05

Формирование физических свойств релаксорного сегнетоэлектрика Pb₂ScNbO₆ методом механоактивации

© Э.Н. Убушаева, Е.В. Лихушина, К.Г. Абдулвахидов, М.А. Витченко, Б.К. Абдулвахидов, В.Б. Широков, Н.В. Лянгузов, Ю.И. Юзюк, Е.М. Кайдашев, И.В. Мардасова

Южный федеральный университет, Ростов-на-Дону Московский технический университет (МАИ) Донской государственный технический университет, Ростов-на-Дону E-mail: phys.kam@mail.ru

В окончательной редакции 2 июня 2011 г.

Изучен релаксорный сегнетоэлектрик Pb₂ScNbO₆ (PSN), полученный твердофазным методом, спеканию которого предшествовала обработка при комнатной температуре синтезированного порошка PSN в наковальнях Бриджмена силовым воздействием в сочетании со сдвиговой деформацией. Показано, что при интенсивных силовых воздействиях в сочетании со сдвиговой деформацией в PSN развиваются динамические рекристаллизационные процессы, вносящие существенный вклад в формирование физических свойств керамики.

Суть метода механоактивации заключается в релаксации прикладываемой к образцу механической энергии через различные каналы, среди которых особо стоит отметить пластическую деформацию и разрушение твердого тела путем накопления точечных дефектов и дислокаций [1-3]. Этот метод оказался мощным инструментом, позволяющим не только получать объекты с линейными размерами в интервале от десятков микрометров до единиц нанометров, но и формировать физические свойства этих объектов в процессе приготовления [4].

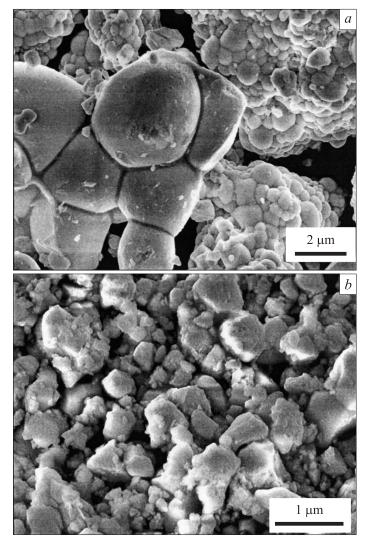
Отметим, что зависимость диэлектрической проницаемости ε , спонтанной поляризованности P_s и других физических свойств от размеров кристаллитов, составляющих сегнетокерамику, проявляется уже при размерах $\leqslant 1\,\mu$ m. Принято считать, что при размере кристаллита $\leqslant 10\,\mathrm{nm}$ в его объеме не содержатся дислокации, а при больших разме-

рах в объеме кристаллита почти всегда присутствуют как точечные дефекты, так и дислокации. Поэтому, целенаправленно изменяя размеры кристаллитов, концентрацию и типы структурных дефектов путем механического воздействия, можно влиять на свойства сегнетоэлектриков. Содержанием данной работы является комплексное изучение эффектов такого воздействия на физические свойства PSN.

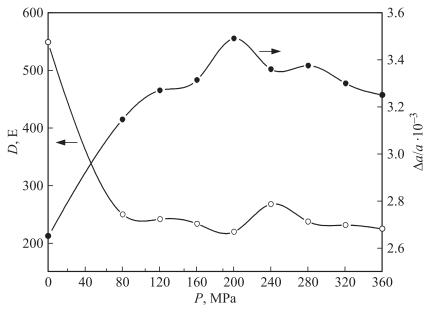
Механоактивацию предварительно синтезированного порошка PSN осуществляли с помощью механического пресса с усилием до 3-х тонн и наковален Бриджмена, нижняя из которых вращалась с угловой скоростью $\omega=0.3\,\mathrm{rad/min}$. Рентгеноструктурные измерения были проведены при фиксированных температурах 473 и 573 К на дифрактометре ДРОН-3 (Си k_α -излучение), микроструктуры — с помощью атомно-силового микроскопа NTEGRA и электронного микроскопа Supra-25. Измерения диэлектрической проницаемости керамических образцов были проведены на частоте 1 kHz с помощью измерителя иммитанса E7-20 в интервале температур от комнатной до 450 К.

