06;07

Фотолюминесценция наногетероструктур на основе CdHgTe

© К.Д. Мынбаев, Н.Л. Баженов, В.И. Иванов-Омский, А.В. Шиляев, В.С. Варавин, Н.Н. Михайлов, С.А. Дворецкий, Ю.Г. Сидоров

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск E-mail: mynkad@mail.ioffe.ru

Поступило в Редакцию 11 июля 2010 г.

Исследована фотолюминесценция (ФЛ) наногетероструктур $Cd_xHg_{1-x}Te/Cd_yHg_{1-y}Te$, выращенных на подложках CdTe/ZnTe/GaAs методом молекулярно-лучевой эпитаксии. Ширина потенциальных ям в структурах варьировалась от 12 до 200 nm при составе в яме $x \sim 0.25-0.40$ и в барьерных слоях $y \sim 0.68-0.82$. В структурах с ямами шириной 33 nm и менее наблюдались переходы между уровнями размерного квантования носителей. В структурах с ямами шириной более 50 nm наблюдалась ФЛ экситонов, локализованных флуктуациями состава, характерная для эпитаксиальных слоев Cd_xHg_{1-x} Te толщиной более 3 μ m. Показано влияние на уширение пика экситонной ФЛ Cd_xHg_{1-x} Te не только стохастических флуктуаций состава, но и его макроскопических неоднородностей.

Теллуриды кадмия и ртути практически идеально подходят для синтеза гетероструктур, так как при разнице в ширине запрещенной зоны на 1.6 eV постоянные решетки этих соединений отличаются всего на 0.3%. Гетероструктуры HgTe/Cd(Hg)Te синтезируются и исследуются с перспективой изготовления на их основе приемников излучения дальнего инфракрасного и терагерцового диапазонов [1,2]. Для создания приборов на средний инфракрасный диапазон (длина волны $\lambda = 3-5 \mu m$), где актуальна разработка излучателей для оптоэлектронных систем контроля концентрации газов в атмосфере [3], используются структуры Cd_xHg_{1-x}Te/Cd_yHg_{1-y}Te. В таких структурах эффективная ширина запрещенной зоны может задаваться как составом в яме и барьерных слоях, так и шириной ямы. Проблемой при изготовлении таких структур

70

Образец	# 1219	# 1224	# 0117	#0116	#0111	#0114	#1114	#1141
x	0.24	0.35	0.34	0.32	0.40	0.32	0.36	0.41
y	0.80	0.82	0.69	0.68	0.75	0.69	0.72	0.74
d, nm	12	33	50	100	200	200	200	200
w, nm	35	100	1000	1000	1000	1000	350	350

Параметры исследованных структур

является то, что материал и барьерных слоев, и ям представляет собой сплав, а следовательно, характеризуется флуктуациями состава. Флуктуации состава приводят к появлению хвостов плотности состояний, влияющих на оптические свойства CD_xHg_{1-x} Те [4,5]. Флуктуации должны влиять и на свойства наноструктур, однако эта проблема для Cd_xHg_{1-x} Те мало изучена.

Одним из эффективных инструментов для исследования свойств наногетероструктур на основе теллуридов кадмия—ртути является фотолюминесценция (ФЛ) [4,6]. В настоящей работе представлены результаты исследования ФЛ структур $Cd_xHg_{1-x}Te/Cd_yHg_{1-y}$ Те и влияния флуктуаций состава на их оптические свойства. Исследовались образцы, выращенные методом молекулярно-лучевой эпитаксии (МЛЭ) на подложках GaAs с буферными слоями ZnTe и CdTe [7]. Состав в яме (x) и барьерных слоях (y), ширина ям d и толщина барьерных слоев w определялись по эллипсометрическим измерениям, проводившимся во время роста [8]. Параметры структур приведены в таблице.

Измерения ФЛ проводились в диапазоне температур 4.2–50 К при импульсном возбуждении полупроводниковым лазером InGaAs/GaAs ($\lambda = 1.06 \,\mu$ m при температуре T = 300 K). Сигнал возбуждался со стороны гетероструктуры и регистрировался со стороны подложки GaAs с помощью охлаждаемого фотодиода из InSb.

