Магнитосопротивление сверхпроводящих гранул в керамических ВТСП YBa₂Cu₃O_{7-δ} в слабых магнитных полях

© Т.В. Сухарева, В.А. Финкель

Национальный научный центр "Харьковский физико-технический институт" НАН Украины,

Харьков, Украина

02

E-mail: finkel@kipt.kharkov.ua

(Поступила в Редакцию 14 сентября 2010 г.)

Для установления особенностей диссипации в сверхпроводящих гранулах гранулярных ВТСП в нулевом магнитном поле при T = 77.3 К получены вольт-амперные характеристики (ВАХ) $E(j)_{H_{treat}=const}$ керамических образцов YBa₂Cu₃O_{6.95}, предварительно намагниченных в поперечных магнитных полях **H**_{treat}. На основе ВАХ, измеренных в диапазоне $0 \le H_{trap} \le H_{c2J}$, где H_{trap} — величина захваченного в результате обработки полем **H**_{treat} магнитного поля, H_{c2J} — величина верхнего критического поля джозефсоновских слабых связей, получены полевые зависимости магнитосопротивления сверхпроводящих гранул ρ_A существенно меньше, чем магнитосопротивление джозефсоновской среды ρ_J . Изучена зависимость ρ_A от H_{treat} и плотности транспортного тока *j*. Показано, что имеет место явно выраженная тенденция к выходу зависимостей $\rho_A(H_{treat})_{j=const}$ на насыщение — ρ_{satur} , величина ρ_{satur} растет при повышении *j*. Обнаружена сильная зависимость величины нижнего критического поля сверхпроводящих гранул P_{c1A} от плотности транспортного тока.

Работа выполнена при поддержке Украинского научно-технологического центра (проект STCU № Р424).

1. Введение

Как известно, поведение кинетических, магнитных и других свойств керамических (гранулярных) высокотемпературных сверхпроводников (ВТСП) во внешних электрических (Eext) и магнитных (Hext) полях может быть адекватно описано в рамках двухуровневой модели критического состояния [1], рассматривающей гранулярный ВТСП как совокупность двух подсистем: гранул с сильной сверхпроводимостью и межгранульных границ со слабой сверхпроводимостью, формирующих джозефсоновские слабые связи. Согласно существующим представлениям (см., например, [2-5]), проникновение вихрей Абрикосова в сверхпроводящие гранулы и их последующий пиннинг на дефектах кристаллической решетки могут приводить к захвату магнитного потока и диссипации — появлению резистивности, а джозефсоновская среда (межгранульные границы), практически не участвующая в процессе захвата потока, ответственна в значительной мере за диссипацию при протекании транспортного тока, превышающего критический ток I_c [6].

Фундаментальные параметры сверхпроводимости гранул и межгранульных границ, формирующих слабые связи,¹ — критическая температура T_c , нижнее и верхнее критические поля H_{c1} и H_{c2} — различны: $T_{cJ} < T_{cA}$, $H_{c1J} \ll H_{c1A}$, $H_{c2J} \ll H_{c2A}$. В рамках двухуровневой модели рассматривают также две критические плотности тока j_c : внутригранульную с $j_{cA} \approx 10^5 - 10^7 \text{ A/cm}^2$ и межгранульную с $j_{cJ} \approx 10 - 10^3 \text{ A/cm}^2$.

Экспериментальное изучение гальваномагнитных свойств гранулярных ВТСП — магнитосопротивления $\rho(H_{\text{ext}})$, т. е. свойства материала изменять электросопротивление под действием внешнего магнитного поля \mathbf{H}_{ext} и вольт-амперных V-I-характеристик (ВАХ) во внешнем магнитном поле — вносит весомый вклад в развитие электродинамики этих сверхпроводников и имеет немаловажное прикладное значение. Исследования гальваномагнитных свойств керамических образцов ВТСП YBa₂Cu₃O_{7- δ} в зависимости от температуры, плотности транспортного тока, величины и ориентации поля \mathbf{H}_{ext} , магнитной предыстории и т.п. начались сразу же после открытия явления высокотемпературной сверхпроводимости, и результатам этих исследований посвящено огромное число публикаций.

Практически во всех исследованиях магнитосопротивления и ВАХ гранулярных образцов ВТСП УВа₂Cu₃O_{7- δ} при *T* < *T_c* (см., например, [3–13]) наблюдали ряд общих черт.

1) Наличие на кривых $\rho(H_{\text{ext}})$ при j = const и V(I)(или E(j), где E — напряженность приложенного к образцу электрического поля \mathbf{E}_{ext}) в случае $H_{\text{ext}} = \text{const}$ начальных участков с нулевым сопротивлением ($\rho(H_{\text{ext}}) \equiv 0$ или $E(j) \equiv 0$) в области достаточно слабых магнитных полей и/или электрических токов. Наличие подобных участков на зависимостях $\rho(H_{\text{treat}})_{j=\text{const}}$ и $E(j)_{H_{\text{ext}}=\text{const}}$ указывает на то, что выполняется одно из двух физически эквивалентных условий: $j \leq j_{cJ}(H_{\text{ext}})$ или $H_{\text{ext}} \leq H_{c2J}(j)$.

