$^{05;07}$ Сцинтилляционные свойства кристаллов SrF_2 и SrF_2-Ce^{3+}

© Р.Ю. Шендрик, Е.А. Раджабов, А.И. Непомнящих

Институт геохимии им. А.П. Виноградова СО РАН, Иркутск Иркутский государственный университет E-mail: shendrik@ieee.org

В окончательной редакции 25 февраля 2013 г.

Приводятся результаты измерения сцинтилляционных свойств беспримесных кристаллов SrF₂ и кристаллов, активированных различными концентрациями ионов Ce³⁺. Световой выход данных материалов сравнивается с выходом известных сцинтилляторов NaI–Tl и CaF₂–Eu²⁺. Установлено, что кристаллы фторида стронция, активированные ионами Ce³⁺, обладают высоким световым выходом и перспективны для применения в гамма-каротажных сцинтилляционных детекторах.

В настоящее время сцинтилляторы находят все большее применение в различных областях физики, медицины, геологии. Они активно используются в детекторах в аэропортах, грузовых терминалах. В связи с этим растет спрос на сцинтилляционные материалы, что требует поиска новых материалов с лучшими характеристиками. Наибольший световой выход наблюдается для кристаллов иодидов, промидов и хлоридов, активированных ионами церия и европия [1,2]. Недостатком данных материалов является их высокая цена, а также гигроскопичность. Также в материалах, активированных европием, время затухания свечения составляет ~ 1 μ s, к тому же данные сцинтилляторы имеют низкую температурную стабильность светового выхода, что накладывает ограничения на их использование, например, в геологии [3].

Для большинства применений достаточно, чтобы световой выход был на уровне сцинтиллятора NaI–Tl, но при этом сцинтиллятор имел бы более короткое время затухания и не был гигроскопичным. В этой связи перспективными могут быть кристаллы щелочно-земельных фторидов, активированных ионами Ce^{3+} , Pr^{3+} и Eu^{2+} . Предельный световой выход для таких материалов составляет примерно 50 000 photons/MeV [1]. Наибольший же световой выход был получен

9

в кристаллах CaF_2-Eu^{2+} , он составляет 18 000–24 000 photons/MeV. В кристаллах BaF_2 и BaF_2-Ce^{3+} наблюдался меньший световой выход — 10 000 photons/MeV [2]. В представляемой работе впервые приводятся результаты исследования сцинтилляционных свойств кристаллов SrF_2 и SrF_2-Ce^{3+} .

Кристаллы SrF₂ и SrF₂–Ce³⁺ выращивались методом Стокбаргера в вакууме. Для того чтобы избежать заражения кристаллов кислородом, в шихту добавлялся CdF₂ [4]. Полученные образцы не содержат примеси кислорода, что видно по отсутствию характерных полос в спектре поглощения кристаллов [5]. Были получены кристаллы SrF₂–Ce³⁺ с концентрацией активатора от 0.03 до 3 mol.%.

Спектры рентгенолюминесценции (РЛ) измерялись при возбуждении рентгеновской трубкой с Pd-анодом, напряжение на трубке составляло 35 kV, ток 0.8 mA. Регистрация спектров производилась в режиме счета фотонов, для регистрации использовался ФЭУ-39а и монохроматор BM-4.

Измерение амплитудных спектров импульсов производилось с помощью ФЭУ-39а, предусилителя и спектрометрического усилителя Ortex 570. Время формирования импульса спектрометрического усилителя (shaping time) устанавливалось равным 10 μ s, чтобы зарегистрировать как можно больше света от сцинтиллятора. Для возбуждения использовался калибровочный источник ¹³⁷Сs. Исследуемый образец, обвернутый четырьмя слоями тефлоновой, отражающей УФ-свет ленты PTFE, помещался непосредственно на окно ФЭУ. Для лучшего оптического контакта между окном ФЭУ и сцинтиллятором наносилась глицериновая смазка.

Времена затухания свечения ионов Ce³⁺ в кристаллах SrF₂-Ce³⁺ измерялись при возбуждении калибровочным источником ¹³⁷Cs. Кривые затухания регистрировались с помощью осциллографа Rigol DS-1202CA.