Спектры ФЛ всех исследованных структур (за исключением образца #1224) состояли из одиночного пика гауссовой формы. Спектр образца #1224 (d = 33 nm) при T = 4.2 K состоял из двух линий с энергиями пиков ФЛ $E_{A1} = 0.354 \text{ eV}$ и $E_{A2} = 0.232 \text{ eV}$. Полуширины этих пиков δ были равны 9 и 20 meV соответственно. На рис. 1 представлены температурные зависимости энергетического положения пиков А1 и А2; спектр ФЛ данной структуры при T = 4.2 K представлен на вставке

Рис. 1. Температурные зависимости энергетического положения пиков $\Phi \Pi$ структуры #1224 (символы) и расчетные значения E_g и эффективной ширины запрещенной зоны \tilde{E}_g (линии). На вставке — спектр $\Phi \Pi$ при T = 4.2 К.

к этому рисунку. Энергетическое положение и полуширина пика A1 в интервале температур от 4.2 до 50 К практически не изменялись. Энергия пика A2 в этом интервале температуры возрастала так же, как и его полуширина (от 20 до 28 meV). На рис. 1 также представлены расчетные значения ширины запрещенной зоны E_g для сплава $Cd_xHg_{1-x}Te$ с x = 0.35 (состав в яме) и эффективной ширины запрещенной зоны $\tilde{E}_g = E_g + E_{e1} + E_{h1}$, где E_{e1} и E_{h1} — энергия первого уровня размерного квантования для электронов и дырок соответственно. Расчет уровней в яме производился по известным выражениям для одномерной прямоугольной ямы (см., например, [9]); значение E_g в яме и барьерном слое вычислялось по формуле из работы [10]. Величина разрыва валентных зон ямы и барьерных слоев бралась как $\Delta E_v = (0.570 - 0.0004T)(1 - x)$, для чего использовался результат, полученный для ΔE_v структуры HgTe/CdTe [11] и предполагалось линейное изменение ΔE_v с x. Разрыв в зоне проводимости определялся

как $\Delta E_c = \Delta E_g - \Delta E_v$, где ΔE_g — разница значений E_g барьерных слоев и ямы.

Как следует из рис. 1, во всем рассматриваемом диапазоне температур энергия пика A1 соответствует расчетному значению \tilde{E}_g . Данное обстоятельство, а также постоянство полуширины данного пика при изменении температуры позволяет связать его с рекомбинацией носителей между уровнями квантовой ямы. Пик A2 в этом случае может быть обусловлен переходами между первым уровнем размерного квантования для электронов и акцепторным центром в яме [12].

В спектре ФЛ образца #1219 (d = 12 nm) присутствовала одна полоса с энергией пика E_{PL} при T = 4.2 K, равной 0.270 eV. Энергетическое положение пика было близко к расчетной величине $\tilde{E}_g = 0.266$ eV (при ширине запрещенной зоны, соответствующей составу сплава в яме x = 0.24 $E_g = 0.131$ eV), полуширина пика при T = 4.2 K составляла 6 meV. Мы считаем, что и в данном случае пик ФЛ был обусловлен рекомбинацией носителей между уровнями размерного квантования в яме.