2) Появление диссипации при $j > j_{c1J}(H_{ext})$ или $H_{ext} > H_{c2J}(j)$. В рамках концепции критического состояния Бина [14] причина диссипации — движение вихрей (Джозефсона или Абрикосова) под действием

¹ Здесь и далее индекс *А* относится к среде, в которую проникают вихри Абрикосова, т.е. к сверхпроводящим гранулам; индекс *J* — к джозефсоновской среде, т.е. к границам гранул — слабым связям.

силы Лоренца \mathbf{F}_L

$$\mathbf{F}_L = \mathbf{j} \times \mu_0 \mathbf{H}_{\text{ext}},\tag{1}$$

где μ_0 — магнитная постоянная, в ситуации, когда сила Лоренца первосходит силу пиннинга: $\mathbf{F}_L > \mathbf{F}_p$. При $H_{\text{ext}} \leq H_{c1A}(j)$ диссипиция обусловлена исключительно процессами, протекающими в джозефсоновской среде.

3) Изменение кривизны зависимостей $\rho(H_{\text{ext}})_{j=\text{const}}$ при $H_{\text{ext}} \gg H_{c2J}(j)$ (появление максимума на полевой зависимости производной $d\rho/H_{\text{ext}}$ в окрестности поля $H_{\text{ext}} \approx H_{c1A}$), связанное с началом процесса проникновения вихрей Абрикосова в сверхпроводящие гранулы. Подчеркнем, что заметного изменения хода ВАХ $E(j)_{H_{\text{ext}}=\text{const}}$ при $H_{\text{ext}} \approx H_{c2A}$ не обнаружено. Установлено, что при повышении плотности транспортного тока j эффективное значение нижнего критического поля гранул H_{c1A} заметно снижается [5,15].

Как видно, только последний эффект — изменение хода зависимостей $\rho(H_{\rm ext})_{j={\rm const}}$ при $H_{\rm ext} \gg H_{c2J}(j)$ — может быть непосредственно связан с проникновением магнитного поля ${\bf H}_{\rm ext}$ в сверхпроводящие гранулы.

Казалось бы, надежная информация о магнитосопротивлении, связанном с проникновением вихрей Абрикосова в сверхпроводящие гранулы ВТСП, их движением и пиннингом, может быть легко получена на основании гальваномагнитных измерений, проведенных на монокристалах. Однако подобные измерения, в том числе и выполненные на монокристаллах YBa₂Cu₃O_{7- δ}, как правило, проводились в очень сильных магнитных полях $H_{\rm ext} \gg H_{c1A}$ (до $H_{\rm ext} \approx 600$ kOe, см., например, [16,17]), и характер зависимостей $\rho(H_{\rm ext})_{j={\rm const}}$ в области достаточно слабых магнитных полей — вблизи H_{c1A} — практически не изучался.

Таким образом, вопрос о природе гальваномагнитных свойств гранул в керамических ВТСП в слабых магнитных полях по существу остается открытым [18].² Целью настоящей работы и является установление характера магнитосопротивления сверхпроводящих гранул в гранулярных образцах высокотемпературного сверхпроводника YBa₂Cu₃O_{7- δ} при $T < T_c$. Фактически речь идет о реализации возможности исключения одной из подсистем двухуровневой системы — джозефсоновских слабых связей со слабой сверхпроводимостью — из процесса диссипации и достаточно эффективном включении в этот процесс второй подсистемы — гранул с сильной сверхпроводимостью.

При постановке этой задачи, очевидно, необходимо принимать во внимание следующие обстоятельства.

1) Результаты "прямого" изучения гальваномагнитных свойств гранулярных ВТСП — магнитосопротивления $\rho(H_{\rm ext})_{j={\rm const}}$ и ВАХ $E(j)_{H_{\rm ext}={\rm const}}$ образцов, охлажденных ниже критической температуры в нулевом магнитном поле (ZFC-режим), — не могут быть использованы для достижения поставленной цели в силу того, что ход кривых $\rho(H_{\rm ext})_{j={\rm const}}$ и $E(j)_{H_{\rm ext}={\rm const}}$ во всем диапазоне значений напряженности внешнего магнитного поля, в том числе, очевидно, и при $H_{\rm ext} \ge H_{c1A}$, в первую очередь определяется диссипацией на границах сверхпроводящих гранул, связанной с частичным или полным переходом джозефсоновских слабых связей в резистивное состояние.

2) Очевидно, что реальным и, по-видимому, единственным путем для достижения цели работы является изучение в нулевом магнитном поле ВАХ образцов гранулярных ВТСП, обработанных при $T < T_c$ полем намагничивания или, точнее, полем магнитной обработки $\mathbf{H}_{\text{treat}}$, т.е. образцов, способных захватывать при $H_{\text{treat}} \ge H_{c1A}$ магнитное поле \mathbf{H}_{trap} .³ Если при этом напряженность захваченного поля $0 \le H_{\text{trap}} \le H_{c2J}$, то гальваномагнитные свойства ВТСП практически полностью определяются процессами движения и пиннинга захваченных вихрей Абрикосова, проникших в сверхпроводящие гранулы в результате предварительной обработки полем намагничивания $\mathbf{H}_{\text{treat}}$.

