05,07

Прохождение ультразвуковой волны через магнитную сверхрешетку конечной длины

© А.А. Штыгашев

Новосибирский государственный технический университет, Новосибирск, Россия

E-mail: shtyg@rambler.ru

(Поступила в Редакцию в окончательном виде 8 ноября 2010 г.)

Излагаются методика и результаты расчета коэффициента прохождения циркулярной ультразвуковой волны через многослойную диэлектрическую систему ферромагнетик/немагнетик с учетом возбуждения спиновых волн в магнитных слоях. Исследована зависимость резонансной структуры спектра коэффициента прохождения от числа слоев и напряженности магнитного поля.

1. Введение

При распространении плоской монохроматической ультразвуковой волны с частотой, близкой к частоте магнитоакустического резонанса, в магнитоупорядоченной среде могут возникнуть магнитоупругие волны, представляющие собой связанные упругую и спиновую волны [1-3]. Магнитоупругое взаимодействие является сравнительно слабым, что часто рассматривается как серьезное препятствие для применения эффектов, вызываемых этим взаимодействием, в различных микрои наноэлектронных устройствах. В теоретических работах [4,5] отмечено, что одним из способов усиления таких эффектов является дифракция связанных магнитоупругих волн на периодической магнитной структуре, играющей роль своеобразной дифракционной решетки. Однако в указанных работах рассматривались лишь вопросы вычисления закона дисперсии поверхностных [4] и объемных [5] магнитоупругих волн в неограниченных сверхрешетках. В [6] исследовалось распространение поверхностной сдвиговой упругой волны в полуограниченной акустической магнитной сверхрешетке с учетом магнитоупругого и неоднородного обменного взаимодействия в длинноволновом приближении. В работе [7] изучались условия безотражательного прохождения объемной поперечно-поляризованной упругой волны через магнитную сверхрешетку конечной длины, однако частотная зависимость коэффициентов прохождения не рассматривалась.

В магнитных слоях многослойной структуры типа магнетик/немагнетик монохроматические магнитоупругие волны определенной поляризации описываются частными решениями динамических уравнений в виде суперпозиции четырех нормальных компонент, в немагнитных слоях распространяется только двухкомпонентная упругая волна. Это обстоятельство усложняет расчет характеристик рассеяния волн в таких структурах, поскольку требует сшивания решений разного вида на границах раздела слоев. Процедура такого сшивания описана в нашей работе [8].

В настоящей работе, на основе развитого в [8] подхода исследуется поведение коэффициента прохождения монохроматической циркулярно поляризованной ультразвуковой волны через сверхрешетку ферромагнетик/немагнетик конечной длины в области магнитоупругого резонанса. Показано, что в спектре коэффициента прохождения проявляются особенности, обусловленные двумя механизмами дифракции: дифракцией ультразвука на периодической структуре слоев сверхрешетки и дифракцией с возбуждением в ферромагнитных слоях. Форма и положение линий и полос прохождения и полного отражения сильно зависят от количества и толщины чередующихся слоев. Диссипативное затухание волн в веществе существенно уменьшает коэффициент прохождения и относительно слабо влияет на отражение.

2. Постановка задачи

Рассмотрим многослойную структуру, состоящую из чередующихся немагнитных (D) и намагниченных в поперечном направлении ферромагнитных (M) диэлектрических слоев (рис. 1). Направим ось x перпендикулярно этим слоям, границы слоев имеют координаты $x = x_j, x_{j+1} = x_j + d_j, 1 \le j \le N$, где d_j — толщина слоя, N — число слоев структуры. Слева при $x < x_1$ и справа при $x > x_{N+1}$ имеется одна и та же немагнитная диэлектрическая среда.

Пусть слева от границы на структуру падает плоская монохроматическая с частотой ω правополяризованная упругая волна *и* (временной множитель

Рис. 1. Многослойная структура $(x_1 = 0, x_{j+1} = x_j + d_j, 1 \le j \le N).$

 $\exp(-i\omega t)$ опускаем). Слева от $x = x_1$ имеются падающая $A_{1,0} \exp(ikx)$ и отраженная $A_{2,0} \exp(-ikx)$ волны, справа от $x = x_{N+1}$ — только уходящая волна $A_{1,N+1} \exp(ik(x - x_{N+1}))$.