На рис. 2 представлены температурные зависимости E_{PL} и δ для образца #0111 ($d = 200 \,\mathrm{nm}$). Для этого образца $E_{e1} = 0.3 \,\mathrm{meV}$ и $E_{h1} = 0.02 \text{ meV}$, так что $\tilde{E}_g \approx E_g ~(0.407 \text{ meV}$ при T = 4.2 K). Поведение $E_{PL}(T)$ и $\delta(T)$ в данном случае, как и для других образцов с $d = 50 - 200 \,\mathrm{nm}$, оказалось аналогичным поведению температурных зависимостей этих параметров в МЛЭ эпитаксиальных слоях Cd_xHg_{1-x}Te микронной (3-8µm) толщины [5]. Полуширина пика с ростом температуры возрастала практически монотонно, однако зависимость $E_{PL}(T)$ имела минимум, а энергия пика ФЛ была существенно меньше Eg: при $T = 4.2 \,\mathrm{K}$ разница $E_g - E_{PL} = \Lambda$ составляла около 30 meV (при $T = 300 \,\mathrm{K}$ величина E_{PL} совпадала с E_g). Такая величина Λ характерна для экспериментально наблюдаемого экситонного пика низкотемпературной ФЛ в сплавах Cd_xHg_{1-x} Te с $x \approx 0.3$ [4,5] и объясняется присутствием флуктуаций состава, локализующих экситоны. Характерную энергию наиболее вероятной стохастической флуктуации, в которой локализуется экситон, можно оценить, воспользовавшись формулой из работы [13]:

$$E_0 = \frac{1}{178} \frac{\alpha^4 x^2 (1-x)^2 M^3}{\hbar^6 N^2},$$

где \hbar — постоянная Планка, N — концентрация узлов решетки (~ $1.47 \times 10^{22} \,\mathrm{cm^{-3}}$), $M \equiv m_e + m_h$ — суммарная масса электрона и

Рис. 2. Температурная зависимость энергетического положения максимума пика ФЛ E_{PL} и полуширины пика δ для образца #011. Сплошная линия — расчетная зависимость $E_g(T)$ для сплава Cd_xHg_{1-x} Те с x = 0.4 по формуле из работы [10].

дырки, и $\alpha \equiv dE_g(x, T)/dx = 1.777 + 0.264x$ согласно формуле для E_g из работы [10]. Для Cd_xHg_{1-x} Te с $x \approx 0.34$ массы электрона и дырки равны соответственно $m_e = 0.025m_0$ и $m_h = 0.55m_0$, где m_0 — масса свободного электрона, так что $M \approx 0.58m_0$ и $E_0 \approx 7.5$ meV. Нетрудно убедиться, что для структур с d > 50 nm справедливы соотношения $E_{e1} \leq E_0$ и $E_{h1} \ll E_0$ (так для структуры с d = 50 nm $E_{e1} = 6.9$ meV и $E_{h1} = 0.3$ meV, в остальных случаях эти величины еще меньше). Таким образом, малая энергия залегания уровней размерного квантования носителей для структур с $d \ge 50$ nm с учетом масштаба флуктуаций состава делала переходы с участием уровней квантования ненаблюдаемыми. Полученные нами данные подтверждают существенность различия механизмов низкотемпературной ФЛ в "объемном" Cd_xHg_{1-x} Те и в структурах с размерным квантованием [4]: если в наноструктурах основной пик ФЛ обусловлен рекомбинацией носителей между уровнями квантования, и его энергия $E_{PL} = \tilde{E}_g$, то в объемном

Рис. 3. Экспериментальные значения полуширин пиков для структур на основе $Cd_xHg_{1-x}Te$ с ямами шиирной 50–200 nm (сплошная линия — линейная аппроксимация). На вставке — расчетные полуширины пиков экситонной ФЛ в $Cd_xHg_{1-x}Te$ в зависимости от состава.

материале доминирует пик рекомбинации экситона, локализованного флуктуациями состава, и $E_{PL} = E_g - \Lambda$. Заметим, что знание Λ позволяет оценить энергию акцепторного центра, ответственного за появление пика A2 на рис. 1: она составляет ~ 70 meV, и такой уровень хорошо известен в Cd_xHg_{1-x}Te c $x \approx 0.3$ [14].