3) На основании полученных ВАХ, т.е. массива данных $E(j)_{H_{\text{treat}}=\text{const}}$ или $\rho(j)_{H_{\text{treat}}=\text{const}}$ для гранулярных ВТСП, возможно восстановление кривых магнитосопротивления $\rho(H_{\text{treat}})_{j=\text{const}}$ в широком диапазоне значений плотности транспортного тока.

С учетом этих обстоятельств разработана программа исследований гальваномагнитных свойств сверхпроводящих гранул керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$, включающая:

1) измерение при температуре кипения жидкого азота T = 77.3 К вольт-амперных характеристик $E(j)_{H_{\text{treat}}=\text{const}}$ образцов, предварительно намагниченных при той же температуре в поперечном магнитном поле ($\mathbf{H}_{\text{treat}} \perp \mathbf{I}$), в широком диапазоне значений напряженности поля намагничивания H_{treat} и плотности транспортного тока j;

2) восстановление на основе полученных экспериментальных данных кривых магнитосопротивления, $\rho(H_{\text{treat}})_{j=\text{const}}$ во всем диапазоне значений *j*;

3) сравнительный анализ зависимостей $\rho(H_{\text{treat}})_{j=\text{const}}$ и $\rho(j)_{H_{\text{treat}}=\text{const}}$.

2. Образцы, методика эксперимента, обработка результатов

Объектами исследования служили образцы ВТСП YBa₂Cu₃O_{7- δ} номинального состава YBa₂Cu₃O_{6.95}, синтезированные по "стандартной" керамической технологии (см., например, [20]). Размеры образцов составляли $\approx 3 \times 2 \times 20$ mm. Токовые и потенциальные контакты наносили при помощи проводящего клея на основе серебра. Для аттестации образцов ВТСП YBa₂Cu₃O_{6.95} использовали методы рентгеноструктурного анализа, ре-

² В экспериментах на керамических образцах ВТСП YBa₂Cu₃O_{7- δ} было установлено лишь то, что при $H_{\text{ext}} \geq H_{c1A}$ имеет место уменьшение межгранульного (I_J) и увеличение внутригранульного (I_A) токов в связи с началом проникновения вихрей Абрикосова в сверхпроводящие гранулы, в результате чего зависимости $E(j)_{H_{\text{ext}}=\text{const}}$ и $\rho(H_{\text{ext}})_{j=\text{const}}$ приобретают аномальный характер [10,19].

³ При этом, естественно, $H_{\text{trap}} \ll H_{\text{treat}}$ (см., например, [5]).

зистивных и магнитных измерений критической температуры T_c , измерений критических токов I_c .

Исследуемые образцы были практически однофазными, значения параметров кристаллической решетки образцов в пределах точности измерений совпадали. Температура середины сверхпроводящего перехода $T_c^{1/2}$ составляла. 92.5 ± 0.1 К, ширина перехода $\Delta T_c \approx 0.4$ К, удельное электросопротивление $\rho_{273 \, \mathrm{K}} \approx 4000 \, \mu \Omega \cdot \mathrm{cm}$.

Для измерения вольт-амперных характеристик применяли специальную измерительную установку [21] на базе ЭВМ, состоящую из блока управления током источника магнитного поля (соленоида) I_{sol} и блока управления измерительным током I_{meas} , протекающим через образец. Наполненный жидким азотом сосуд Дьюара с держателем образца помещался в соленоид из медной проволоки. ВАХ гранулярных образцов YBa₂Cu₃O_{6.95} при T = 77.3 К измерялись в нулевом магнитном поле в зависимости от напряженности предварительно приложенного поперечного ($\mathbf{H}_{treat} \perp \mathbf{I}$) поля намагничивания ($\sim 10 \le H_{treat} \le 500$ Oe), т.е. по сути от величины захваченного магнитного поля \mathbf{H}_{trap} .

Поле намагничивания H_{treat} создавалось при помощи соленоида, заданным значениям H_{treat} соответствовал определенный ток через соленоид I_{sol} . После выдержки в течение нескольких минут ток I_{sol} сбрасывался. Далее в отсутствии внешнего магнитного поля через образец пропускали измерительный ток I_{meas} , который плавно увеличивали до появления на образце напряженности электрического поля $T \approx 5 \,\mu\text{V/cm}$. Массив данных $E(j)_{I_{\text{sol}}=\text{const}}$ записывали в память ЭВМ и преобразовывали для последующие обработки в массив $E(j)_{H_{\text{treat}}=\text{const}}$.

Затем ток I_{meas} (диапазон величин I_{meas} соответствовал значениям плотности транспортного тока в интервале ~ $1 \le j \le ~ 40 \text{ A/cm}^2$) сбрасывался, образец отогревался до $T > T_c$ и вновь охлаждался до 77.3 К, задавалось следующее значение I_{sol} , и весь цикл измерений повторялся. Каждая ВАХ содержала приблизительно 100 экспериментальных точек. Все измерения производились в автоматическом режиме. Результаты измерений выводились в виде зависимостей $\rho(H_{\text{treat}})_{j=\text{const.}}$

Как известно (см., например, [22–24]), в относительно слабых магнитных полях вольт-амперная характеристика E(j) керамических (гранулярных) ВТСП со случайным распределением межгранульных критических токов в первом приближении при $j \ge j_c$ может быть достаточно хорошо описана степенной функцией вида⁴

$$E(j) = b(j - j_{cJ})^n.$$
 (2)

Это означает, что для описания $\rho(j)$ -характеристик при $j \ge j_c$ может быть использовано полуэмпирическое экспоненциальное уравнение типа

$$\rho(j) = \rho_0 \exp[-(j - j_{cJ}/t]].$$
(3)

Полученные в эксперименте данные обрабатывали по следующему алгоритму.