На рис. 1 представлены спектры РЛ кристаллов SrF₂, NaI–Tl, SrF₂–0.3 mol. % Ce³⁺ и CaF₂–0.1 mol. % Eu²⁺. В спектре SrF₂ широкая полоса с максимумом в области 280 nm связана со свечением экситонов. В кристалле фторида стронция, активированного ионами церия, свечение экситонов тушится и исчезает при концентрациях активатора выше 1 mol. %. Наиболее интенсивные полосы в спектре РЛ кристалла SrF₂–Ce³⁺ с максимумами при 310 и 325 nm связаны с 5d-4f-свечением ионов Ce³⁺. Световой выход этих образцов можно

Рис. 1. Спектры свечения кристаллов SrF₂ (кривая *1*), NaI–T1 (кривая 2), SrF₂–0.3 mol.% Ce³⁺ (кривая 3) и CaF₂–0.1 mol.% Eu²⁺ (кривая 4) при возбуждении рентгеновским излучением. На вставке представлена зависимость светового выхода при рентгеновском возбуждении от концентрации ионов Ce³⁺ в кристаллах SrF₂. За единицу принят световой выход беспримесного кристалла SrF₂.

оценить, сравнив площади под спектрами свечения образцов. На вставке к рис. 1 показана концентрационная зависимость светового выхода кристаллов, активированных различными концентрациями ионов церия (от 0.03 до 3 mol.%), нормированная на световой выход беспримесного кристалла SrF₂. Наибольший световой выход наблюдается в кристаллах, активированных 0.3 mol.% ионов Ce³⁺.

Световой выход люминесценции кристаллов SrF₂ и SrF₂-Ce³⁺ при возбуждении рентгеновским излучением сравнивается с выходом люминесценции кристаллов NaI-Tl. Световой выход используемого кристалла NaI-Tl составляет 43 000 photons/MeV, таким образом можно оценить световой выход остальных исследуемых кристаллов при рентгеновском возбуждении. Данные приведены в таблице. Оцен-

Сцинтиллятор	Световой выход, полученный из спектров рентгенолюминесценции		Световой выход, полученный из амплитудных спектров импульсов	
	rel.units	photons/MeV	rel.units	photons/MeV
NaI-Tl	1	43 000	1	43 000
$CaF_2-0.1 \text{ mol.\% Eu}$ SrF ₂	0.5 0.48	21 500 20 640	0.44 0.42	18 920 18 060
$SrF_2 - 0.3 \text{ mol.\% Ce}^{3+}$	0.79	33 970	0.32	13 760
$SrF_2{-}1mol.\%Ce^{3+}$	0.43	18 490	0.2	8 600

Световой выход кристаллов SrF₂, SrF₂–Ce³⁺, NaI–Tl и CaF₂–0.1 mol.% Eu²⁺, измеренный при возбуждении рентгеновским и гамма-излучением

ка светового выхода для кристалла $CaF_2-0.1 \text{ mol. }\% \text{ Eu}^{2+}$ составляет 21 500 photons/MeV, что согласуется с литературными данными [2]. Для SrF₂ световой выход составляет 20 640 photons/MeV, для кристаллов SrF₂, активированных 0.3 mol. % ионов $Ce^{3+} \sim 34\,000$ photons/MeV, 1 mol. % $Ce^{3+} \sim 18\,500$ photons/MeV.

На рис. 2, а приведены амплитудные спектры импульсов кристаллов SrF_2 , $SrF_2-0.3$ mol.% Ce^{3+} и NaI-Tl. По оси абсцисс на рисунке отложены каналы амплитудных распределений. На вставке представлена зависимость светового выхода, измеренного по положению пика полного поглощения, от концентрации ионов Ce³⁺ в SrF₂. За единицу принят световой выход беспримесного кристалла SrF2. Энергетическое разрешение пика полного поглощения NaI-Tl составляет 6.7%, у SrF2 — 10%, а разрешение образца SrF₂-0.3 mol. % Ce³⁺ — 9.3%. Световой выход беспримесного кристалла SrF₂ составляет 42% от NaI-Tl, что близко к значениям, полученным из спектров РЛ (см. таблицу). Световой выход криталлов SrF₂, активированных 0.3 mo.% ионов се³⁺, составляет 32% от выхода NaI-Tl, что существенно ниже значений, полученных из спектров РЛ. Эти данные приведены также в таблице. Отметим, что в таблице приводятся некорректированные на спектральную чувствительность канала регистрации величины. Однако известно [6], что спектральная чувствительность фотокатода S20 (ФЭУ-39а) в области 400 nm выше, чем в области 280-330 nm.

Рис. 2. Амплитудные спектры импульсов кристаллов NaI–T1 (кривая *I*), SrF₂–0.3 mol.% Ce³⁺ (кривая 2) и SrF₂ (кривая 3) при возбуждении гаммаисточником ¹³⁷Cs (662 keV) (*a*) и температурная зависимость светового выхода кристаллов SrF₂, активированных 0.01 mol.% Ce³⁺ (кривая *I*), 0.1 mol.% Ce³⁺ (кривая 2), 0.3 mol.% Ce³⁺ (кривая 3) и 1 mol.% Ce³⁺ (кривая 4) (*b*). На вставке представлена концентрационная зависимость светового выхода кристаллов SrF₂–Ce³⁺.

