05.4 Исследование электрофизических и структурных параметров ҮВСО-пленок, выращенных за несколько ростовых циклов

© Н.В. Востоков, М.Н. Дроздов, Ю.Н. Дроздов, Д.В. Мастеров, С.А. Павлов, А.Е. Парафин

Институт физики микроструктур РАН, Нижний Новгород E-mail: masterov@ipm.sci-nnov.ru

Поступило в Редакцию 27 января 2011 г.

Исследованы изменения электрофизических и структурных характеристик эпитаксиальных пленок YBCO в процессе поэтапного увеличения их толщины до 1 μ m. Показано, что высокое качество получаемых пленок не ухудшается при перерывах в процессе роста, связанных с формированием рисунка на образце и измерением электрофизических характеристик пленки в жидком азоте. Это показывает возможность использования в процессе напыления пленок YBCO промежуточных этапов литографии с целью формирования неоднородных по толщине структур.

Для эффективного использования сверхпроводниковых пленок YBa₂Cu₃O_{7-x}(YBCO) в различных устройствах их толщина, как правило, должна удовлетворять условию $d \gg \lambda_L$, где λ_L — лондоновская глубина проникновения. Таким образом, необходимы качественные пленки толщиной до 1 μ m и более. Кроме того, представляет интерес возможность формирования на одной подложке топологической структуры с элементами, включающими в себя YBCO-слои различной толщины, которая может быть получена посредством проведения промежуточных фотолитографических процессов.

В данной работе методом магнетронного напыления на подложках из фианита за несколько ростовых циклов были выращены YBCO-пленки толщиной $d \approx 0.65 \,\mu\text{m}$ (образец № 1) и $d \approx 1 \,\mu\text{m}$ (образец № 2). Детали технологии роста в отдельном цикле подробно изложены в [1]. Напыление каждого образца проходило в три этапа. Образец № 1 был выращен за три равных по времени цикла напыления. После каждого

54

Цикл напыления/толщина, nm	T_c, K	j_c , MA/cm ²	γ	FWHMω, deg	c,nm
1/250	89.7	2.2	3.29	0.47	1.1669
2/440	90.1	2.2	3.20	0.43	1.1675
3/660	89	2.4	3.30	0.41	1.1675

Таблица 1. Основные характеристики образца № 1

Примечание: здесь и в табл. 2 $\gamma = \rho_{300 \text{ K}} / \rho_{100 \text{ K}}$ — отношение сопротивления пленки при температуре 300 К к сопротивлению при 100 К; (FWHM ω) — величина полуширины кривой качания рентгеновского отражения (YBCO)005; *с* — величина периода кристаллической решетки YBCO-пленки в направлении, перпендикулярном подложке.

Таблица 2. Основные характеристики образца № 2

Цикл напыления/толщина, nm	T_c, K	j_c , MA/cm ²	γ	FWHMω, deg	c,nm
1/500	88.8	2.0	3.30	0.42	1.1673
2,3/1000	91	1.8	3.25	0.40	1.1682

этапа на части пленки проводились рентгенодифракционные измерения, измерения критической температуры Т_с и критической плотности тока јс. Для измерения критического тока стандарным фотолитографическим методом с жидкостным травлением формировался мостик и термически осаждались серебряные контакты. На этом же мостике измерялась толщина пленки с помощью интерферометра белого света "Talysurf CCI 2000". На образце № 2 сначала за один цикл была выращена пленка толщиной 0.5 µm и измерены ее характеристики. Затем за два последовательных цикла напыления (но уже без извлечения образца из реактора в перерыве) толщина пленки была увеличена в два раза и снова измерены ее характеристики. Таким образом, в перерывах между циклами роста образцы контактировали с атмосферой, жидким азотом, фоторезистом и диметилформамидом. Перед следующим ростовым циклом образцы кратковременно обрабытывались ацетоном в ультразвуковой ванне. По мере изгтовления образцы претерпевали два дополнительных фазовых перехода из орторомбической фазы в тетрагональную во время нагрева до температуры эпитаксии во втором и третьем циклах роста.

Результаты измерений хирактеристик полученных образцов представлены в табл. 1 и табл. 2.

Рис. 1. Распределение основных примесей по глубине в образце № 1.