1) Массив данных $E(j)_{H_{\text{treat}}=\text{const}}$ преобразовывался в массив $\rho(j)_{H_{\text{treat}}=\text{const}}$.

2) Из $\rho(j)_{H_{\text{treat}}=\text{const}}$ -характеристик по достаточно жесткому критерию $\rho = 0$ находились приближенные значения критической плотности тока j_c .

3) Для всего массива данных $\rho(j)_{H_{\text{treat}}=\text{const}}$ рассчитывались значения параметров экспоненциального уравнения (3) ρ_0 , j_c и t при $j \ge j_c$.

4) Величины параметров ρ_0 , j_c и t уравнения (3) уточнялись по методу минимизации функционала (как правило, до достижения знажчения коэффициента корреляции $r^2 \ge 0.95$) и находились зависимости $\rho_0(H_{\text{treat}})_{j=\text{const}}$, $j_c(H_{\text{treat}})_{j=\text{const}}$.

5) На основании полученных кривых $\rho_0(H_{\text{treat}})_{j=\text{const}}$, $j_c(H_{\text{treat}})_{j=\text{const}}$ и $t(H_{\text{treat}})_{j=\text{const}}$ восстанавливались зависимости магнитосопротивления от величины поля намагничивания $\rho(H_{\text{treat}})_{j=\text{const}}$ [19].

3. Результаты исследования

На рис. 1 представлены исходные экспериментальные данные — некоторые типичные вольт-амперные характеристики $E(j)_{H_{\text{treat}}=\text{const}}$ для гранулярных образцов ВТСП YBa₂Cu₃O_{6.95}, намагниченных в поле H_{treat} . Все кривые носят однотипный характер — присутствуют начальные участки с нулевым сопротивлением ($E \equiv 0$) и участки экспоненциального роста напряженности электрического поля при увеличении плотности транспортного тока *j*. Как видно, по мере роста H_{treat} кривые $E(j)_{H_{\text{treat}}=\text{const}}$ сдвигаются в область низких значений *j*, а степень нелинейности кривых $E(j)_{H_{\text{treat}}=\text{const}}$ заметно увеличивается с ростом H_{treat} .

Для дальнейшей обработки полученных результатов ВАХ $E(j)_{H_{treat}=const}$ керамических образцов ВТСП YBa₂Cu₃O_{6.95} "трансформировали" в кривые зависимости удельного электросопротивления от плотности

Рис. 1. Вольт-амперные характеристики $E(j)_{H_{\text{treat}}=\text{const}}$ керамических образцов ВТСП $YBas_2Cu_3O_{0.95}$, предварительно намагниченных T = 77.3 К в поле $\mathbf{H}_{\text{treat}}$. Числа около кривых ВАХ — значения H_{treat} (в Ое).

⁴ Степенной функцией (2) описывают также ВАХ для монокристаллов и тонких пленок ВТСП (см., например, [25,26]).

861

транспортного тока $\rho(j)_{H_{\text{treat}}=\text{const}}$ в том же диапазоне значений H_{treat} (рис. 2). Ход кривых $\rho(j)_{H_{\text{treat}}=\text{const}}$ удовлетворительно описывается экспоненциальным уравнением (3) — для всех кривых коэффициент корреляции $r^2 \ge 0.95$ (см. выше). Обращает на себя внимание то, что изменение наклона кривых $\rho(j)_{H_{\text{treat}}=\text{const}}$ при увеличении H_{treat} выражено сильнее, чем в случае кривых $E(j)_{H_{\text{treat}}=\text{const}}$, и что удельное сопротивление ρ (при равных значениях плотности транспортного тока j) существенно возрастает при увеличении напряженности поля намагничивания H_{treat} .

По описанной выше схеме (см. раздел 2) на основе обработки всех полученных кривых $\rho(j)_{H_{\text{treat}}=\text{const}}$ были установлены полевые зависимости параметров экспоненциального уравнения для полевой зависимости магнитосопротивления: $\rho_0(H_{\text{treat}})$, $j_c(H_{\text{treat}})$ и $t(H_{\text{treat}})$ (рис. 3). Для всех кривых характерно, во-первых, достаточно резкое изменение хода в окрестности $H_{\text{treat}} \approx 80$ Ое и, во-вторых, наличие тенденции к выходу на насыщение при $H_{\text{treat}} > \approx 200$ Ое, сопровождаемое сильным ростом предэкспоненциального параметра ρ_c и уменьшением критического тока j_c и параметра t.

