06

Фотодиоды с расширенным спектральным диапазоном 1.5—4.8 µm на основе гетероструктур InAs/InAs_{0.88}Sb_{0.12}/InAsSbP, работающие при комнатной температуре

© Д.А. Старостенко, В.В. Шерстнев, П.А. Алексеев, И.А. Андреев, Н.Д. Ильинская, Г.Г. Коновалов, О.Ю. Серебренникова, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"

E-mail: igor@iropt9.ioffe.ru

Поступило в Редакцию 10 мая 2011 г.

Созданы фотодиоды на основе гетероструктур InAs/InAs_{0.94}Sb_{0.06}/InAsSbP/ InAs_{0.88}Sb_{0.12}/InAsSbP с фоточувствительной площадкой 0.45 × 0.45 mm² и граничной длиной волны 4.9 μ m, работающие при комнатной температуре. Отличительной особенностью фотодиодов является расширенный диапазон спектральной чувствительности ($\lambda = 1.5 - 4.8 \,\mu$ m) с токовой монохроматической чувствительностью 0.5–0.8 А/W и плотностью обратных темновых токов 1.0–1.5 А/сm² при напряжении обратного смещения 0.2 V. Дифференциальное сопротивление в нуле смещения достигает величины 20–100 Ω , обнаружительная способность фотодиодов в максимуме спектральной чувствительности составляет (1-2) · 10⁸ cm · Hz^{1/2} · W⁻¹.

Фотодиоды для спектрального диапазона $2-5\,\mu$ m могут использоваться для задач экологического мониторинга, газового анализа, для контроля продуктов горения и взрыва, для анализа продуктов питания и биологических объектов, в датчиках для измерения температуры, в системах слежения специального применения, в медицине [1–3]. По мере развития производства экологический мониторинг становится одним из важнейших направлений охраны окружающей среды. Такая проблема включает в себя различные задачи спектрального анализа атмосферы в диапазоне длин волн $2-5\,\mu$ m, в котором существует множество линий поглощения воды, промышленных газов и других

95

веществ, вредных для организма человека. Например, в среднем ИК диапазоне находятся линии поглощения таких газов, как этилен, метан, ацетон, сернистый ангидрид, окись углерода, двуокись углерода и т.д. [4]. Для медицинской диагностики человека, контроля выдыхаемых им газов медицине остро необходимы датчики CO_2 (4.25 μ m) и CO (4.7 μ m).

В работе [5] описаны фотодиоды на основе гетероструктур InAs/InAs_{0.88}Sb_{0.12}/InAsSbP/InAs с диаметрами фоточувствительной площадки 0.3 mm, работающие при комнатной температуре в среднем ИК диапазоне 3.5-4.8 µm. Гетероструктуры с активным слоем InAs_{0.88}Sb_{0.12} выращивались методом жидкофазной эпитаксии (ЖФЭ) на подложках InAs. Достигнуты токовая монохроматическая чувствительность в максимуме спектра ($\lambda_{max} = 4.2 - 4.7 \, \mu m$) величиной 0.6-0.8 A/W, значение плотности обратных темновых токов $(1.5-7.5) \cdot 10^{-1}$ A/cm² при напряжении обратного смещения 0.2 V. Дифференциальное сопротивление в нуле смещения достигало величины 700-800 Ω. Обнаружительная способность фотодиодов в максимуме спектральной чувствительности составляла $(5-8) \cdot 10^8 \, \text{cm} \cdot \text{Hz}^{1/2} \cdot \text{W}^{-1}$. При этом описанные фотодиоды обладают узкой полосой спектральной чувствительности $(3.5-4.8\,\mu\text{m})$ с полушириной спектра $0.8-0.9\,\mu\text{m}$, что не удовлетворяет требованиям достаточно большого количества применений. Узкий спектр чувствительности обусловливался наличием тонкого $(1 \mu m)$ подконтактного слоя из арсенида индия. В работе [6] описывается фотодиод на основе гетероструктуры InAs/InAsSb_{0.08}/InAsSbP с флип-чип конструкцией приемника излучения и засветкой через подложку InAs. Используемый в активной области твердый раствор InAsSb и освещение через вырожденную подложку позволили получить фотодиод с диапазоном спектральной чувствительности 2.6-4.6 µm и максимумом в 3.8-4.0 µm. Высокая токовая монохроматическая чувствительность позволила достигнуть значений обнаружительной способности $2.8 \cdot 10^9 \,\mathrm{W^{-1}} \cdot \mathrm{cm} \cdot \mathrm{Hz^{1/2}}$ на длине волны $4.3 \,\mu\mathrm{m}$. Длинноволновый фотодиод на основе гетероструктуры InAs/InAsSb/InAs с флип-чип конструкцией приемника излучения с засветкой через подложку InAs продемонстрирован на сайте [7]. Максимум спектральной чувствительности фотодиода приходится здесь на 4.55 µm, а длинноволновая отсечка составляет 5.1 µm. Отметим, что описанные фотодиоды обладали значениями токовой чувствительности 0.4-0.6 A/W и значениями дифференциального сопротивления в нуле смещения

В настоящей работе мы сообщаем результаты разработки и исследований, направленных на создание высокоэффективных фотодиодов, работающих при комнатной температуре в среднем ИК диапазоне с расширенной полосой чувствительности $1.5-4.8\,\mu$ m и усовершенствованной конструкцией фотодиода как в отношении толщин, последовательности и концентраций активных и ограничительных слоев, так и в отношении омических контактов (геометрии контактов).