Что касается структур с ямами шириной 50–200 nm, то для них имела место зависимость δ от ширины потенциальной ямы, она показана на рис. 3. На вставке к рис. 3 приведена зависимость величины E_0 , которая среди прочего определяет уширение экситонной линии ФЛ стохастическими флуктуациями состава [13], от x. Можно убедиться, что при d = 50 nm наблюдаемая величина $\delta \approx 8$ meV оказывается близкой к расчетному значению E_0 (7.5 meV для x = 0.34). Во всех остальных случаях экспериментальные значения больше расчетных, причем видна

тенденция к увеличению δ с возрастанием ширины ямы. Эта тенденция является прямым экспериментальным подтверждением влияния на уширение экситонного пика ФЛ Cd_xHg_{1-x}Te не только стохастических, но и макроскопических (технологических) флуктуаций состава. Очевидно, что чем меньше ширина области рекомбинации, т.е. в нашем случае потенциальной ямы, тем меньше в ней макроскопических флуктуаций. Заметим в этой связи, что максимальная полуширина линии ФЛ для ямы с d = 200 nm (17 meV) имеет величину, типичную для эпитаксиальных слоев Cd_xHg_{1-x}Te с $x \approx 0.3-0.4$, выращенных МЛЭ (15–20 meV), и обусловленную, как считается, особенностями этого неравновесного метода роста [5,15].

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант 09-02-99027-р_офи).

Список литературы

- [1] Dvoretsky S., Mikhailov N., Sidorov Yu., Shvets V., Danilov S., Wittman B., Ganichev S. // J. Electron. Mater. 2010. V. 39. P. 918–923.
- [2] Мележик Е.А., Гуменюк-Сычевская Ж.В., Сизов Ф.Ф. // ФТП. 2010. Т. 44. С. 1365–1371.
- [3] Zanatta J.P., Noel F., Ballet P., Hdadach N., Million A., Destefanis G., Mottin E., Kopp C., Picard E., Hadji E. // J. Electron. Mater. 2003. V. 32. P. 602–607.
- [4] Monterrat E., Ulmer L., Mallard R., Magnea N., Pautrat J.L., Mariette H. // J. Appl. Phys. 1992. V. 71. P. 1774–1781.
- [5] Ivanov-Omskii V.I., Bazhenov N.L., Mynbaev K.D., Smirnov V.A., Varanin V.S., Mikhailov N.N., Sidorov G.Yu. // Physica B. 2009. V. 404. P. 5035–5037.
- [6] Haakenaasen R., Selvig E., Tonheim C.R., Kongshaug T.O., Lorentzen T., Trosdahl-Iversen L., Andersen J.B., Gundersen P. // J. Electron. Mater. 2010. V. 39. P. 893–902.
- [7] Dvoretsky S.A., Ikusov D.G., Kvon Z.D., Mikhailov N.N., Remesnik V.G., Smirnov R.N., Sidorov Yu.G., Shvets V.A. // Semicond. Phys. Quantum Electr. Optoelectr. 2007. V. 10. N 4. P. 47–53.
- [8] Mikhailov N.N., Smirnov R.N., Dvoretsky S.A., Sidorov Yu.G., Shvets V.A., Spesivtsev E.V., Rykhlitski S.V. // Int J. Nanotechnol. 2006. V. 3. N 1. P. 120–130.
- [9] Флюгге З. Задачи по квантовой механике. М.: Мир, 1974. Т. 1.
- [10] Becker C.R., Latussek V., Pfeuffer-Jeschke A., Landwehr G., Molenkamp L.W. // Phys. Rev. B. 2000. V. 62. P. 10 353–10 363.

- [11] Becker C.R., Hatch S.D., Goschenhofer F., Latussek V., Dell J.M., Faraone L. // Phys. Rev. B. 2007. V. 75. Art. 115 115.
- [12] Miller R.C., Gossard A.C., Tsang W.T., Munteanu O. // Phys. Rev. B. 1982.
 V. 25. P. 3871–3877.
- [13] Барановский С.Д., Эфрос А.Л. // ФТП. 1978. Т. 12. С. 2233–2237.
- [14] Баженов Н.Л., Гельмонт Б.Л., Иванов-Омский В.И., Малькова А.А., Огородников В.К., Тотиева Т.Ц. // ФПП. 1982. Т. 16. С. 109–112.
- [15] Kraus M.M., Becker C.R., Scholl S., Wu Y.S., Yuan S., Landwehr G. // Semicond. Sci. Technol. 1993. V. 8. P. S62–S65.