06.2

О возможности увеличения рабочей частоты мощных биполярных переключателей с распределенными микрозатворами

© А.В. Горбатюк, И.В. Грехов, Д.В. Гусин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский государственный политехнический университет E-mail: agor.pulse@mail.ioffe.ru

Поступило в Редакцию 17 июня 2010 г.

Рассмотрена возможность снижения динамических потерь при выключении мощных биполярных переключателей с распределенными микрозатворами и увеличения их рабочей частоты путем такого выбора конструкции, чтобы заряды, выводимые из высокоомной базы (ВБ), и встроенные заряды примеси ВБ были противоположны по знаку. Так, в приборе с экстрагирующим дырки катодным затвором и с буферным слоем со стороны анода это осуществляется при изменении легирования ВБ с *n*- на *p*-тип. Построена специальная аналитическая модель процесса выключения такого прибора. Установлено, в частности, что при рабочем напряжении ~ 5 kV потери за одну операцию могут быть снижены от 200 до 100 mJ/cm², а частота увеличена от 0.5 до 1.0 kHz.

Биполярные переключатели с распределенными микрозатворами (БПМЗ) — класс мощных частотных полупроводниковых ключей нового поколения, объединяющий биполярные транзисторы с изолированными затворами, МОП-управляемые тиристоры, запираемые тиристоры с малоиндуктивным управлением, тиристоры со статической индукцией [1–6] и др. Для БПМЗ с напряжением переключения $U_{\text{max}} = 1.5-2 \text{ kV}$ коммутируемая мощность достигает $P = 100 \text{ kW/cm}^2$ при циклической работе на частотах до $f_{\text{max}} = 1 \text{ kHz}$. Тем не менее дальнейшее увеличение мощности за счет увеличения величины U_{max} до 3–5 kV и выше или увеличение f_{max} представляются невозможными из-за сильного роста тепловых потерь W_{OFF} на стадии выключения. Причины этих ограничений детально обсуждались в работах [1,2,7,8]. Дело в том, что для восстановления блокирующей способности БПМЗ необходимо

35

осуществить полное рассасывание избыточного заряда электроннодырочной плазмы Q_{ON} , накопленного в высокоомной базе (ВБ) в исходном включенном состоянии. Поскольку увеличение величины U_{max} возможно только при увеличении толщины ВБ, то будут одновременно действовать два фактора, увеличивающие потери W_{OFF} . Во-первых, будут увеличиваться полная величина Q_{ON} и длительность стадии выключения. А во-вторых, увеличится толщина области пространственного заряда (ОПЗ), через которую осуществляется выведение одной из зарядовых компонент плазмы (в БПМЗ с катодными затворами дырок), следовательно, вырастет и напряжение на этой области.

Как уже упоминалось, природа обсуждаемых ограничений весьма хорошо изучена, и возможности дальнейшего увеличения U_{max} или f_{max} для БПМЗ стандартных типов за счет их оптимизации, скорее всего, исчерпаны. Имеется, однако, возможность многократного повышения f_{max} для БМПЗ некоторых специальных конструкций. Рассмотрим кремниевый БПМЗ с катодным затвором, биполярная $n^+ pn_0 np^+$ -часть структуры которого показана на рис. 1, а. При положительном смещении на аноде включенному состоянию такой структуры соответствует режим затвора $J_A \simeq J_K \gg J_G$. Тогда распределение избыточных концентраций вдоль ВБ имеет форму, показанную на рис. 1, в пунктирной кривой $p_{ON}(x)$. Выключение структуры достигается при работе затвора в режиме $J_G \to J_A; J_K \to 0$. При этом инжекция электронов в BБ резко пресекается, в прилегающей к катоду части образуется ОПЗ, через которую из плазмы экстрагируются дырки, а граница ξ между плазмой (слои D и P) и ОПЗ (слой F) отодвигается к аноду. Заметим, что эта картина не зависит от типа легирования ВБ. Различия возникают только для формы распределения поля Е в ОПЗ. Так, в классическом случае с ВБ n-типа (рис. 1, c) заряды дырок и встроенных доноров совпадают, поле в ОПЗ изначально (кривые 1 и 2) имеет более высокую крутизну, чем в конечном, блокирующем состоянии (3). Максимум E при этом всегда остается в призатворной части ВБ. Если же ВБ имеет р-тип проводимости, то в ОПЗ происходит частичная взаимная компенсация зарядов дырок и встроенных акцепторов. В этом случае крутизна поля на начальных стадиях существенно ниже, чем в предыдущем случае. Этот факт и можно использовать для снижения интеграла переходных потерь W_{OFF} .¹ Заметим, что смена типа легирования ВБ допустима

¹ Подобная идея была впервые сформулирована в работе [6] для $n^+ pn_0 np^+$ -структур с анодным затвором.