Рис. 3. Кривая затухания сцинтилляций кристалла SrF_2 , измеренная при возбуждении гамма-источником ¹³⁷Cs (энергия 662 keV). Отдельно показаны экспоненциальные компоненты, на которые раскладывается суммарная кривая.

На рис. 3 представлена кривая затухания сцинтилляций кристалла $\mathrm{SrF_2-0.3\ mol.\%\ Ce^{3+}}$. При измерении использовалось интегрирующее сопротивление 2.6 k Ω , которое ставилось на вход осциллографа, для регистрации длительных компонент в свечении ионов $\mathrm{Ce^{3+}}$. Аппаратное временное разрешение регистрирующей системы при использовании входного сопротивления 2.6 k Ω составляет порядка 2.8 μ s. Таким образом, первая компонента в затухании свечения — 2.8 μ s — является проинтегрированной короткой компонентой, которая при сопротивлении входа 50 Ω составляет 130 пs. Из рис. 3 видно, что вклад медленных компонент в свечение кристалла $\mathrm{SrF_2-0.3\ mol.\%\ Ce^{3+}}$ может достигать 50%.

Таким образом, разница в световом выходе, полученном из спектров РЛ и амплитудных спектров импульсов, связана с тем, что в свечении ионов церия присутствуют интенсивные медленные компоненты (рис. 3), которые дают вклад в световой выход. При измерении амплитудных спектров импульсов время формирования импульса со-

ставляет $10\,\mu$ s, поэтому значительная доля света не регистрируется. При измерении спектров РЛ время интегрирования составляет порядка 1 s.

Практические результаты исследования заключаются в следующем. Оценки температурной стабильности светового выхода (рис. 2, *b*) проводились по методике, описанной в работе [7]. В области температур от -50 до 50°С световой выход кристаллов SrF₂ – Ce³⁺ не зависит от температуры. При температурах выше 50°С наблюдается уменьшение светового выхода с температурой. Для кристаллов, активированных 0.01 mol. % Ce³⁺ (рис. 2, *b*, кривая 1) и 0.1 mol. % Ce³⁺ (рис. 2, *b*, кривая 2), световой выход при темпратуре 170°С уменьшается на 30%, для образцов с концентрацией 0.3 mol.% Ce³⁺ — 25% (рис. 2, *b*, кривая 3). В кристаллах с примесью 1 mol.% Ce³⁺ световой выход при температуре 170°С снижается на 15% (рис. 2, *b*, кривая 4). Таким образом, высокую температурную стабильность светового выхода в интервале температур от -50 до 170°С демонстрируют кристаллы SrF₂–0.3 mol.% Ce³⁺ и SrF₂–1 mol.% Ce³⁺, что делает перспективным использование кристаллов SrF₂–Ce³⁺ в качестве сцинтилляторов для гамма-каротажных детекторов.

Кристаллы SrF₂ при сравнимом световом выходе с NaI–Tl имеют более высокую температурную стабильность светового выхода, плотность (4.18 g/cm³) в сравнении с NaI–Tl (3.67 g/cm³), а также не гигроскопичны. Потенциальный световой выход кристаллов SrF₂–Ce³⁺ может достигать 34 000 photons/MeV. Таким образом, SrF₂ и SrF₂–Ce³⁺ являются перспективными кристаллами для сцинтилляционных применений.

Кристаллы SrF₂-0.3 mol. % Ce³⁺ по своим характеристикам: относительно высокий световой выход, негигроскопичность, температурная стабильность светового выхода — являются перспективным материалом для гамма-каротажных сцинтилляционных детекторов.

Работа выполнена при поддержке Министерства образования и науки Российской Федерации и Российского фонда фундаментальных исследований (грант № 11-02-00717-а).

Список литературы

[1] Dorenbos P. // IEEE Transactions on Nuclear Science. 2010. V. 57. P. 1162.

[2] Derenzo S.E. Database: http://scintillator.lbl.gov

- [3] Ellis D.V., Singer J.M. Well logging for earth scientists /2nd ed. Springer, 2007.
- [4] Radzhabov E. // J. Phys. Cond. Matter. 2001. V. 13. P. 10955.
- [5] Егранов А.В., Раджабов Е. Спектроскопия кислородных и водородных примесных центров в щелочно-галоидных кристаллах. Новосибирск: Наука, 1992.
- [6] Flyckt S.O. Photomultipliers tubes. France: Photonis, 2002.
- [7] Shendrik R., Radzhabov E. // IEEE Transactions on Nuclear science. 2010. V. 57.
 P. 1295.