03;05

Синтез наночастиц ZrO₂ при окислении циркония сверхкритической водой

© А.А. Востриков, О.Н. Федяева, А.В. Шишкин, М.Я. Сокол

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск E-mail: vostrikov@itp.nsc.ru

Поступило в Редакцию 12 марта 2010 г.

Обнаружено, что массивные образцы твердого циркония $(Zr)_s$ полностью окисляются сверхкритической водой (СКВ: T > 647 К, P > 22.1 МРа) с образованием наночастиц $(ZrO_2)_n$. Распределение частиц по размерам, их морфология и особенности наноструктурирования зависят от условий реализации процесса. Методом впрыска СКВ в реактор с $(Zr)_s$ при различных температурах получены временные зависимости производства H_2 и описана кинетика окисления. Получена зависимость времени индукции окисления от параметров СКВ.

Оксид циркония обладает рядом привлекательных свойств [1], определяющих его широкое применение в оптике [2], микроэлектронике [3], топливных элементах [4], а также в качестве катализатора и носителя катализаторов [5]. Наночастицы ZrO₂ получают, например, золь-гель методом [6], гидротермальным синтезом [7–9], в котором прекурсорами являются различные соли циркония.

В данной работе обнаружено, что массивные образцы твердого циркония $(Zr)_s$ окисляются сверхкритической водой при T > 647 K с образованием наночастиц ZrO_2 и водорода. Исследования проведены с использованием трубчатого реактора проточно-периодического типа объемом ~ 20 cm³, изготовленного из нержавеющей стали и оборудованного автоматической системой регулируемого нагрева, мембранным тензодатчиком давления, системой измерения количества и состава

1

газовых реактантов [10]. Образцы $(Zr)_s$ марки "ч" в виде пластинок толщиной 0.1 mm перед загрузкой в реактор механически очищали от оксидной пленки в атмосфере азота и размещали в кювете на дне реактора, который продувался азотом вплоть до герметизации.

В работе реализованы два режима окисления — изотермический (эксперименты 1–6) и неизотермический (эксперимент 7). При изотермическом режиме в предварительно нагретый до рабочей температуры T реактор с образцом (Zr)_s впрыскивали СКВ из пререактора при заданном давлении и температуре, превышающей температуру реактора на 20–30 К. Объем пререактора приблизительно в 20 раз превышал объем реактора. Впрыск СКВ осуществляли с помощью перепускного клапана в течение нескольких секунд. При неизотермическом режиме в реактор с образцом (Zr)_s устанавливали кювету с дистиллированной водой и равномерно нагревали реактор со скоростью 2 K/min.

Время начала $t = t^*$ и скорость окисления определяли по увеличению давления P в реакторе, которое обусловлено выделением H₂ и сильной неидеальной смеси H₂O/H₂. Зависимость P(t) записывали в цифровом виде. Опыт завершали сбросом смеси H₂O/H₂/N₂ из горячего реактора в предварительно вакуумированный коллектор известного объема, который охлаждали жидким азотом. Количество образовавшегося H₂ определяли из весовых измерений прироста массы образцов вследствие окисления и с помощью квадрупольного масс-спектрометра MC-7303 [10].

Основные параметры экспериментов приведены в таблице. Здесь m_{Zr} — начальная масса образцов циркония; *S* — геометрическая площадь образцов; *V* — объем реактора, занимаемый СКВ; *T*^{*}, *P*^{*} и ρ_w^* — температура, давление и плотность СКВ в момент начала *t*^{*} реакции; Δm — прирост массы образца за время реакции *t_r* в результате окисления (масса кислорода в ZrO₂); δ_{Zr} — доля окисленного циркония; $v_{H_2} = \Delta m/16St_r$ — средняя удельная скорость производства H₂ при окислении. Из таблицы видно, что скорость окисления v_{H_2} увеличивается с повышением температуры, и за короткое время образцы (Zr)_s практически полностью (эксперименты 5, 6) переходят в ZrO₂.