Рис. 1. К описанию процесса оттеснения плазмы в БПМЗ областью сильного поля. a — эквивалентная геометрия единичной ячейки БПМЗ с катодным затвором; b — распределения концентрации плазмы в начальный (пунктирная линия p_{ON}) и в промежуточный (сплошная линия) моменты времени; c и d — профили поля соответственно в структурах $n^+pn_0np^+$ - и $n^+pp_0np^+$ -типов на начальной стадии процесса выключения (I), в момент прокола слаболегированной базы (2) и по достижении стационарного состояния блокировки (3).

только в БПМЗ с буферным слоем. В таком БПМЗ максимум *E* после момента полного полевого прокола ВБ перемещается к ее прианодной грани. Эта особенность может существенно замедлять последующее включение БПМЗ в частотных режимах, поэтому предлагаемая идея может быть реализована в условиях с полным статическим полевым проколом.

Для оценки эффективности предлагаемой идеи далее строится теоретическая модель, отличающаяся от известных ранее тем, что в ней учитывается зависимость скорости дрейфа дырок от по-

ля $v_p = \mu_p E (1 + \mu_p E / v_s)^{-1}$ во всем допустимом интервале полей $0 < E < E_{av}$ (здесь μ_p — низкополевая подвижность дырок, v_s — предельная скорость дрейфа, E_{av} — пороговое поле лавинного пробоя для Si). Уравнение Пуассона для поля в слое \mathscr{F} имеет вид:

$$\varepsilon_{\rm Si} \, \frac{dE}{dx'} = \pm qN + \frac{J_p}{v_p(E)}, \quad x' = \xi - x. \tag{1}$$

Здесь ε_{Si} — абсолютная диэлектрическая проницаемость кремния, q — заряд электрона, N — концентрация примеси, знак "+" выбирается для доноров, "-" — для акцепторов. Решение уравнения (1) можно найти как частный случай решений, найденных ранее в работе [9]:

$$\frac{x'}{x^*} = \frac{E}{E^*} - \ln\left(1 + \frac{E}{E^*}\right),$$
 (2)

где $E^* = v_s b J \mu_p^{-1} (J \pm q N v_s)^{-1}$, $x^* = \varepsilon_{\rm Si} v_s^2 b J \mu_p^{-1} (J \pm q N v_s)^{-2}$, $b = \mu_n / \mu_p$ — отношение подвижностей электронов и дырок. При заданной величине *J* толщина домена ξ и напряжение на нем *U* связаны с максимальным полем E_m как

$$\xi = x^* \left[\frac{E_m}{E^*} - \ln\left(1 + \frac{E_m}{E^*}\right) \right],$$
$$U = x^* \left[\frac{E_m^2}{2E^*} - E_m + E^* \ln\left(1 + \frac{E_m}{E^*}\right) \right].$$
(3)

Начальным условием для процесса выключения служит стационарное распределение концентраций избыточной плазмы в ВБ на интервале $0 < x < w_0$, принятое в работах [7,8]:

$$p_{ON}(x, t = 0) = p_{\min} \cosh \frac{x - x_{\min}}{L_h}, \quad L_h = \sqrt{\frac{2bD_p \tau_h}{b+1}}.$$
 (4)

Здесь D_p — коэффициент диффузии дырок, τ_h — время жизни при высоком уровне инжекции, p_{\min} — концентрация в точке x_{\min} минимума профиля $p_{ON}(x)$. Эти параметры определяются коэффициентами инжекции γ_K и γ_A при x = 0 и $x = w_0$. Для описания процесса оттеснения плазмы используем сформулированные в [7,8] законы движения лидирующей η