Исходным пунктом в приготовлении образцов служил твердофазный синтез PSN из оксидов PbO, Sc_2O_3 и Nb_2O_5 квалификации "чда", взятых в стехиометрическом соотношении. Синтез осуществлялся в герметично закрытом платиновом тигле при температуре 1273 К в течение 4 h. Далее строго дозированные навески синтезированного порошка обрабатывались в наковальнях Бриджмена. Компактированные при одном и том же давлении и сдвиговой деформации семь порций пресспорошка перетирались в течение 10 min в агатовой ступке с этиловым спиртом. Аналогичным образом были приготовлены все восемь рабочих образцов, отличающихся друг от друга величиной приложенного давления. С целью сравнительного анализа физических свойств образцов в качестве эталона брался образец того же состава, не подвергнутый механическому воздействию.

Измерения интегральных интенсивностей дифракционых профилей были проведены с шагом сканирования $\Delta \nu = 0.01^\circ$ и временем экспозиции в каждой точке $\tau = 8\,\mathrm{s}$ для двух отражений 111 и 220 при температурах 473 и 573 К. Выбор этих температур обусловлен тем, что при более низких температурах есть еще вероятность сохранения полярных кластеров в неполярной матрице PSN, а для развития эффекта порядок—беспорядок ($T_{o-d} \approx 1480\,\mathrm{K}$) эти температуры недостаточны. Отметим, что температура максимума диэлектрической проницаемо-


сти T_m разупорядоченного PSN составляет примерно 370 K. Температура стабилизировалась с помощью BPT-3 с точностью ± 1 K.

Для проведения электрофизических измерений эталонный и рабочие образцы вместе спекались в одинаковых температурно-временных условиях в закрытом платиновом тигле с засыпкой PbZrO₃, в результате чего были получены керамические образцы в виде таблеток толщиной 1 и диаметром 10 mm. В качестве электродов наносился аквадаг.


На рис. 1 приведены микрофотографии эталонного и одного из рабочих образцов. Сравнительный анализ размеров и формы частиц до и после механического воздействия показал, что во втором случае все частицы имеют неправильную форму. Разброс их размеров в зависимости от приложенного давления составлял интервал 30—800 nm, а изучение с помощью атомно-силового микроскопа NTEGRA показало, что распределение частиц по размерам для некоторых образцов имеет мультимодальный характер.

Сопоставление рентгеноструктурных данных и результатов электронно-микроскопического изучения позволило выяснить причину такого характера распределения частиц по размерам. Известно, что в результате интенсивных силовых воздействий в сочетании со сдвиговой деформацией при некоторых давлениях происходит измельчение кристаллитов твердого тела, энергия активации диффузионных процессов уменьшается, эффективный коэффициент диффузии генерируемых точечных дефектов и их концентрации увеличиваются на несколько порядков [5], что и создает благоприятные условия для низкотемпературной динамической рекристаллизации [6]. При этом рекристаллизованные зерна содержат меньшее количество структурных дефектов. Как следствие, при рентгеноструктурном изучении порошковых образцов после механоактивации при некоторых давлениях наблюдается рост интегральной интенсивности І и размеров областей когерентного рассеяния D. Однако обработка образца за более длительный период или при более высоких значениях давления за тот же промежуток времени может сопровождаться измельчением рекристаллизованных зерен, что приводит к заметному изменению физических свойств и термодинамических параметров PSN. Panee в [4] было обнаружено, что путем механоактивации можно управлять даже степенью дальнего порядка релаксорного сегнетоэлектрика Pb₂ScTaO₆ — аналога PSN.

Таким образом, должны изменяться электрофизические свойства и керамики PSN, спеченной из порошков, прошедших механоактивацию.

Рис. 1. Микрофотографии эталонного (a) и рабочего $(P=200\,\mathrm{MPa})$ (b) порошковых образцов Pb₂ScNbO₆.

Рис. 2. Зависимость размеров областей когерентного рассеяния D и микродеформаций $\Delta a/a$ порошковых образцов Pb_2ScNbO_6 от давления обработки.

Далее мы рассмотрим поведение некоторых параметров, характеризующих реальное состояние структуры активированных порошков и керамики PSN. На рис. 2 приведены графики зависимостей размеров D, микродеформаций ($\Delta a/a$). Механоактивация порошков PSN при росте давлений до 200 MPa сопровождается ростом концентраций дислокаций — увеличением степени мозаичности кристаллитов и отсюда, как следствие, увеличением интегральной интенсивности I. Концентрация генерируемых в процессе активации точечных дефектов, начиная с этого давления, и их роль в диффузионных процессах увеличиваются. В этом же интервале наблюдается уменьшение размеров D, и они коррелируют с результатами электронно-микроскопических измерений. Рост размеров D, наблюдаемый при 240 MPa, соответствует динамическому рекристиаллизационному процессу, развивающемуся при этом давлении, а дальнейшее уменьшение размеров D при больших

давлениях обусловлено измельчением рекристаллизованных зерен и увеличением в них концентраций точечных дефектов.