На рис. 1 приведены снимки наночастиц ZrO_2 , полученных в изотермическом 6 (*a*) и неизотермическом 7 (*b*) экспериментах, а также результаты измерения межплоскостных расстояний в выделенных на снимке (*b*) областях. Элементный и дифракционный анализ образцов ZrO_2 проведен с помощью просвечивающего электронного микроскопа

	Услов	ия и резу	льтаты эі	кспериме	нтов по	окислеі	ино циркої	ния свер	тидах	иеской	водой
26	$\mathbf{r}^{*}, \mathbf{K}$	m _{Zr} , g	Δm, g	$S,$ cm^2	V, cm^3	<i>Р</i> *, МРа	$ ho_w^* \cdot 10^3, \ m{mol}/ m{cm}^3$	t_r , min	t*, min	$\delta_{ m Zr},$ $\%$	$v_{\mathrm{H}_2} \cdot 10^6,$ mol/(cm ² ·min)
1	771	0.7020	0.0839	21.600	18.38	30.06	6.463	122.0	35.0	34.07	1.99
2	803	0.5068	0.1147	15.603	18.41	36.86	7.649	135.3	18.7	64.51	3.39
~	822	0.5997	0.1678	18.458	18.40	33.15	6.267	135.2	14.8	79.76	4.20
4	832	0.4950	0.1387	15.241	18.42	31.29	5.617	106.3	16.7	79.87	5.35
0	920	0.5006	0.1754	15.413	18.41	31.29	4.653	47.6	6.4	99.88	14.94
5	987	0.6128	0.2093	18.860	18.40	29.81	3.943	28.5	3.5	97.36	24.34
	465–1015	0.6428	0.1636	19.748	16.95	Ι	Ι	143.0	I	72.55	3.62

1* Письма в ЖТФ, 2010, том 36, вып. 17

4

Рис. 1. Электронно-микроскопические снимки образцов окисленного сверхкритической водой циркония.

высокого разрешения JEM-2010, оборудованного рентгеноспектральной системой атомного анализа EDX. Из анализа большого количества снимков следует, что при впрыске СКВ в реактор (эксперименты 1–6) с ростом температуры средний размер частиц ZrO₂ уменьшается, а количество сросшихся частиц и дефектов кристаллической решетки увеличивается. Наиболее интересным оказался образец, синтезированный при 987 К (рис. 1, *a*). Он состоял из сросшихся нанокристаллов размером до 90 nm и обладал высокой пористостью (размер пор ~ 5 nm). При этом в пределах одной частицы присутствовали области с моноклинной и тетрагональной кристаллической решеткой. Размер области с одинаковым направлением роста составлял ~ 1.5 nm. Образец, полученный в неизотермическом эксперименте 7 (рис. 1, *b*), состоял из частиц только моноклинного ZrO₂, характеризующихся бимодальным распределением по размерам с максимумами при 4 и 50 nm.

Механизм наноструктурирования при окислении (Zr)_s, по-видимому, определяется следующей брутто-реакцией:

$$(\mathrm{Zr})_s + 2k\mathrm{H}_2\mathrm{O} = m[(\mathrm{ZrO}_2)_n] + 2k\mathrm{H}_2, \quad \Delta\mathrm{H}_{298} = -617\,\mathrm{kJ/mol}, \quad (1)$$

где k = mn. Тепловой эффект ΔH_{298} экзотермической реакции (1) рассчитан с помощью справочных данных [11] и соответствует образованию наночастиц (ZrO₂)_n размером n > 30. При n < 30 удельная энтальния образования частиц быстро уменьшается при уменьшении n [12]. При n = 1 имеем:

$$(Zr)_s + 2H_2O = [(Zr)_sZrO_2] + 2H_2,$$

 $\Delta H_{20s}^{(1)} = +94.3$ и $\Delta H_{20s}^{(2)} = -14.0$ kJ/mol. (2)