Исходя из приведенных на рис. З данных удалось рассчитать ход кривых полевых зависимостей магнитосопротивления $\rho(H_{\text{treat}})_{j=\text{const.}}$ Некоторые из полученных таким путем кривых $\rho(H_{\text{treat}})_{j=\text{const}}$ при $4 \le j \le 30 \text{ A/cm}^2$ представлены на рис. 4.

Заметим, что при $j \ll 4 \text{ A/cm}^2$ сопротивление керамических образцов ВТСП YBa₂Cu₃O_{6.95}, предварительно намагниченных при T = 77.3 K, оставалось на нулевом уровне даже при $H_{\text{treat}} \approx 500 \text{ Oe}$, т.е. при максимальном значении захваченного магнитного поля H_{trap} . Наблюдается явно выраженная тенденция к выходу полевых зависимостей магнитосопротивления $\rho(H_{\text{treat}})_{j=\text{const}}$ на

Рис. 2. Зависимости $\rho(j)_{H_{\text{treat}}=\text{const}}$ для керамических образцов ВТСП YBas₂Cu₃O_{0.95}, предварительно намагниченных при T = 77.3 К в поле **H**_{treat}. Числа около кривых — значения H_{treat} (в Oe).

Рис. 3. Зависимости от напряженности поля намагничивания H_{treat} параметров уравнения (3) $\rho_0(a)$, $j_c(b)$ и t(c) для керамических образцов ВТСП YBas₂Cu₃O_{0.95}.

насыщение (ρ_{satur}) при увеличении напряженности поля намагниченности $\mathbf{H}_{\text{treat}}$. Зависимость $\rho_{\text{satur}}(j)$ представлена на вставке к рис. 4.⁵

⁵ Вследствие того что ВАХ измеряли при максимальном значении напряженности электрического поля $E \approx 5 \,\mu$ V/ст (см. выше), в явном виде насыщение соответствующих кривых удается наблюдать лишь при достаточно низких значениях плотности транспортного тока $j \leq 7$ Ое.

Рис. 4. Зависимости $\rho(H_{\text{treat}})_{j=\text{const}}$ для керамических образнов ВТСП YBas₂Cu₃O_{0.95}, предварительно намагниченных при T = 77.3 К в поле H_{treat}. Числа около кривых — значения плотности транспортного тока j (в A/cm²). На вставке — зависимость $\rho_{\text{satur}}(j)$: темные кружки — экспериментальные данные, светлые — результат экстраполяции зависимостей $\rho(H_{\text{treat}})_{j=\text{const}}$ в область высоких значений H_{treat} .

Рис. 5. Зависимость велилчины критического поля H_{kink} от плотности транспортного тока j для керамических образцов ВТСП YBas₂Cu₃O_{0.95}, предварительно намагниченных при T = 77.3 К в поле $\mathbf{H}_{\text{treat}}$. На вставке — зависимость критической плотности внутригранульного тока j_{cA} от напряженности поля $\mathbf{H}_{\text{treat}}$.

Таким образом, в ходе полевых зависимостей магнитосопротивления $\rho(H_{\text{treat}})_{j=\text{const}}$ наблюдаются две явно выраженые закономерности.

1) Существенное увеличение магнитосопротивления при повышении поля намагничивания H_{treat} и плотности транспортного тока *j*, в том числе и значения ρ_{satur} , соответствующего выходу зависимостей $\rho(H_{\text{treat}})_{j=\text{const}}$ на насыщение (рис. 4). 2) Существенное понижение значения напряженности предварительно приложенного магнитного поля H_{treat} , при котором появляется отличное от нуля магнитосопротивление ($H_{\text{treat}} = H_{\text{kink}}$) для керамических образцов ВТСП YBa₂Cu₃O_{6.95}, при повышении плотности транспортного тока *j* (рис. 5).

4. Обсуждение результатов

Напомним, что объектами исследования магнитосопротивления в настоящей работе служили сверхпроводящие гранулы керамического высокотемпературного сверхпроводника $YBa_2Cu_3O_{7-\delta}$, несущие захваченное магнитное поле H_{trap} , через которые протекают относительно слабые сверхпроводящие токи. Очевидно, что вся совокупность наблюдаемых эффектов должна определяться характером влияния величины захваченного магнитного поля H_{trap} , т.е. плотности вихрей Абрикосова, на процесс протекания электрического тока через сверхпроводящие гранулы. В этой связи предметом обсуждения в первую очередь должны служить следующие три основных результата настоящей работы, основанные на экспериментально полученных зависимостях $\rho(H_{treat})_{j=const}$ и $\rho(j)_{H_{treat}=const}$ (рис. 2 и 3).

1) Обнаружение крайне низкого уровня магнитосопротивления сверхпроводящих гранул $\rho_A(H_{\text{treat}})$ (рис. 4).

2) Обнаружение наличия явно выраженной тенденции к выходу полевых зависимостей магнитосопротивления сверхпроводящих гранул $\rho_A(H_{\text{treat}})$ на насыщение — ρ_{satur} — и к росту ρ_{satur} при повышении плотности транспортного тока (см. вставку к рис. 4).

3) Установление сильной зависимости величины критического поля H_{kink} , при котором появляется отличное от нуля магнитосопротивление сверхпроводящих гранул ρ_A , от плотности транспортного тока (рис. 5).