и отстающей ξ границ слоя \mathscr{D} (рис. 1, b) между \mathscr{F} и \mathscr{P} в периоды до и после $t = t_1$, когда $\eta \to w_0$:

$$qp_{\eta}\left(1-\frac{qD_p}{J}\frac{dp}{dx}\Big|_{x=\eta}\right)\frac{d\eta}{dt}+\frac{q^2p_{\eta}^2D_p}{J^2}\frac{dJ}{dt}=\frac{b}{b+1}J, \quad t\leq t_1; \quad (5)$$

$$\frac{d\xi}{dt} = \frac{w_0 - \xi}{2\tau_h} + 2\frac{(1 - \gamma_A)D_p}{(w_0 - \xi)} + \frac{(w_0 - \xi)}{2J}\frac{dJ}{dt}, \quad t_{PT} > t > t_1.$$
(6)

Здесь $p_{\eta} = p_{ON}(\eta)$ — концентрация плазмы в сечении $x = \eta$, t_{PT} — момент, когда $\xi \to w_0$.

Заметим, что после полного рассасывания избыточной плазмы в ВБ, т. е. для $U > U_{PT} = qN_D w_0^2/2\varepsilon_{\rm Si}$, еще остается некоторый избыточный заряд в буферном слое (БС). Время его рассасывания оценим по формуле $\tau_{\rm eff} = (\tau^{-1} + 2D/w_N^2)^{-1}$ из теории биполярных транзисторов, где τ и D — время жизни и коэффициент диффузии неосновных носителей в БС, а w_N — его толщина. При величине w_N в несколько микрон это время не превышает десяти наносекунд, так что плотность потерь за всю операцию выключения W_{OFF} можно считать практически равной интегралу потерь, выделяемых до момента полевого прокола.

В последующих расчетах выполнено сравнение двух конструкций БПМЗ с катодным затвором и ВБ *n*- и *p*-типов проводимости. В качестве начального профиля $p_{ON}(x)$ задавалось "оптимизированное" распределение [1,8] с максимумом со стороны затвора и минимумом — с противоположной стороны, что обеспечивалось следующим выбором эффективных коэффициентов инжекции: $\gamma_K = 0.9$, $\gamma_A = 0.25$. Для простоты рассматривается работа БПМЗ в цепи с омической нагрузкой R и эдс \mathscr{E}_m , когда справедливо уравнение $U = \mathscr{E}_m - JR$. Для начального состояния $J = J_0 = 50 \text{ A/cm}^2$. На рис. 2 представлены переходные зависимости J(t) и W(t) для структур с высокоомной базой *п*- и *р*-типа (кривые 1, 2 соответственно) при одинаковых параметрах $N_{D,A} = 2 \cdot 10^{13} \,\mathrm{cm}^{-3}$ и $w_0 = 500 \,\mu\mathrm{m}$. Максимальное напряжение статической блокировки Ust такой структуры, оцениваемое по максимально допустимому полю коллектора $E_{\rm max} \simeq 1.8 \cdot 10^5 \, {\rm V/cm}$, составляет 5 kV. Согласно приведенным данным, в структуре с р-базой прокол достигается раньше, чем в структуре с *п*-базой (соответственно через 3.3 и 5.3 μ s после начала запирания). Интегральные тепловые потери W_{OFF} в первом случае составляют 101.7 mJ/cm², а во втором — 196.1 mJ/cm², т.е. выше в 1.9 раза.

Рис. 2. Временны́е зависимости плотности тока (1, 2) и мгновенной величины плотности интегральных потерь (1', 2') при выключении БПМЗ в режиме полной отсечки инжекции электронов для случаев с базой *n*-типа (1, 1') и *p*-типа (2, 2').

Далее мы исследуем, как величина W_{OFF} при экстракции неосновных и основных носителей зависит от концентрации легирования ВБ $N = N_D$ или $N = N_A$. Для сравнения рассматриваются такие соотношения исходных данных $(N_{D,A}, w_0, U_{st})$, при которых в состоянии статической блокировки поле в максимуме всегда равно $E_{\text{max}} = E_{av} = 1.8 \cdot 10^5$ V/cm (предельно допустимое по отношению к статическому пробою [10]), а в минимуме $E_{\text{min}} = 2 \cdot 10^4$ V/cm, т.е. обеспечивает насыщение скорости дрейфа дырок (см. вставку к рис. 3). На рис. 3 сплошными линиями 2 и 2' показаны расчетные зависимости величин интегральных потерь за одну операцию выключения для структур с базой n_0 - и p_0 -типа соответственно. Найденные значения W_{OFF} для всех U_{st} вычислены при задании параметров $N_{D,A}$ и w_0 , в соответствии с указанным выше условием для блокирующего состояния. Полученные результаты демонстрируют зависимость относительного

Рис. 3. Зависимости рабочего напряжения U_{st} (1), интегральной плотности потерь за одну операцию выключения W (2, 2') и рабочей частоты в непрерывном режиме f_{max} (3, 3') для БПМЗ с концентрацией легирования высокоомной базы N_0 . Кривая (1) не зависит от типа легирования базы. Кривые (2, 3) относятся к случаю базы *n*-типа, (2', 3') относятся к случаю базы *p*-типа. На вставке — к пояснению правил (см. в тексте), связывающих параметры $w(N_0)$ и $U_{st}(N_0)$.