Коэффициенты отражения $R(\omega)$ и прохождения $T(\omega)$ ультразвуковой волны определяются выражениями

$$R(\omega) = |r(\omega)|^2, \quad T(\omega) = |t(\omega)|^2, \quad (1)$$

где $r(\omega)$ — амплитуда отражения, $t(\omega)$ — амплитуда прохождения упругой волны

$$r(\omega) = -A_{2,0}/A_{1,0}, \quad t(\omega) = A_{1,N+1}/A_{1,0}.$$
 (2)

Рассчитаем волновое поле в многослойной структуре и по значениям парциальных амплитуд $A_{1,0}$, $A_{2,0}$ и $A_{1,N+1}$ упругого волнового поля во внешних слоях определим спектры коэффициентов рассеяния.

3. Волновые поля в *D*-и *M*-слоях

В *D*-слоях волновое уравнение для правовинтовой циркулярной составляющей монохроматической упругой волны имеет вид

$$\tilde{Z}_1 u(x) = 0, \tag{3}$$

где $\tilde{Z}_1 = \omega^2 - v_0^2 k^2$ и v_0 — фазовая скорость этой волны. Решение уравнения (3) дает волновое поле упругой волны в *D*-слое номера j = 2l, l = 0, 1, ..., N/2 в виде суммы двух плоских волн

$$u_{j}(x) = A_{1,j} \exp(ik(x - x_{j})) + A_{2,j} \exp(-ik(x - x_{j})),$$
(4)

где $k = \omega/v_0$, x_j — координата левого края *j*-го слоя (рис. 1), $A_{1,j}$, $A_{2,j}$ — парциальные амплитуды упругих волн, распространяющихся вдоль оси *x* в положительном и отрицательном направлениях.

В *М*-слоях распространяются связанные магнитоупругие волны, которые можно описать в линейном приближении системой уравнений [1–3,8]

$$\begin{cases} Z_1 u(x) + \Delta_1 m(x) = 0, \\ \Delta_2 u(x) + Z_2 m(x) = 0, \end{cases}$$
(5)

где $Z_1 = \omega^2 - v_0^2 k^2$, $Z_2 = \omega - \omega_H - \eta k^2$, $\Delta_1 = -ikB/(\rho M_0)$, $\Delta_2 = ik\gamma B$; k — волновое число, v_t — скорость звука поперечно-поляризованной упругой волны в *M*-слое, η — эффективная обменная постоянная, *B* — магнитоупругая постоянная, $\omega_H = \gamma H_0$ — частота ферромагнитного резонанса, γ — магнитомеханическое отношение, H_0 — напряженность внешнего магнитного поля, M_0 постоянная составляющая намагниченности (**H**₀, **M**₀ параллельны и направлены вдоль оси *x*).

Рис. 2. Дисперсионные характеристики связанных магнитоупругих волн. Параметры *М*-слоя приведены в тексте.

Закон дисперсии $k = k(\omega)$ для магнитоупругих колебаний в *M*-слое определяется условием равенства нулю определителя системы (5), которое дает биквадратное уравнение [1–3]

$$(k^2 - k_{10}^2)(k^2 - k_{20}^2) - k^2 b^2 = 0; (6)$$

его корни соответствуют четырем ветвям магнитоакустических волн

$$k_{1,2} = \left(0.5B_1 \pm \sqrt{0.25B_1^2 - B_2}\right)^{1/2}, \quad k_{3,4} = -k_{1,2}, \quad (7)$$

где $k_{10}^2 = (\omega - \omega_H)/\eta$, $k_{20}^2 = (\omega/v_t)^2$, $b^2 = \gamma B^2/(\rho M_0 \eta v_t^2)$, $B_1 = k_{10}^2 + k_{20}^2 + b^2$, $B_2 = k_{10}^2 k_{20}^2$.