Низкий уровень магнитосопротивления сверхпроводящих гранул ρ_A , т.е. очень малая диссипация при протекании сверхпроводящего тока через гранулы, обусловлен, очевидно, невысокими значениями магнитных полей *H*_{trap}, захваченных гранулами керамических образцов ВТСП УВа₂Си₃О_{6.95} при намагничивании в поперечном магнитном поле **H**_{treat}. При изучении гальваномагнитных свойств образцов в нулевом магнитном поле после обработки полем намагничивания H_{treat} движущая магнитные вихри сила Лоренца F_L невелика, так как малы величины как критической плотности тока j_{cA} , так и напряженности захваченных магнитных полей H_{trap}. Из-за низкой плотности вихрей Абрикосова⁶ движение их под действием опять же достаточно малой силы Лоренца F_L должно носить "почти бездиссипативный" характер, что и наблюдается в эксперименте.

⁶ Напомним, что плотность вихрей Абрикосова пропорциональна концентрации нормальной фазы в объеме сверхпроводника (см., например, [27]).

Зависимость $\rho_A(H_{\text{treat}})$, характеризуемая ростом магнитосопротивления сверхпроводящих гранул при увеличении напряженности поля намагничивания $\mathbf{H}_{\text{treat}}$ с последующим выходом величин ρ_A на насыщение ($\rho_A = \rho_{\text{satur}}$), связана с особенностями процесса пиннинга вихрей Абрикосова на дефектах кристааллической решетки гранулярных образцов ВТСП YBa₂Cu₃O_{7- δ}. Наблюдаемая тенденция к росту диссипации ρ_A в гранулярных образцах ВТСП YBa₂Cu₃O_{7- δ} как при увеличении H_{treat} , т.е. фактически величины захваченного магнитного поля \mathbf{H}_{trap} , так и плотности транспортного тока *j* является прямым следствием возрастания силы Лоренца.

Обнаруженная в работе тенденция к насыщению зависимостей $\rho_A(H_{\text{treat}})$ обусловлена нелинейным характером исходных вольт-амперных характеристик $E(j)_{H_{\text{treat}}=\text{const}}$, усиливающимся, как отмечалось выше, по мере увеличения напряженности поля намагничивания **H**_{treat} (рис. 1). Согласно существующим представлениям (см., например, [27]), переход от режима крипа магнитного потока при $\mathbf{F}_L \approx \mathbf{F}_p$, т.е. $j \approx j_{cA}$, к режиму течения потока при $\mathbf{F}_L > \mathbf{F}_p$, т.е. $j \gg j_{cA}$, сопровождается уменьшением степени нелинейности ВАХ при повышении плотности транспортного тока. Очевидно, с результате такой эволюции хода зависимостей $E(j)_{H_{\text{treat}}=\text{const}}$, а также явно выраженной тенденции к тому, что кривые $E(j)_{H_{\text{treat}}=\text{const}}$ и $\rho(j)_{H_{\text{treat}}=\text{const}}$ при $j \gg j_{cA}$ (рис. 1 и 2) имеют почти одинаковый наклон, реализуется наблюдаемый в эксперименте ход зависимостей $\rho_A(H_{\text{treat}})$, демонстрирующий эффект насыщения при $H_{\text{treat}} \approx 200 \,\text{Oe.}$ Рост магнитосопротивления ρ_{satur} при повышении j (см. вставку к рис. 4) является естественным следствием усиления диссипации при повышении плотности транспортного тока.

Критическое поле *H*_{kink}, при котором появляется отличное от нуля магнитосопротивление, безусловно, эквивалентно нижнему критическому полю *H*_{c1A} сверхпроводящих гранул. Характер зависимости $H_{\text{kink}}(j) \equiv H_{c1A}(j)$, полученной на основе развитого в настоящей работе подхода к изучению гальваномагнитных свойств гранулярных ВТСП, качественно совпадает с характером зависимости $J_{c1A}(j)$, полученной при определении положения перегибов на кривых $ho(H_{\mathrm{ext}})_{j=\mathrm{const}}$ в широком диапазоне значений плотности транспортного тока ј (см., например, [4,5,15]). При этом, как установлено, количественные различия в ходе зависимости $H_{c1A}(j)$ достаточно велики — критическое поле H_{c1A} изменяется в 2.5–3 раза в диапазоне $\approx 5 \le j \le 30 \,\text{A/cm}^2$ (рис. 5), в то время как величина изменения H_{c1A} , определяемая по сдвигу максимума на полевой зависимости производной магнитосопротивления $d\rho/dH_{\rm ext}$, существенно меньше даже при изменении плотности тока ј на два порядка (см., например, [15]).