В рамках Дебаевского приближения, предполагая, что все ионы PSN в парафазе (Pm3m) колеблются независимо друг от друга и изотропно, проведем расчет характеристической температуры Дебая (Θ) , тепловых факторов Дебая—Валлера (B) и среднеквадратичных смещений $\langle U^2 \rangle$ эталонного и рабочих образцов. При выборе дифракционных профилей без учета диффузионного фона, возникающего между Брэгговскими пиками за счет теплового смещения ионов, такое предположение вполне допустимо [7]. Поэтому и результаты, полученные нами в данной работе, носят, в некоторой степени, оценочный характер характеристик динамики решетки.

С целью учета влияния текстуры для каждого образца была определена температура Θ классическим двухтемпературным методом [8] из отношений интенсивностей I дифракционных профилей, измеренных при температурах 473 и 573 К:

$$\ln\left(\frac{I_{T_1}}{I_{T_2}}\right) = \frac{12h^2}{m_a k \Theta^2} \left[\frac{F(x_1)}{x_1} - \frac{F(x_2)}{x_2} \right] S^2, \tag{1}$$

где $x_1 = \Theta/T_1$, $x_2 = \Theta/T_2$, h — постоянная Планка, k — постоянная Больцмана, F(x) — функция Дебая, $m_a = \Sigma n_n m_i/\Sigma m_i$ — средняя атомная масса, n_i — число атомов в ячейке PSN, $S = \sin \nu/\lambda$.

По полученным температурам Θ вычисляли значения изотропного фактора Дебая—Валлера (B) для всех образцов при двух температурах (см. выше) из следующего соотношения:

$$B(T) = \frac{6h^2T}{m_a k \Theta^2} \left[F(x) + \frac{x}{4} \right]. \tag{2}$$

Значения Θ и B(T) приведены в таблице.

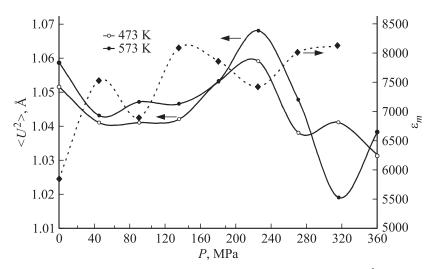
Вычисления полных среднеквадратичных смещений $\langle U^2 \rangle$, учитывая, что PSN находится в разупорядоченном состоянии, проведены по [9].

Как известно, $\langle U^2 \rangle$ представляют собой сумму статических и динамических смещений ионов из идеальных кристаллографических позиций, и она дается соотношением:

$$\langle U^2 \rangle = \langle U_s^2 \rangle + \langle U_d^2 \rangle. \tag{3}$$

Зависимость температуры Дебая, факторов Дебая—Валлера и среднеквадратичных смещений от давлений обработки порошков Pb_2ScNbO_6

P, MPa	Θ, Κ	$B_{473}, \text{Å}^2$	$B_{573}, Å^2$	$\langle U_s^2 \rangle$, Å	$\langle U_d^2 angle$, Å	
					473 K	573 K
0	112	1.28	1.61	1.050	0.062	0.136
80	172	0.56	0.69	1.040	0.057	0.080
120	92	1.97	2.39	1.038	0.060	0.139
160	208	0.39	0.47	1.041	0.057	0.105
200	132	0.96	1.16	1.052	0.056	0.058
240	187	0.48	0.58	1.057	0.068	0.153
280	118	1.20	1.45	1.037	0.061	0.152
320	92	1.97	2.39	1.040	0.061	0.154
360	97	1.77	2.15	1.030	0.060	0.134


Левую часть соотношения (3) определяют из упрощенного выражения:

$$\langle U^2 \rangle = \frac{3\lambda^2}{16\pi^2(\sin^2 \nu_1 - \sin^2 \nu_2)} \ln \frac{I(\nu_2)P_1f(\nu_1)|F_1^2|}{I(\nu_1)P_2f(\nu_2)|F_2^2|}, \tag{4}$$

где $f(\nu_1)$ и $f(\nu_2)$ — поляризационные множители, P_1 и P_2 — множители повторяемости, F_1 и F_2 — структурные множители, $I(\nu_1)$ и $I(\nu_2)$ — интегральные интенсивности.

Для разделения динамических и статических смещений всех образцов были построены графики температурных зависимостей функций полных смещений $\langle U^2 \rangle - \frac{h^2}{m_u k T}$ и экстраполированы на $0\,\mathrm{K}$. Отрезок, отсекаемый на оси ординат при $T=0\,\mathrm{K}$, определяет статические смещения, а разность $\langle U^2 \rangle - \langle U_s^2 \rangle$ соответствует динамическим смещениям. Результаты вычислений приведены в таблице.