В отсутствие магнитоупругого взаимодействия (B=0)спектр упругих волн характеризуется линейной зависимостью $\omega = v_t |k|$, а спектр спиновых волн — параболической зависимостью $\omega = \omega_H + \eta k^2$. Эти ветви пересекаются в точках магнитоупругого резонанса, являющихся решениями уравнения (5) при $\Delta_1 = \Delta_2 = 0$. При наличии магнитоупругой связи ($B \neq 0$) в окрестности резонансных точек происходит расталкивание спектральных ветвей магнитупругих волн [1–3] (рис. 2).

Решение системы уравнений (5) в *М*-слое номера $j = 2l - 1, \ l = 1, 2, ..., (N + 1)/2$ представляет собой суперпозиции четырех монохроматических волн для $u = u_j$ и для $m = m_j$

$$u_{j}(x) = \sum_{n=1}^{4} A_{n.j} \exp(ik_{n}(x - x_{j})),$$

$$m_{j}(x) = \sum_{n=1}^{4} B_{n.j} \exp(ik_{n}(x - x_{j})),$$
 (8)

причем парциальные амплитуды $A_{n,j}$ и $B_{n,j}$ взаимно пропорциональны

$$B_{n,j} = l_n A_{n,j}, \tag{9}$$

где

966

$$l_n \equiv l(k_n) = -\frac{Z_1(k_n)}{\Delta_1(k_n)} = -\frac{\Delta_2(k_n)}{Z_2(k_n)}$$
(10)

— коэффициент когерентной связи между упругой и спиновой составляющими *n*-й ветви спектра магнитоупругих волн. Ширину области магнитоакустического резонанса удобно характеризовать параметром относительной когерентной связи $l = l(\omega)$ между упругими и магнитными колебаниями

$$l = \begin{cases} |l_1/l_2|, & |l_1/l_2| < k \\ |l_2/l_1|, & |l_1/l_2| \ge 1, \end{cases}$$
(11)

который в резонансе по величине близок к единице и быстро спадает вне области резонанса.

4. Метод трансфер-матрицы

Удобным методом расчета парциальных амплитуд и волновых полей в многослойных структурах является метод трансфер-матрицы (см., например, [9]). Двумерные вектор-столбцы состояний в крайних слева $\Psi_0^{(2)}(x_1) = \operatorname{col}(u_0, u'_0)$ и справа $\Psi_{N+1}^{(2)}(x_{N+1}) =$ $= \operatorname{col}(u_{N+1}, u'_{N+1})$ (штрих обозначает производную по x) D-слоях связаны между собой трансфер-матрицей $M(x_{N+1}, x_1)$ (см. Приложение)

$$\Psi_{N+1}^{(2)}(x_{N+1}) = M(x_{N+1}, x_1)\Psi_0^{(2)}(x_1), \qquad (12)$$

а парциальные амплитуды вол
н в этих слоях связаны эффективной трансфер-матрице
й $M_{\rm ef}(x_{N+1},x_1)$

$$\begin{pmatrix} A_{1,N+1} \\ A_{2,N+1} \end{pmatrix} = M_{\rm ef}(x_{N+1}, x_1) \begin{pmatrix} A_{1,0} \\ A_{2,0} \end{pmatrix},$$
(13)

где

$$M_{\rm ef}(x_{N+1}, x_1) = L(k)^{-1} M(x_{N+1}, x_1) L(k),$$
$$L_k = \begin{pmatrix} 1 & 1\\ ik & -ik \end{pmatrix}.$$
 (14)

Краевое условие отсутствия падающей справа упругой волны есть $A_{2,N+1} = 0$, поэтому амплитуды отражения $r(\omega)$ и прохождения $t(\omega)$ ультразвуковой волны (4) выражаются через элементы эффективной трансферматрицы

$$r(\omega) = -\frac{M_{\rm ef}(x_{N+1}, x_1)_{2,1}}{M_{\rm ef}(x_{N+1}, x_1)_{2,2}},$$
(15)

$$t(\omega) = \frac{\det\left(M_{\rm ef}(x_{N+1}, x_1)\right)}{M_{\rm ef}(x_{N+1}, x_1)_{2.2}}.$$
 (16)