Наличие сильной зависимости нижнего критического поля сверхпроводящих гранул H_{c1A} от плотности транспортного тока j (рис. 5) требует особого рассмотрения. (Сразу же отметим, что магнитные поля транспортных

токов исчезающе малы даже по сравнению с захваченными магнитными полями H_{trap} , и их возможным влиянием на ход зависимости $H_{c1A}(j)$ можно пренебречь). Природа наблюдаемой зависимости $H_{c2A}(j)$ легко может быть установлена при "конвертировании" последней в физически эквивалентную ей зависимость $j_{cA}(H_{treat})$ (вставка на рис. 5), на которой явно наблюдается эффект уменьшения плотности внутригранульного критического тока j_{cA} при росте напряжености приложенного к образцу гранулярного ВТСП магнитного поля — в данном случае поля намагничивания \mathbf{H}_{treat} (а следовательно, и захваченного магнитного поля \mathbf{H}_{trap}).

Экстраполяция кривой $j_{cA}(H_{\text{treat}})$ на нулевое магнитное поле ($H_{\text{trap}} \equiv H_{\text{treat}} = 0$) дает вполне разумное значение $j_{cA}(0) \approx 400 \text{ A/cm}^2$. Хотя полученная путем экстраполяции величина $j_{cA}(0)$ значительно ниже, чем величины $j_{cA}(0)$, полученные в прямых измерениях на монокристаллах и эпитаксиальных пленках YBa₂Cu₃O_{7- δ}, при их сопоставлении необходимо учитывать следующие два обстоятельства: узость интервала полей, используемого при экстраполяции кривой $j_{cA}(H_{\text{treat}})$ (75–200 Oe), применение жесткого критерия при определении j_{cA} ($\rho = 0$, см. выше).

5. Заключение

Полученные результаты дают все основания полагать, что основное условие, необходимое для достижения цели настоящей работы, — установление характера магнитосопротивления сверхпроводящих гранул в керамических образцах высокотемпературного сверхпроводника YBa₂Cu₃O_{7- δ} при $T < T_c$ (см. Введение), а именно реализации возможности проведения исследований при $0 \leq H_{trap} \leq H_{c2J}$, полностью выполнено.

Судя по полученным ранее данным, максимальное значение величины захваченного магнитного поля H_{trap} для керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$, идентичных или практически аналогичных используемым в данном исследовании, не превышает $\approx 20 \, \mathrm{Oe}$ при величине поля намагничивания $H_{\text{treat}} \approx 500 \,\text{Oe}$, в то время как верхнее критическое поле джозефсоновских слабых связей H_{c2J} составляет ≈ 35 Ое при *T* = 77.3 К [5,15,19,28]. Это означает, что областью фазовой диаграммы ВТСП УВа₂Си₃О_{7-б}, в которой проводили измерения ВАХ $E(j)_{H_{\text{treat}}=\text{const}}$, на основании которых восстанавливали зависимости $ho(j)_{H_{\mathrm{treat}}=\mathrm{const}}$, является область $H_{c1J} \leq H_{\text{treat}} \leq H_{c2J}$. В этой области фазовой диаграммы, как известно, вихри Джозефсона проникают в слабые связи ВТСП, не разрушая полностью их сверхпроводимости. При этом относительно низкие значения плотности внутригранульных критических токов *j_c* контролируются плотностью джозефсоновских токов j_{cJ} во всем диапазоне значений H_{treat} .

Таким образом, в работе реализована возможность исключения одной из подсистем двухуровневой системы гранулярных высокотемпературных сверхпроводников — джозефсоновских слабых связей со слабой сверхпроводимостью — из процесса диссипации и установления особенностей диссипации во второй подсистеме в гранулах с сильной сверхпроводимостью.

В результате удалось установить наличие: а) крайне низкого уровня магнитосопротивления сверхпроводящих гранул ρ_A по сравнению с магнитосопротивлением джозефсоновской среды — слабых связей ρ_J ; b) явно выраженной тенденции к выходу полевых зависимостей магнитосопротивления сверхпроводящих гранул $\rho_A(H_{\text{treat}})$ на насыщение — ρ_{satur} — и к росту ρ_{satur} при повышении плотности транспортного тока; с) сильной зависимости величины нижнего критического поля сверхпроводящих гранул H_{c1A} от плотности транспортного тока.

Авторы благодарны В.В. Деревянко за помощь в проведении измерений.