выигрыша в величине интегральных потерь (при переходе от структуры с экстракцией дырок из n_0 -базы к структуре с экстракцией дырок из p_0 -базы) от уровня легирования (соответственно от максимального напряжения блокировки U_{st}): наиболее сильное различие потерь имеет место у структур с высоким уровнем легирования *N*. С уменьшением *N* и повышением напряжения блокировки различие в величине потерь снижается (от 3.5 раз при $N_0 = 5 \cdot 10^{13}$ cm⁻³ до 1.7 раз при $1.5 \cdot 10^{13}$ cm⁻³).

Оценку предельной рабочей частоты БПМЗ выполним для "широтно-импульсного" частотного режима с коэффициентом заполнения 50% и потребуем, как это было сделано в работе [8], равенства статических тепловых потерь за полупериод и переходных потерь за операцию выключения. Тогда предельная частота может быть оценена как $f_{\rm max} = P_{\rm out}/2W_{OFF}$, где $P_{\rm out} \sim 200 \, {\rm W/cm^2}$ — приемлемое значе-

ние мощности теплоотвода для кремниевых приборов. Рассчитанные зависимости выходных параметров БПМЗ (напряжения статической блокировки U_{st} , мощности потерь W_{OFF} и предельной частоты $f_{\rm max}$) от концентрации легирования ВБ показаны на рис. З. Видим, в частности, что для прибора с $N_0 \simeq 2 \cdot 10^{13}$ сm⁻³ (с $U_{st} \sim 5$ kV) потери за одну операцию при смене легирования ВБ с *n*- на *p*-тип могут быть снижены от 200 до 90 mJ/cm², а частота увеличена от 0.5 до 1.0 kHz. При усилении легирования до $N_0 \simeq 2 \cdot 10^{13}$ сm⁻³ (и снижении U_{st} до 2 kV) значение $f_{\rm max}$ увеличивается от 1.75 до 4.5 kHz.

Работа выполнена при поддержке РФФИ (грант № 07-08-00689).

Список литературы

- [1] Cheng K., Udrea F., Amaratunga G.A.J. // Sol.-St. Electronics. 2000. V. 44. P. 1573–1583.
- [2] Huang S., Udrea F., Amaratunga G.A.J. // Sol.-St. Electronics. 2003. V. 47. P. 1429–1436.
- [3] Чернявский Е.В., Попов В.П., Пахмутов Ю.С. и др. // Микроэлектроника. 2002. Т. 31. В. 5. С. 376–381, 382–384.
- [4] Бономорский О.И., Воронин П.А. Патент РФ на изобретение № 2199795. Опубл. 27.02.2003. Бюл. № 6.
- [5] Грехов И.В., Мнацаканов Т.Т., Юрков С.Н. и др. // ЖТФ. 2005. Т. 75. В. 7. С. 80–87; ЖТФ. 2006. Т. 76. В. 5. С. 76–81.
- [6] Грехов И.В. Патент РФ на изобретение № 2335824. Опубл. 10.10.2008. Бюл. № 28.
- [7] Горбатюк А.В. // Письма в ЖТФ. 2008. Т. 34. В. 5. С. 54-62.
- [8] Горбатюк А.В., Грехов И.В. // Письма в ЖТФ. 2008. Т. 34. В. 10. С. 61-68.
- [9] Горбатюк А.В. Динамика и устойчивость быстрых регенеративных процессов в структурах мощных тиристоров // Препринт ФТИ им. А.Ф. Иоффе № 962. Л., 1985. 60 с.; Горбатюк А.В., Родин П.Б. // Радиотехника и электроника. 1990. Т. 35. В. 6. С. 1336–1339.
- [10] Горбатюк А.В., Грехов И.В., Гусин Д.В. // ЖТФ. 2009. Т. 79. В. 10. С. 80–88.