Трансфер-матрица $M(x_{N+1}, x_1)$ равна произведению матриц перехода через последовательность слоев

$$M(x_{N+1}, x_1) = T_N(x_{N+1}) (T_N(x_N))^{-1} P_{N-1,N-2} \dots P_{4,3} P_{2,1},$$
(17)

где матрица перехода через *l*-й бислой, состоящий из *M*-и *D*-слоя, имеет вид

$$P_{2l,2l-1} = D_{2l}T_{2l-1}(x_{2l}) (T_{2l-1}(x_{2l-1}))^{-1},$$

$$l = 1, 2, 3, \dots, (N-2)/2.$$
 (18)

Матрица перехода D_j через *j*-й *D*-слой определена в Приложении формулой (ПЗ), матрица $T_j(x)$ связана с процедурой исключения переменной *m* в *M*-слоях и тоже определена в Приложении формулой (П10).

5. Спектр коэффициента прохождения

Для модельных расчетов мы взяли числовые значения характерных параметров магнитной подсистемы, которые соответствуют ферримагнитному железоиттриевому гранату (ЖИГ) из [3]: $\rho = 5.170 \text{ g/cm}^3$, $M_0 = 140 \text{ G}$, $\eta = 0.100 \text{ cm}^2/\text{s}$, $h = \tilde{h} = 0$, $B_2 = 6.960 \cdot 10^6 \text{ erg/cm}^3$, $v_t = 3.844 \cdot 10^5 \text{ cm/s}$, $\omega_H = 1.529 \cdot 10^{10} \text{ s}^{-1}$ и $H_0 = 870 \text{ Oe}$. Расчеты проведены в окрестности нижней точки магнитоупругого резонанса, которая имеет частоту $\omega_r = 1.546 \cdot 10^{10} \text{ s}^{-1}$ и волновой вектор $k_r = 4.020 \cdot 10^4 \text{ cm}^{-1}$. Скорость звука в немагнитном слое $v = 3.000 \cdot 10^5 \text{ cm/s}$.

Для простоты будем считать, что рассматриваемые спиновые волны являются достаточно длинными, и поэтому на поверхности слоев имеет место полное закрепление спинов, приводящее к граничным условиям Киттеля $m(x_i) = 0$ [3].

В нашей работе [8] показано, что при дифракции ультразвуковой волны на одном магнитном слое структура спектра коэффициента прохождения $T(\omega)$ содержит плавную почти периодическую зависимость, определяемую условиями полуволновой прозрачности, и сравнительно резкие линии полного отражения ультразвука как результат возбуждения магнитоупругих волн в пластине. На периферии области магнитоакустического резонанса линии отражения очень узкие, а в центральной части области они значительно шире. Положение этих линий определяется уравнением $T(\omega) = 0$, которое при граничных условиях $m(x_1) = m(x_2) = 0$ сводится к виду

$$(l_1\chi_2 - l_2\chi_1)(l_2\sin k_2d_1 - l_1\sin k_1d_1) = 0,$$
(19)

где $\chi_j = k_j/k$. В соответствии с (1) и (15) коэффициент отражения $R(\omega)$ тоже может обращаться в нуль при частотах, определяемых уравнением $(M_{\rm ef}(x_2, x_1))_{2,1} = 0$, которое для рассеяния на одном магнитном слое сво-

дится к виду

$$1 - \frac{l_2}{l_1} \chi_1 \rho_1 \sin k_2 d_1 - \frac{l_1}{l_2} \chi_2 \rho_2 \sin k_1 d_1$$

- \cos \k_1 d_1 \cos \k_2 d_1 + \cos \k_2 d_1 + \cos \k_2 d_1 \leq 0. (20)

где $\rho_j = \frac{1-\chi_j^2}{2\chi_j} \sin k_j d_1$. Наличие тригонометрических факторов $\sin k_1 d_1$ и $\sin k_2 d_1$ в последних формулах указывает на то, что многие нули $T(\omega)$ могут сопровождаться близко расположенными нулями $R(\omega)$, расстояние $\delta\omega$ между нулями амплитуд отражения и прохождения зависит от величины магнитоупругого взаимодействия (рис. 3), подобные характерные формы линий $T(\omega)$ должны наблюдаться в эксперименте.

