05

Исследование действия импульсного магнитного поля на сигнал ядерного спинового эха в феррите

© И.В. Плешаков, Н.С. Клёхта, Ю.И. Кузьмин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский государственный политехнический университет E-mail: ivanple@yandex.ru

Поступило в Редакцию 24 мая 2012 г.

Показано, что импульсное магнитное поле через смещение доменных границ оказывает влияние на сигнал ядерного спинового эха в магнитоупорядоченном материале (феррите). Наблюдались эффекты подавления и восстановления отклика при использовании импульсных последовательностей, включающих импульсы разной полярности. Получена зависимость коэффициента подавления от внешнего постоянного магнитного поля, подтверждающая предположение о том, что обнаруженные явления связаны с границами.

Ядерный магнитный резонанс (ЯМР) является одним из информативных методов изучения магнитоупорядоченных материалов [1,2], в частности особенностей строения их доменной структуры [3]. Принципы интерпретации откликов ядерной спиновой системы в образцах, содержащих домены и доменные границы, известны и достаточно хорошо развиты [4,5], однако для ряда практически важных случаев в этой области остались нерешенные вопросы. Они возникают, например, при анализе природы отклика в поликристаллических или дисперсных (в том числе нанодисперсных) веществах, что особенно важно, поскольку в последнее время ЯМР часто применяется для исследования именно таких сред [6–9].

Введение дополнительного воздействия, оказываемого на ядерную намагниченность через электронные магнитные моменты, расширяет возможности метода и дает возможность извлечь из экспериментальных данных новые сведения. В качестве такового ранее теоретически рассматривался короткодействующий импульс магнитного поля, и было

60

показано, что в системе, описываемой уравнениями Блоха, он подавляет сигнал ЯМР [10].

Целью настоящей работы являлось проведение экспериментального исследования влияния различных последовательностей импульсного поля на формирование отклика ядерной спиновой системы поликристаллического магнитного соединения, и выяснение связи наблюдаемых при этом эффектов с доменной структурой. В качестве образца взято хорошо изученное с радиоспектроскопической точки зрения вещество.

Использованная в работе методика поясняется рис. 1. ЯМР регистрировался по сигналу двухимпульсного спинового эха ядер ⁵⁷Fe, наблюдаемого в литий-цинковом феррите Li_{0.425}Fe_{2.425}Zn_{0.15}O₄. Образец имел форму кольца, на которое были намотаны две катушки: радиочастотного (РЧ) возбуждения и создания импульсного магнитного поля. При подаче на них напряжений U_{RF} и U_V , внутри материала, как показано на рис. 1, *a*, возникали магнитные поля РЧ импульса h_{RF} и видеоимпульса h_V соответственно. Постоянное магнитное поле H_0 прикладывалось вдоль оси кольца и являлось, таким образом, перпендикулярным импульсным полям.

Измерения проводились при комнатной температуре. Поскольку частота ЯМР ω_n в магнитном материале определяется локальным полем [1,2], H_0 служило только для управления магнитным состоянием вещества, а величина $\omega_n/2\pi$ была фиксирована, и составляла 68 МНz. Для увеличения амплитуды оклика, которая быстро падает при росте H_0 , феррит был обогащен изотопом ⁵⁷Fe до 85%.

На рис. 1, *b* изображены временные диаграммы действующих на спиновую систему импульсных последовательностей, там же даны необходимые обозначения. На катушку, входящую в состав резонансного контура радиоспектрометра, подавались два РЧ импульса на несущей частоте ω_n , длительности импульсов $\tau_{1,2}$ изменялись в пределах нескольких микросекунд (основные измерения происходили при $\tau_1 = \tau_2 = 2\,\mu$ s), а интервал t_{12} между импульсами составлял несколько десятков микросекунд (рис. 1, *b*, I). Величина U_{RF} настраивалась по максимуму эхо-сигнала и достигала десятков вольт. Варианты поступления видеоимпульсов и их расположение относительно возбуждающей последовательности показаны на рис. 1, *b*, II–IV. В разных экспериментах использовались катушки импульсного поля с разным количеством витков; при наибольшем их количестве и $U_V = 20$ V можно было достичь значения $h_{V max} \cong 15$ Oe.

