thermal Plasma and New Materials Technology / Ed. by O.P. Solonenko and M.F. Zhukov. Cambridge, England: Cambridge International Science Publishing, 1995. V. 2. P. 7–97.
- [2] Кудинов В.В. Плазменные покрытия. М.: Наука, 1976. 186 с.
- [3] Amon C.H., Schmaltz K.S., Merz R., Prinx F.B. // ASME J. Heat Transfer. 1996. P. 164–172.
- [4] Wang S.P., Wang G.X., Matthys E.F. // Int. J. Heat Mass Transfer. 1998. V. 41. N 10. P. 1177–1188.
- [5] McDonald A., Raessi M., Chandra S. // Proc. of the 2006 Intern. Thermal Spray Conf. 15–18 May 2006. Seattle, Washington, USA (Electronic publication).
- [6] Головин А.А., Солоненко О.П. // Теплофизика и аэромеханика. 2007. Т. 14. № 3. С. 413–428.
- [7] Солоненко О.П., Федорченко А.И. // Сибирский физико-технический журнал. 1991. В. 1. С. 109–116.
- [8] Cheng L. // Ind. Eng. Chem. Process Des. Dev. 1977. V. 16. N 2. P. 192-197.
- [9] Jones H. // J. Phys. D: Appl. Phys. 1971. V. 4. P. 1657-1660.
- [10] Madejski J. // J. Heat Mass Transfer. 1976. V. 19. P. 1009-1013.