Как видно из таблицы, характер изменения Θ в зависимости от давления обработки PSN не имеет строгой закономерности, что позволяет говорить и о различии величин $m_a \Theta$, пропорциональных силам, возвращающих атомы в положения равновесия при их тепловых колебаниях. Изотропный тепловой фактор B(T) с ростом температуры растет (см. 3 и 4 столбцы табл.). Зависимости $\langle U^2 \rangle$ от давлений обработки, измеренные при двух температурах, приведены на рис. 3, из которых видно, что с ростом давлений обработки до 280 MPa $\langle U^2 \rangle$ изменяются практически одинаково. Существенное различие в характере

Рис. 3. Зависимость полных среднеквадратичных смещений $\langle U^2 \rangle$ порошков Pb_2ScNbO_6 и значений диэлектрических проницаемостей ε_m керамических образцов от давления обработки.

их изменения наблюдается только при 320 MPa. Следует отметить тот факт, что величины $\langle U^2 \rangle$, измеренные при температурах 473 и 573 К для образца, прошедшего обработку при давлении 200 MPa, практически совпадают, что может быть обусловлено более интенсивным развитием динамического рекристаллизационного процесса за счет локального разогрева образца, начиная с этого давления. Аналогичные равенства $\langle U^2 \rangle$ (пересечение кривых $\langle U^2 \rangle$) имеют места и в интервалах давлений 280—320 и 320—360 MPa.

Сравнительный анализ $\langle U_d^2 \rangle$, измеренных при 473 и 573 К (см. табл.), показывает, что увеличение температуры от 473 К до 573 К приводит к росту $\langle U_d^2 \rangle$ более чем в два раза, однако характер зависимости $\langle U_d^2 \rangle$ и $\langle U_s^2 \rangle$ от давлений обработки при этих температурах существенно не меняется. Исключение составляет образец, обработанный при 200 MPa, для которого $\langle U_d^2 \rangle$ оказались примерно равными при температурах эксперимента.

Далее рассмотрим поведение диэлектрической проницаемости в максимуме ε_m керамических образцов, спеченных из порошков PSN,

обработанных при соответствующих давлениях. Как видно из рис. 3, с ростом давлений обработки ε_m меняется немонотонно. Понятно, что установление корреляции между полными $\langle U^2 \rangle$ порошковых образцов, прошедших динамическую рекристаллизацию зерен, и ε_m керамических образцов, спекание которых сопровождается термическими рекристаллизационными процессами, будет не совсем корректным. Но, тем не менее, и не смотря на то, что керамические образцы были получены из другой партии порошков, прошедших механоактивацию при тех же давлениях, уменьшению полных $\langle U^2 \rangle$ порошков соответствует рост ε_m керамики. Мы не видим оснований полагать, что механоактивация порошков, из которых были спечены керамические образцы, отличается от механоактивации порошков, изученных в данной работе.

Таким образом, порошковые образцы PSN, обработанные при различных давлениях, находятся в структурном отношении в различных метастабильных состояниях. Следовательно, при постоянных температурно-временных условиях различны и стартовые условия спекания, что позволяет формировать физические свойства керамики в широком интервале параметров.

Список литературы

- [1] Болдырев В.В. // Соровский образовательный журнал. 1996. № 5. С. 49.
- [2] Валиев Р.З., Александров И.В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М., 2000. 272 с.
- [3] Уваров Н.Ф., Болдырев В.В. // Успехи химии. 2001. Т. 70. № 4. С. 307.
- [4] Абдулвахидов К.Г., Витченко М.А., Мардасова И.В., Ошаева Э.Н. // ЖТФ. 2008. Т. 78. В. 5. С. 131.
- [5] Убушаева Э.Н., Мардасова И.В., Витченко М.А., Гамзатов А.Г., Амиров А.А., Батдалов А.Б. // ЖТФ. 2010. Т. 80. В. 11. С. 49.
- [6] Глезер М.А., Метлов Л.С. // ФТТ. 2010. Т. 52. В. 6. С. 1090-1097.
- [7] Уманский Я.С. Рентгенография металлов. М.: Металлургия, 1967. 236 с.
- [8] Джеймс Р. Оптические принципы дифракции рентгеновских лучей. М.: ГТТИ, 1950. 572 с.
- [9] Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Ренттенографический и электронно-оптический анализ. М.: Металлургия, 1970. 368 с.