Из приведенных данных видно, что электрофизические и структурные параметры получаемых таким образом пленок не ухудшаются с ростом толщины до 1 μ m. В частности, пленка толщиной 0.66 μ m имеет критическую температуру $T_c = 89$ К и плотность критического тока при температуре жидкого азота $j_c = 2.4 \cdot 10^6$ A/cm². У пленки толщиной 1 μ m соответствующие характеристики составляют $T_c = 91$ К и $j_c = 1.8 \cdot 10^6$ A/cm². Параметр γ характеризует качество межгранульных связей в пленке, величина $\gamma \approx 3$ соответствует высококачественным пленкам [2]. Величина (FWHM ω), характеризующая величину разориентации оси *с* блоков мозаики, свидетельствует о высоком качестве эпитаксии. Из табл. 1 и табл. 2 видно, что она имеет тенденцию несколько улучшаться с ростом толщины пленки. Величина периода решетки *с* свидетельствует об отсутствии дефицита кислорода в пленках.

Полученные пленки и ВТСП-мишень, используемая при напылении пленок, были исследованы методом вторично-ионной массспектрометрии (ВИМС) на установке с времяпролетным масс-анализатором TOF.SIMS-5.

ВИМС-анализ показал, что основными примесями в пленках являются Sr, Al, Na, H, C, F, Cl, S. Выяснено, что источником примесей Sr

Рис. 2. Профиль элементов матрицы в образце № 1.

и Аl является мишень ВТСП. На рис. 1 представлено распределение C, F, Cl и S в отрицательной моде регистрации вторичных ионов. Видно, что распределение этих примесей в структуре носит диффузионный характер и спадает от поверхности в глубь пленки. Концентрация этих элементов не превышает 5 · 10¹⁸−10¹⁹ сm⁻³. Важно отметить, что в образце № 1 концентрация примесей практически совпадает с результатами анализа пленок YBCO, на которых обсуждаемые процессы литографии и травления проводились лишь однократно, а последующий рост пленки не проводился.

На рис. 2 представлено распределение элементов матрицы по толщине образца № 1 в отрицательной моде регистрации вторичных ионов. Использовался изотоп кислорода ¹⁸О, поскольку линия основного изотопа ¹⁶О насыщена. По этой же причине использовалась линия кластерного иона Cu₂ вместо Cu. Кластерные ионы YO и BaO в отрицательной моде имеют существенно большую интенсивность, чем элементарные ионы Y и Ba.

Несмотря на то что на поверхности образца наблюдалось заметное количество примесей F, Cl, S, связанное, по-видимому, с операцией формирования тестовых мостиков, каких-либо резких неоднородностей распределения основных элементов по глубине, обусловленных опи-

Рис. 3. АСМ-изображение поверхности образца № 2. Толщина пленки 1 µm.

санным поэтапным напылением пленки, выявлено не было (рис. 2). Можно полагать, что во время нагрева образцов до температуры эпитаксии в реакторе поверхностные загрязнения десорбировались до концентрации, не приводящей к нарушениям процесса эпитаксиального роста.

Методом атомно-силовой микроскопии (ACM) была исследована морфология поверхности образца № 2. На поверхности образца имеются поры, частицы вторичных фаз, по-видимому CuO (рис. 3, a). Кристаллиты a-ориентированной фазы YBCO отсутствуют. Разориентированного либо гранулированного слоя не наблюдается, что свидетельствует об отсутствии нарушений механизма роста, связанного с накоплением дефектов и напряжений в структуре пленки микронной толщины. На рис. 3, b в большем масштабе показан участок пленки, не содержащий крупных частиц вторичных фаз.

Таким образом, использованная технология магнетронного напыления позволяет получать YBCO-пленки с высокими электрофизическими и структурными характеристиками толщиной до $1 \,\mu$ m. Показано, что качество пленок сохраняется при перерывах в процессе роста, связанных с формированием рисунка на образце, а также измерением электрофизических характеристик пленки в жидком азоте. Стоит отметить, что подобные манипуляции, как правило, недопустимы в технологии полупроводниковых гетероструктур. Полученные результаты демонстрируют возможность изготовления структур, элементы которых формируются на основе YBCO-слоев различной толщины.

Авторы выражают благодарность сотруднику ИФМ РАН Е.А. Вопилкину за помощь в проведении измерений толщины пленок методом оптической интерферометрии.

Работа выполнена при поддержке РФФИ, проекты № 09-08-00632-а, 09-02-00389, и программ президиума РАН.

Список литературы

- [1] Мастеров Д.В., Павлов С.А., Парафин А.Е., Дроздов Ю.Н. // ЖТФ. 2007. Т. 77. В. 10. С. 109.
- [2] Cukauskas E.J., Allen L.H., Sherrill G.K. et al. // J. Appl. Phys. 1993. V. 74. N 11. P. 6780.