На рис. 4 приведен спектр коэффициента прохождения $T(\omega)$ при разных значениях толщины d_1 одного магнитного слоя (N = 1). С увеличением толщины d_1 линии отражения смещаются влево по шкале частот. Линии, попадающие в область магнитоакустического резонанса, более широкие, чем линии на периферии, их ширина пропорциональна значению параметра $l(\omega)$.

При рассеянии упругой волны на сверхрешетке конечной длины в отсутствие магнитоупругого взаимодействия для спектра $T(\omega)$ характерно наличие целых полос пропускания (рис. 5, *a*), число резонансных пиков *T* в полосах равно числу слоев структуры, в которых фазовая скорость ультразвуковой волны наименьшая.

При включении магнитоупругого взаимодействия в спектре $T(\omega)$ появляются узкие линии полного отражения, связанные с нулями амплитуды прохождения (16) (2 на рис. 5, b), а также сопутствующие им максимумы резонансного прохождения (1 на рис. 5, b), причем их количество и резкость быстро возрастают с числом слоев.

Рис. 3. Фрагмент спектра коэффициента прохождения. Прямой крестик отмечает частоту линии полного отражения и соответствует нулю амплитуды прохождения, косой крестик показывает частоту максимума полного прохождения и соответствует нулю амплитуды отражения ультразвуковой волны.

Рис. 4. Спектр коэффициента пропускания ультразвуковой волны через магнитный слой (сплошная линия). Толщина *M*-слоя $d_1 = 10^{-4}$ (*a*), $2 \cdot 10^{-4}$ (*b*) и $3 \cdot 10^{-4}$ сm (*c*). $\tilde{v}_0 = 3 \cdot 10^5$ сm/s. Здесь и далее на рисунках длина волны в точке магнитоакустического резонанса $\lambda = 1.563 \cdot 10^{-4}$ сm, штриховой линией показан параметр относительной когерентной связи $l(\omega)$.

Рис. 5. Спектр коэффициента пропусания ультразвуковой волны через магнитную сверхрешетку с N = 15. Толщина *М*-слоя $d_1 = 2.5 \cdot 10^{-4}$ сm, толщина *D*-слоя $d_2 = 4 \cdot 10^{-4}$ сm. B = 0 (*a*) и $6.96 \cdot 10^6$ erg/cm³ (*b*). $\tilde{v}_0 = 3 \cdot 10^5$ cm/s.

При увеличении толщины магнитных слоев линии полного отражения смещаются влево по частоте, их спектральная плотность возрастает, и может возникнуть тонкая структура линий прохождения. На рис. 6 показано изменение спектра коэффициента прохождения $T(\omega)$ при увеличении толщины магнитных слоев.

Увеличение напряженности магнитного поля H_0 сдвигает частоту ферромагнитного резонанса ω_H . Из (7)

967

Рис. 6. Спектр коэффициента пропусания ультразвуковой волны через магнитную сверхрешетку с N = 15, $B_2 = 6.96 \cdot 10^6 \text{ erg/cm}^3$. Толщина *M*-слоя $d_1 = 2.5 \cdot 10^{-4}$ (*a*), $5 \cdot 10^{-4}$ (*b*) и $7.5 \cdot 10^{-4}$ cm (*c*), толщина *D*-слоя $d_2 = 4 \cdot 10^{-4}$ cm. $\tilde{v}_t = 3 \cdot 10^5$ cm/s.

Рис. 7. Коэффициент прохождения ультразвуковой волны для тонких $(d_1 \sim \lambda)$ магнитных слоев 15-слойной периодической структуры в зависимости от величины напряженности магнитного поля. Толщины слоев структуры: $d_1 = 2.5 \cdot 10^{-4}$ сm (*M*-слой), $d_2 = 4 \cdot 10^{-4}$ сm (*D*-слой).