Рис. 1. Методика проведения эксперимента. *а* — геометрия внешних полей. *I* — образец, *2* — катушка возбуждения и регистрации ЯМР, *3* — катушка создания импульсов магнитного поля. *b* — временные диаграммы импульсных последовательностей. I — возбуждающие РЧ импульсы и сигнал эха, II, III, IV — варианты подачи видеоимпульсов.

Рис. 2. Действие одиночного импульса магнитного поля на сигнал спинового эха в зависимости от времени его поступления ($t_{12} = 75 \,\mu$ s). *I* — $h_V/h_{V \max} = 0.5$, $\tau_V = 2 \,\mu$ s; $2 - h_V/h_{V \max} = 0.5$, $\tau_V = 5 \,\mu$ s; $3 - h_V/h_{V \max} = 0.5$, $\tau_V = 10 \,\mu$ s; $4 - h_V/h_{V \max} = 1$, $\tau_V = 5 \,\mu$ s; $5 - h_V/h_{V \max} = 1$, $\tau_V = 10 \,\mu$ s. Пунктиром (на примере случая 2) показано различие эффектов подавления при подаче импульса в интервалах (0, t_{12}) и (t_{12} , $2t_{12}$).

Одиночный видеоимпульс (рис. 1, *b*, II) во всех случаях приводил к подавлению эха. На рис. 2 показан результат его воздействия на спиновую систему, регистрируемый по уменьшению амплитуды отклика I_e . Сильнее всего сигнал ослаблялся при совпадении РЧ и видеоимпульсов, но расположение импульса поля в интервалах между импульсами возбуждающей последовательности также давало значительный эффект. Он не зависел от времени поступления импульса t_V , хотя следует отметить, что при его подаче после второго РЧ импульса ослабление становилось несколько меньшим. Увеличение h_V или τ_V вызывало дополнительное снижение эхо-сигнала, причем эта зависимость не была линейной. Два импульса одной полярности оказывали то же действие, что одиночный импульс с увеличенной длительностью.

Рис. 3. Зависимость величины подавления эхо-сигнала от магнитного поля $(h_V/h_{V max} = 1)$. $I - \tau_V = 5\,\mu$ s, $2 - \tau_V = 10\,\mu$ s. Пунктирная и сплошная линии являются аппроксимацией соответствующих экспериментальных точек полиномом.

Рис. З иллюстрирует поведение коэффициента подавления, т.е. отношения амплитуд ослабленного и исходного откликов, $I_{es}(H_0)/I_e(H_0)$, от магнитного поля. Поскольку с ростом H_0 сигнал ЯМР быстро падает, экспериментальные точки имеют здесь заметный разброс, но тем не менее из графика видно, что подавление в больших полях ухудшается, практически полностью исчезая с приближением к насыщению.

При поступлении на образец двух разнополярных импульсов в последовательности, показанной на рис. 1, *b*, III, наблюдалось нетривиальное явление восстановления эхо-сигнала. Оно не было полным,

но могло достигать (при $\tau_{V1} = \tau_{V2}$) 80%. Действие импульсов разной полярности в том варианте, который показан на рис. 1, *b*, IV, оказалось таким же, как действие двух импульсов одной полярности.

Поскольку ядерная спиновая система "чувствует" внешнее поле через посредство электронных магнитных моментов [1,2], объяснение рассмотренных явлений должно основываться на представлении том, какое движение электронная намагниченность М совершает под действием видеоимпульсов. Поле анизотропии литиевого феррита Н_а составляет около 600 Ое [11], т.е. угол ее наибольшего возможного отклонения от положения равновесия в домене может быть оценен, как $\alpha \simeq h_{V \max}/H_a \simeq 2.5 \cdot 10^{-2}$ rad. В то же время происходящее под действием h_V смещение доменной границы, даже будучи незначительным, сопровождается большим поворотом M: в полях $h_{\rm V} \sim 10\,{
m Oe}$ сдвиг может быть порядка ее толщины, и тогда некоторые моменты (внутри и вблизи 180-градусной стенки) совершат почти полный переворот [3]. Фактически мы здесь имеем дело с тем же механизмом, который отвечает за усиление ЯМР в магнитоупорядоченных материалах. Он различен для доменов и границ, что определяется различием восприимчивостей вращения и смещения, достигающим нескольких порядков [1,2].