Для решения поставленных задач были выращены фотодиодные структуры методом ЖФЭ на подложках n-InAs (100). Структуры состояли из подложки InAs $(n \sim 2 \cdot 10^{17} \, {\rm cm}^{-3})$, на которой последовательно выращивался широкозонный эмиттерный слой InAsSbP толщиной $(4.5-6.0) \mu$ m. Далее наращивались активная область InAs_{0.88}Sb_{0.12} толщиной (1.5-2.2) µm и широкозонный эмиттерный слой из твердого раствора InAsSbP толщиной (1.5-2.0) µm. Для согласования постоянной решетки между этими слоями и подложкой был выращен слой $InAs_{0.94}Sb_{0.06}$ толщиной $(3.5-5.0) \mu m$. При выращивании активного слоя InAs_{0.88}Sb_{0.12} использовался редкоземельный элемент Но (гольмий), результатом чего стало получение концентрации $n \sim 1 \cdot 10^{15} \, {\rm cm}^{-3}$. Широкозонный эмиттерный слой InAsSpP и слой InAsSb_{0.06} были получены N-типа за счет легирования Sn (оловом) до уровня $(1-3) \cdot 10^{17}$ cm⁻³, при этом широкозонное "окно" *P*-InAsSbP легировалось Mn (марганцем) до концентрации $P = (2-5) \cdot 10^{17} \, \mathrm{cm}^{-3}$. Схематическое изображение структуры приведено на рис. 1, а. Для контроля выращенной структуры были выполнены измерения на сканирующем зондовом микроскопе Ntegra-AURA (НТ-МДТ, Зеленоград). Использовались проводящие зонды DCP 11, с характерным радиусом закругления острия R = 70 nm. На рис. 1, b, c представлены распределение поверхностного потенциала заземленной структуры, полученное методом Кельвин-зонд микроскопии (КЗМ), и профиль структуры. Измерения проводились в комнатных условиях на поверхности скола

Рис. 1. *а* — схематическое изображение структуры InAs/InAs_{0.95}Sb_{0.05}/ InAsSbP_{0.30}/InAs_{0.88}Sb_{0.12}/InAsSbP_{0.30}, *h* — толщина слоя: *I* — *n*-InAs_{0.94}Sb_{0.06}, *h* = 5.2 μ m; *2* — *n*-InAsSbP_{0.30}, *h* = 6.0 μ m; *3* — *n*-InAs_{0.88}Sb_{0.12}, *h* = 1.8 μ m; *4* — *p*-InAsSbP_{0.30}, *h* = 0.8 μ m. *b*, *c* — изображение, полученное КЗМ и профиль распределения поверхностного потенциала заземленной структуры. *d* — разностный профиль распределения поверхностных потенциалов обратносмещенной (-0.6 V) и заземленной структуры.

структуры. Изменение величины поверхностного потенциала связано с различными величинами работ выхода слоев гетероструктуры. Из рисунка следует, что структура содержит 4 слоя (1-4) толщинами $5.2-6.0-1.8-0.8\,\mu{\rm m}$ соответственно, что удовлетворительно совпадает с результатами оптических измерений толщин слоев. Для определения положения p-n-перехода было измерено распределение поверхностного потенциала при обратном смещении структуры $(-0.6\,{\rm V})$. На рис. 1, d представлен разностный профиль, который представляет собой разность распределения поверхностных потенциалов заземленной структуры и смещенной. Из рисунка следует, что на границе первого и второго

Рис. 1 (продолжение).

7* Письма в ЖТФ, 2011, том 37, вып. 19

Рис. 2. Вольт-амперная характеристика фотодиодной InAs/InAs_{0.88}Sb_{0.12}/ InAsSbP структуры при температуре: $1 - +20^{\circ}$ C, $2 - 0^{\circ}$ C, $3 - 20^{\circ}$ C.

слоя находится p-n-переход. Однако на него падает примерно 10% приложенного напряжения, что говорит о его малом сопротивлении и, по-видимому, часть приложенного напряжения падает в объеме полупроводникового материала и на контактах, которые не в полной мере являются омическими в данном эксперименте. Характерные особенности поведения потенциала показывают место (координаты) положения как изотипных гетеропереходов, так и положение p-n-гетероперехода, что достаточно точно совпадает с нашими исходными данными по толщинам и положениям этих переходов.