Список литературы

- M. Tinkham, C.J. Lobb. Solid State Phys. 42, 91 (1989); L. Ji, M.S. Rzchowski, N. Anand. M. Thikham. Phys. Rev. B 47, 470 (1993).
- [2] Y. Yeshurun, A.P. Malozemoff, A. Shaulov. Rev. Mod. Phys. 68, 911 (1996).
- [3] I. Felner, E. Galstyan, B. Lorenz, D. Cao, Y.S. Wang, Y.Y. Zue, C.W. Chu. Phys. Rev. B 67, 134 506 (2003).
- [4] Д.А. Балаев, Д.М. Гохфельд, А.А. Дубровский, С.И. Попков, К.А. Шайхутдинов, М.И. Петров. ЖЭТФ 132, 1340 (2007); Д.А. Балаев, А.А. Дубровский, К.А. Шайхутдинов, С.И. Попков, Д.М. Гохфельд, Ю.С. Гохфельд, М.И. Петров. ЖЭТФ 135, 271 (2009); Д.А. Балаев, А.А. Дубровский, С.И. Попков, К.А. Шайхутдинов, М.И. Петров. ФТТ 50, 972 (2008); Д.А. Балаев, С.И. Попков, К.А. Шайхутдинов, М.И. Петров. ФТТ 50, М.И. Петров. ФТТ 48, 780 (2006); К.А. Шайхутдинов, Д.А. Балаев, С.И. Попков, М.И. Петров. ФТТ 51, 1046 (2009).
- [5] В.В. Деревянко, Е.В. Сухарева, В.А. Финкель. ФТТ 48, 1374 (2006); 49, 1744 (2007); ЖТФ 78, 3, 36 (2008); Е.В. Сухарева, В.А. Финкель. ЖЭТФ 134, 922 (2008); ФТТ 50, 961 (2008); ЖТФ 80, 1, 68 (2010).
- [6] G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur. Rev. Mod. Phys. 66, 1125 (1994); С.Л. Гинзбург. ЖЭТФ 106 607 (1994).
- [7] A. Kiliç, K. Kiliç, H. Yetiş, O. Çetin. Phys. Rev. B 68, 144 513 (2003); J. Appl. Phys. 95, 1924 (2004); New J. Phys. 7, 212 (2005).
- [8] L. Burlachkov, E. Mogilko, Y. Schlesinger, Y.M. Strelniker, S. Havlin. Phys. Rev. B 67, 104 599 (2003).
- [9] C.A.M. dos Santos, M.S. da Luz, B. Ferreira, A.J.S. Machado. Physica C **391**, 345 (2003); C.A.M. dos Santos, C.J.V. Oliveira, M.S. da Luz, A.D. Bortolozo, M.J.R. Sandim, A.J.S. Machado. Phys. Rev. B **74**, 184 526 (2006); M.S. da Luz, C.A.M. dos Santos, M.J.R. Sandim, A.J.S. Machado, R.F. Jardin. Brazilian J. Phys. **37**, 1155 (2007).
- [10] D. Daghero, A. Masoero, P. Mazzett, A. Stepanescu. Physica C 341–348, 1869 (2000); D. Daghero, P. Mazzett, A. Stepanescu, P. Tura, A. Masoero. Phys. Rev. B 66, 184 514 (2002); P. Mazzett, A. Stepanescu, P. Tura, A. Masoero, I. Puica. Phys. Rev. B 65, 132 512 (2002).

- [11] M.T. González, S.R. Currás, J. Maza, F. Vidal. Phys. Rev. B 63, 224 511 (2001).
- [12] R.J. Soulen, T.L. Francovilla, W.W. Fuller-Mora, M.M. Muller, C.H. Joshi, W.L. Carter, A.J. Rodenbush, M.D. Manlief, D. Aized. Phys. Rev. B 50, 478 (1994).
- [13] S.L. Ginzburg, O.V. Gerashchenko, A.I. Sibilev. Supercond. Sci. Technol. 10, 395 (1997); O.V. Gerashchenko, S.L. Ginzburg. Supercond. Sci. Technol. 13, 332 (2000); O.B. Геращенко. Письма в ЖТФ. 25, 3, 8 (1999); O.V. Gerashchenko. Supercond. Sci. Technol. 16, 690 (2003).
- [14] C.P. Bean. Phys. Rev. Lett. 8, 250 (1962); Rev. Mod. Phys. 36, 31 (1964).
- [15] В.В. Деревянко, Е.В. Сухарева, В.А. Финкель. ФТТ 46, 1740 (2004); V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel. Funct. Mater. 11, 710 (2004); Е.В. Сухарева, В.А. Финкель. ФТТ 52, 424 (2010).
- [16] M. Hakita, M. Suzuki. Phys. Rev. B 39, 4756 (1989).
- [17] V.V. Chabanenko, A.A. Prodan, V.A. Shklovskij, A.V. Bondarenko, M.A. Obolenskii, H. Szymczak, S. Piechota. Supercond. Sci. Technol. 11, 1133 (1998).
- [18] M.N. Kunchur, T.R. Askew. J. Appl. Phys. 84, 6753 (1998).
- [19] Е.В. Сухарева, В.А. Финкель. ФТТ 52, 1479 (2010).
- [20] V.A. Finkel', V.M. Arzhavitin, A.A. Blinkin, V.V. Derevyanko, Yu.Yu. Razdovskii. Physica C 235–240, 303 (1994).
- [21] В.А. Финкель, В.В. Деревянко. ФНТ 26, 128 (2000).
- [22] Е.З. Мейлихов. УФН 163, 27 (1993).
- [23] Z.X. Cai, D.O. Welch. Phys. Rev. B 45, 2385 (1992).
- [24] K.H. Lee. D. Stroud. Phys. Rev. B 45, 2417 (1992).
- [25] C. Paracchini, L. Romano. Physica C 184, 29 (1991).
- [26] H. Zhang, H. Wu, C.-X. Ren, G.L. Chen. Supercond. Sci. Technol. 7, 359 (1994).
- [27] Е.Н. Brandt. Active Passive Elec. Comp. 15, 193 (1993); В.А. Шкловский, А.В. Добровольский. Пиннинг и динамика вихрей в сверхпроводниках. Изд-во ХНУ им. В.Н. Каразина, Харьков (2007).
- [28] T.V. Sukhareva, V.A. Finkel. Funct. Mater. 16, 418 (2009).

864