Принимая простейшую модель наблюдавшихся эффектов, положим, что поле h_V влияет только на ЯМР в границах, обратимо сдвигая последние таким образом, что угол поворота моментов М, а значит, и связанных с ними локальных полей, оказывается достаточно велик. В том случае, если ядерная спиновая система возбуждена предшествующим РЧ импульсом, во время действия видеоимпульса произойдет изменение направлений прецессии ядерных магнитных моментов, причем частоты вращения отдельных изохромат будут несколько отличаться из-за неоднородного распределения угла отклонения вдоль границы. Это приведет к расфокусировке изохромат и уменьшению эхо-сигнала. Приложение следующего импульса другой полярности вызывает сдвиг границы в противоположную сторону, и появление добавки к прецессии, восстанавливающей сигнал (причем только тогда, когда импульсы действуют на одном и том же временном интервале, поскольку на интервалах, разделенных вторым РЧ импульсом, прецессия меняет фазу на 2π). Разумеется, строгая теория должна учитывать поведение спиновой системы при кратковременном изменении направления локального поля на произвольный угол, но и качественный подход позволяет понять основные особенности обнаруженных явлений.

Приведенное рассуждение, находясь в согласии с экспериментальными данными, подтверждается зависимостью коэффициента подавления от поля. Если импульсное поле действует только на ту часть отклика, которая связана с границами, то очевидно, что в процессе намагничивания импульс должен оказывать на отклик все меньшее влияние, поскольку суммарный объем границ убывает — это и регистрируется на опыте (рис. 3). Полученные результаты свидетельствуют также о том, что в полностью размагниченном феррите основная часть сигнала ЯМР происходит от доменных границ.

Таким образом, нами обнаружены и качественно объяснены эффекты подавления и восстановления ядерного спинового эха в поликристаллическом магнитоупорядоченном материале при действии на него различных последовательностей импульсного магнитного поля. Сделан вывод о связи изученных явлений с доменными границами, из которого следует возможность их использования в качестве дополнительного способа разделения сигналов ЯМР от различных элементов магнитной структуры, что до настоящего времени остается актуальной задачей.

Настоящая работа частично поддержана грантом программы президиума РАН П-03.

Список литературы

- [1] Туров Е.А., Петров М.П. Ядерный магнитный резонанс в ферро- и антиферромагнетиках. М.: Наука, 1969. 260 с.
- [2] Kurkin M.I. // Physics of Metals and Metallography. 2000. V. 89. Suppl. 1. P. S48–S57.
- [3] Zalesskij A.V., Zheludev I.S. // Atomic Energy Review. 1976. V. 14. P. 133-172.
- [4] Joonghoe Dho, Mincheol Kim, Soonchil Lee, Won-Jong Lee // J. Appl. Phys. 1997. V. 81. N 3. P. 1362–1367.
- [5] Oliveira I.S., Guimaraes A.P. // JMMM. 1997. V. 170. N 3. P. 277-284.
- [6] Speight R., Wong A., Ellis P., Hyde T.I., Bishop P.T., Smith M.E. // Solid State Nuclear Magnetic Resonance. 2009. V. 35. N 2. P. 67–73.
- [7] Speight R., Wong A., Ellis P., Bishop P.T., Hyde T.I., Smith M.E. // Phys. Rev. B. 2009. V. 79. N 5. 054102-8.
- [8] Матвеев В.В., Бреган А.Д., Володин В.С., Лавров С.А., Плешаков И.В., Фолманис Г.Э. // Письма в ЖТФ. 2008. Т. 34. В. 19. С. 34–39.

- 2006. Part 6. Р. 1493.
 [10] Апушкинский Е.Г., Казак А.В., Нестеров О.А. // Вопросы радиоэлектроники. 1982. Сер. ТПО. В. 1. С. 13–22.
- [11] Найден Е.П., Журавлев Е.А., Итин В.И., Терехова О.Г., Магаева А.А., Иванов Ю.Ф. // ФТТ. 2008. Т. 50. В. 5. С. 857–863.