видно, что при фиксированной частоте ω этот сдвиг изменяет волновые числа нормальных компонент k_1 , k_2 , k_3 , k_4 качественно так же, как если бы было фиксировано ω_H , а изменялось ω , поэтому структура $T(H_0)$ имеет, как и $T(\omega)$, линейчатый характер.

На рис. 7 приведена зависимость коэффициента прохождения T от значения напряженности магнитного поля H_0 при фиксированной частоте $\omega = 1.546 \cdot 10^{10} \, {
m s}^{-1}$. Вблизи $H_0 = 870$ Ое коэффициент прохождения T демонстрирует широкую полосу сильного отражения с набором узких резонансных пиков в ее центре.

Исследованию затухания магнитоупругих волн в твердых телах посвящено много как экспериментальных, так и теоретических работ, основные результаты которых приведены в обзорах [10–12]. Затухание магнитоупругих волн в магнитном слое обусловлено диссипативными процессами в упругой и спиновой подсистемах. В достаточно узком частотном интервале (вблизи магнитоакустического резонанса) его можно учесть феноменологически, добавляя малые мнимые части γ_1 и γ_2 к k_{10} и k_{20} соответственно. Подобный учет диссипативного затухания при прохождении ультразвука через ферромагнитную пластину был проведен нами в [8], где было показано, что затухание приводит к уменьшению интенсивности линий в спектре коэффициента прохождения *T*. Хорошо наблюдаемыми могут быть только линии в окрестности магнитоупругого резонанса.

Диссипативные потери в системе можно численно оценить по расчетным спектральным кривым, вычисляя интегральный коэффициент поглощения на интервале частот $\Delta \omega = \omega'' - \omega'$, деленный на этот интервал

$$\delta I = \frac{1}{\omega'' - \omega'} \int_{\omega'}^{\omega''} (1 - T(\omega) - R(\omega)) d\omega.$$
 (21)

На рис. 8 представлен результат расчета спектров коэффициентов R и T ультразвуковой волны, проходящей через многослойную периодическую структуру, с учетом затухания волн.

В таких структурах диссипативным затуханием можно пренебречь, если толщины слоев много меньше длин затухания волн. Например, у ЖИГ $\gamma_1 = 100 \text{ cm}^{-1}$, $\gamma_2 = 2 \text{ cm}^{-1}$ [3], тогда для 15-слойной системы с толщинами слоев $d_1 = 2.5 \cdot 10^{-4} \text{ cm}$ и $d_2 = 4.0 \cdot 10^{-4} \text{ cm}$ $(d_{1,2} \ll \gamma_{1,2}^{-1})$ величина $\delta I = 0.021$ (рис. 8, *a*, *c*). Для сверхрешеток с более толстыми слоями $(d_{1,2} \sim \gamma_{1,2}^{-1})$ уже необходим учет затухания волн, так для 15-слойной системы с толщинами слоев $d_1 = 5.29 \cdot 10^{-3} \text{ cm}$

Рис. 8. Спектры коэффициентов отражения (a, b)и пропускания (c, d) ультразвуковой волны, N = 15. В *M*-слое $\gamma_1 = 100 \text{ cm}^{-1}$, $\gamma_2 = 2 \text{ cm}^{-1}$; $d_1 = 2.5 \cdot 10^{-4}$ (a, c) и $5.29 \cdot 10^{-3} \text{ cm}$ (b, d). В *D*-слое $\gamma_0 = 2 \text{ cm}^{-1}$; $d_2 = 4 \cdot 10^{-4}$ (a, c)и $4 \cdot 10^{-3} \text{ cm}$ (b, d).

и $d_2 = 4.00 \cdot 10^{-3}$ ст δI на порядок больше: $\delta I \approx 0.20$ (рис. 8, *b*, *d*).