Фотодиодные чипы размером $450 \times 450 \,\mu$ т были изготовлены методом стандартной фотолитографии с использованием "мокрого" химического травления. Омический контакт фотоприемника к эпитаксиальноу слою создавался методом взрывной фотолитографии и методом вакуумного термического напыления Cr-Au-Ni-Au. Верхний контакт представляет собой кольцо диаметром $300\,\mu$ шириной $15\,\mu$ т с дополнительными ответвлениями. Дополнительно с целью увеличения толщины контактного слоя методом электрохимического осаждения наносил-

Рис. 3. Спектр фотоответа фотодиода $InAs/InAs_{0.88}Sb_{0.12}/InAsSbP$ при температуре 300 К.

ся слой золота толщиной ~ 2 μ m. Со стороны подложки наносился сплошной многослойный Cr-Au-Ni-Au контакт методом вакуумного термического напыления. После создания контактов структура подвергалась термообработке в среде водорода. Для дальнейших исследований чипы фотодиодов напаивались на корпуса TO-18 или на керамику и помещались на термохолодильник.

Была собрана и измерена серия фотодиодов, все они имели диодные характеристики с напряжением отсечки $\sim 0.1-0.15$ V при T = 300 K и дифференциальным сопротивлением в нуле смещения $R_0 = 20-100 \Omega$, значение плотности обратных темновых токов 1-1.5 A/cm², при напряжении обратного смещения 0.2 V (см. рис. 2).

Для изучения спектров чувствительности фотодиодов использовался монохроматор SPM2 (Carl Zeiss). Измерения проводились по схеме синхронного детектирования с использованием прибора Stanford Research SR830. На рис. 3 показан спектр распределения фоточувствительности диодов при температуре T = 300 К. Как видно из рисунка, диапазон чувствительности по уровню 30% от максимума лежит между $1.5 \,\mu$ m и $4.8 \,\mu$ m. На спектре присутствуют два "провала": $4.25 \,\mu$ m, обуслов-

ленный поглощением излучения углекислым газом, и ~ $2.7 \,\mu$ m, обусловленный поглощением излучения парами воды и углекислым газом. Получено значительное расширение диапазона рабочих длин волн. Для определения токовой чувствительности *S* (λ_{max}) использовался метод сравнения с калиброванным по чувствительности приемником излучения. Сопротивление R_0 фотодиода в нуле смещения измерялось в диапазоне +10 mV... – 10 mV. Расчет обнаружительной способности D^* проводился в максимуме спектральной чувствительности по формуле Джонса в предположении, что шумы приемника определяются шумами R_0 [8]:

$$D^* = S(\lambda_{\max})(R_0A/4kT)^{1/2}$$

где *А* — площадь чувствительной площадки фотодиода, *k* — постоянная Больцмана, *T* — абсолютная температура.

При комнатной температуре в максимуме спектральной чувствительности токовая монохроматическая чувствительность составила 0.6–0.8 А/W и была оценена обнаружительная способность, составившая значение $(1-2) \cdot 10^8 \text{ W}^{-1} \cdot \text{cm} \cdot \text{Hz}^{1/2}$.

Таким образом, созданы фотодиоды на основе гетероструктур InAs/InAs_{0.94}Sb_{0.06}/InAsSbP/InAs_{0.88}Sb_{0.12}/InAsSbP, выращенные методом ЖФЭ с фоточувствительной площадкой $0.45 \times 0.45 \text{ mm}^2$, работающие при комнатной температуре в расширенном спектральном диапазоне $1.5-4.8 \,\mu\text{m}$. Дифференциальное сопротивление в нуле смещения составило $20-100 \,\Omega$, значение плотности обратных темновых токов при этом $1-1.5 \,\text{A/cm}^2$, при напряжении смещения $0.2 \,\text{V}$. В максимуме спектральной чувствительности токовая монохроматическая чувствительность составила $0.6-0.8 \,\text{A/W}$, а обнаружительная способность фотодиодов $D^* = (1-2) \cdot 10^8 \,\text{W}^{-1} \cdot \text{сm} \cdot \text{Hz}^{1/2}$.

Работа частично поддержана программой Президиума РАН № 27 "Основы фундаментальных исследований нанотехнологий и наноматериалов", грантами РФФИ 10-02-93110-НЦНИЛ_а, 10-02-00548_а.

Список литературы

- Carter B.L., Shaw E., Olesberg J.T. et al. // Electronics Lett. 2000. V. 36. N 15. P. 1301.
- [2] Mikhailova M., Stoyanov N., Andreev I. et al. // SPIE Proc. 2007. V. 6585.
 P. 658526-1.

- [3] Troy T.L., Thennadil S.N. // J. Biomedical Optics. 2001. V. 6. N 2. P. 167.
- [4] Hitran. Web site http:// www.cfa.harvard.edu/hitran/
- [5] Шерстнев В.В., Старостенко Д.А., Андреев И.А. и др. // Письма в ЖТФ. 2011. Т. 37. В. 1. С. 11–17.
- [6] Закгейм А.Л., Зотова Н.В., Ильинская Н.Д. и др. // ФТП. 2009. Т. 43. В. 3. С. 412–417.
- [7] Фотодиод PD45Sc на сайте www.mirdog.spb.ru.
- [8] Jones R.C. // Advances in Electronics. NY: Academic, 1953. V. 5. P. 1.