6. Заключение

В работе приведен расчет структуры спектров отражения и пропускания монохроматических правоциркулярных ультразвуковых плоских волн через периодическую многослойную магнитную сверхрешетку конечной длины. Показано, что при прохождении ультразвука с частотой, близкой к частоте магнитоупругого резонанса магнитных слоев в сверхрешетке, усиливаются резонансные эффекты, определяемые магнитоупругой связью в магнитных слоях и рассеянием волн на границах раздела магнитных и немагнитных сред. Сложность расчета связана с тем, что двухкомпонентная ультразвуковая волна из немагнитных слоев структуры трансформируется в четырехкомпонентную магнитоупругую волну в магнитных слоях. Необходимо строго учитывать краевые условия непрерывности упругого поля и его производных и условия закрепления спинового поля на границах ферромагнитных и немагнитных слоев. Как следует из численного расчета, увеличение толщины каждого М-слоя приводит к увеличению густоты узких линий полного отражения в спектре коэффициента пропускания ультразвука в любом частотном интервале. Интерференция волн в многослойных структурах приводит к эффективному усилению влияния магнитоупругого взаимодействия на рассеяние упругих волн. Затухание приводит к уменьшению ультразвуковой прозрачности структуры, тогда как на отражение ультразвука затухание практически не оказывает влияния. Согласованный подбор числа и толщины магнитных и немагнитных слоев в многослойных структурах может позволить создать устройства, пропускающие или отражающие ультразвуковые волны в заданных спектральных полосах вблизи магнитоакустического резонанса, положение которых зависит от значения внешнего магнитного поля.

Приложение

Поле упругой волны в *j*-м *D*-слое описывается двумерным вектором состояния $\Psi_j^{(2)}(x) \equiv \operatorname{col}(u_j, u_j')$, который можно представить в виде

$$\Psi_j^{(2)}(x) \equiv \begin{pmatrix} u_j \\ u'_j \end{pmatrix} = L(k) M_{Dj}(k, -k; x) \begin{pmatrix} A_{1,j} \\ A_{2,j} \end{pmatrix}. \quad (\Pi 1)$$

Матрица диагонализации L(k) имеет вид (12), а диагональная матрица $M_{Dj}(k_1, k_2, x)$ определяется выражением

$$M_{Dj}(k_1, k_2; x) = \begin{pmatrix} \exp[ik_1(x - x_j)] & \mathbf{0} \\ \mathbf{0} & \exp[ik_2(x - x_j)] \end{pmatrix},$$
(II2)

матрица перехода через *j*-й *D*-слой равна

$$D_{j} = L(k)M_{Dj}(k, -k, d_{j})L(k)^{-1}$$
$$= \begin{pmatrix} \cos kd_{j} & \sin kd_{j}/k \\ -k\sin kd_{j} & \cos kd_{j} \end{pmatrix}, \qquad (\Pi 3)$$

где $d_j = x_{j+1} - x_j$ — толщина *j*-го слоя.

Волновое поле упругой компоненты магнитоупругой волны в *M*-слое описывается четырехмерным вектор-столбцом состояния $\Psi_j^{(4)}(x) \equiv \operatorname{col}(u_j(x), u'_j(x), u''_j(x), u''_j(x))$, который можно представить

$$\Psi_{j}^{(4)}(x) = L^{(4)} M_{Dj}^{(4)}(x) \operatorname{col} (A_{1j} A_{3j} A_{2j} A_{4j}), \qquad (\Pi 4)$$

где введены четырехмерные блочные матрицы

$$L^{(4)} = \begin{pmatrix} L(k_1) & L(k_2) \\ (ik_1)^2 L(k_1) & (ik_2)^2 L(k_2) \end{pmatrix},$$
$$M^{(4)}_{Dj}(x) = \begin{pmatrix} M_{Dj}(k_1, k_3; x) & 0 \\ 0 & M_{Dj}(k_2, k_4; x) \end{pmatrix}.$$

На границах раздела слоев при $x = x_j$ и $x = x_{j+1}$ для спиновых волн обычно выполняются однородные граничные условия закрепления [8]

$$\begin{cases} m(x_j) + hm'(x_j) = 0, \\ m(x_{j+1}) + \tilde{h}m'(x_{j+1}) = 0. \end{cases}$$
(II5)

Здесь h, \tilde{h} — параметры закрепления спинов. Подставляя (7) в (П5), имеем два линейных уравнения, связывающих парциальные амплитуды

$$\begin{cases} \sum_{n=1}^{4} l_n A_{n,j} \gamma_n = 0, \\ \sum_{n=1}^{4} l_n A_{n,j} \tilde{\gamma}_n \exp(ik_n d_j) = 0, \end{cases}$$
(II6)

где $\gamma_n = 1 + ik_nh$, $\tilde{\gamma}_n = 1 + ik_n\tilde{h}$. Из (Пб) выражаем амплитуды $A_{2,j}, A_{4,j}$ через $A_{1,j}, A_{3,j}$

$$\begin{pmatrix} A_{2,j} \\ A_{4,j} \end{pmatrix} = -\left(\Gamma_{24}^{(j)}\right)^{-1} \Gamma_{13}^{(j)} \begin{pmatrix} A_{1,j} \\ A_{3,j} \end{pmatrix}, \qquad (\Pi 7)$$

где

$$\Gamma_{n,m}^{(j)} = \begin{pmatrix} \gamma_n l_n & \gamma_m l_m \\ \tilde{\gamma}_n l_n \exp(ik_n d_j) & \tilde{\gamma}_m l_m \exp(ik_m d_j) \end{pmatrix},$$
$$n, m = 1, 2, 3, 4. \tag{\Pi8}$$

Осуществляя блочное умножение матриц в (П4), получаем двухкомпонентный вектор-столбец $\Psi_j^{(2)}(x) =$ = col ($u_j(x), u'_j(x)$), эффективно описывающий в *M*-слое поле упругой волны, сшиваемое на границах раздела

$$\Psi_j^{(2)}(x) = T_j(x) \begin{pmatrix} A_{1,j} \\ A_{3,j} \end{pmatrix}, \qquad (\Pi 9)$$

где матрица $T_j(x)$ имеет вид

$$T_{j}(x) = L(k_{2})M_{Dj}(k_{2}, k_{4}; x)$$
$$- L(k_{1})M_{Dj}(k_{1}, k_{3}; x) \left(\Gamma_{24}^{(j)}\right)^{-1}\Gamma_{13}^{(j)}. \quad (\Pi 10)$$

Список литературы

- [1] А.И. Ахиезер, В.Г. Барьяхтар, С.В. Пелетминский. Спиновые волны. Наука, М. (1967). 369 с.
- [2] В.В. Леманов. Магнитоупругие взаимодействия. В кн.: Физика магнитных диэлектриков / Под ред. Г.А. Смоленского, Наука, Л. (1974). С. 284.
- [3] А.Г. Гуревич, Г.А. Мелков. Магнитные колебания и волны. Физматлит, М. (1994). 464 с.
- [4] Yu.I. Bespyatykh, I.E. Dikshtein, V.P. Mal'tzev, S.A. Nikitov. Phys. Rev. B 68, 144 421 (2003).
- [5] V.A. Ignatchenko, O.N. Laletin. Phys. Rev. B 76, 104419 (2007).
- [6] О.С. Тарасенко, С.В. Тарасенко, В.М. Юрченко. ФТТ 46, 2200 (2004).
- [7] Т.В. Лаптева, О.С. Тарасенко, С.В. Тарасенко, В.М. Юрченко. ФТТ 49, 1210 (2007).
- [8] Ю.Г. Пейсахович, А.А, Штыгашев. ЖЭТФ 118, 213 (2000).
- [9] Ф.Г. Басс, А.А. Булгаков, А.П. Тетервов. Высокочастотные свойства полупроводников со сверхрешетками. Наука, М. (1989). 288 с.
- [10] В.В. Леманов, Г.А. Смоленский. УФН 108, 465 (1972).
- [11] О.Ю. Беляева, Л.К. Зарембо, С.Н. Карпачев. УФН 162, 107 (1992).
- [12] В.Д. Бучельников, Н.К. Даньшин, Л.Т. Цымбал, В.Г. Шавров. УФН 166, 585 (1996).

970