Величины $\Delta H_{298}^{(1)}$ и $\Delta H_{298}^{(2)}$ в (2) получены из [11] в предположении, что энергия разрыва связи (Zr)_s – ZrO₂ равна удельной энергии сублимации соответственно (Zr)_s – 603.0 kJ/mol и (ZrO₂)_s – 711.3 kJ/mol. Из (2) следует, что наноструктурирование ZrO₂ при окислении является следствием коллективного взаимодействия молекул H₂O с атомами циркония в твердой фазе. По-видимому, при контакте (Zr)_s с СКВ в течение некоторого времени *t*^{*} на поверхности циркония формируются активные комплексы $[(H_2O)_i(Zr)_j]^*$, которые спонтанно переходят в зародыши новой фазы (ZrO₂)_{n*}. При этом на границе (ZrO₂)_{n*}/(Zr)_s возникает контактная разность электрического потенциала, обусловленная

Рис. 2. Временны́е зависимости изменения давления $\overline{P}(a)$ и количества водорода $N_{\rm H}$ в реакторе (b) при окислении $({\rm Zr})_s$ сверхкритической водой. Номера на кривых соответствуют номеру эксперимента в таблице.

различной работой выхода электрона из металла (3.9 eV) и из оксида металла (4.2 eV) [13]. В этом поле полярные молекулы H_2O (дипольный момент 1.85 D) ориентируются кислородом к металлу. После такой деструкции поверхности (Zr)_s окисление быстро распространяется в глубь металла вследствие энергетически выгодного увеличения границы раздела ZrO_2/Zr .

На рис. 2 приведены начальные участки временны́х зависимостей давления P(t), полученные в экспериментах 2, 4–6 при впрыске СКВ в реактор. Видно, что при увеличении t на кривых P(t) наблюдаются скачок, стабилизация и непрерывный рост давления. Скачок давления в момент впрыска СКВ ($t \approx 0$) обусловлен инерционным движением мембраны тензодатчика давления и охлаждением СКВ до температуры реактора. Протяженность стабильного уровня давления определяется индукционным периодом t^* реакции образования некоторой поверхностной концентрации θ^* зародышей новой фазы (ZrO₂)_{n^*} на (Zr)_s.

Из данных, приведенных на рис. 2 и в таблице, следует, что время t^* уменьшается при повышении T и плотности ρ_w молекул H₂O в реакторе. Полагая, что поверхностная концентрация θ заро-

дышей $(ZrO_2)_{n^*}$ увеличивается пропорционально плотности потока молекул H₂O на поверхность $(Zr)_s$, времени жизни молекул на поверхности $\tau = \tau_0 \exp(E_{ad}/RT)$ и константе скорости $k = k_0^* \exp(-E_a/RT)$ образования зародышей $(ZrO_2)_{n^*}$, имеем:

$$d\theta = A\rho_w^* v_T^* \exp\left[(E_{ad} - E_a)/RT\right] dt.$$
(3)

Здесь $A = \tau_0 k_0^*$ — константа, v_T^* — средняя тепловая скорость молекул H₂O, E_{ad} — энергия адсорбции молекул H₂O на (Zr)_s, E_a — энергия активации. Проинтегрировав (3), получим

$$t^* = B(\rho_w^* v_T)^{-1} \exp[(E_a - E_{ad})/RT],$$
(4)

где $B = \theta^*/A$. В результате аппроксимации экспериментальных значений t^* (см. таблицу) уравнением (4) получено $B = 6.4 \pm 1.3 \text{ mol/m}^2$, $E_a - E_{ad} = 78.0 \pm 2.4 \text{ kJ/mol}$ (коэффициент линейной корреляции $r^2 = 0.99$). Отметим, что энергия адсорбции молекул H₂O на (Zr)_s неизвестна, а на ряде других металлов составляет 40 ± 10 kJ/mol [14]. Уравнение (4) позволяет определять время задержки начала наноструктурирования (выделения H₂) при взаимодействии (Zr)_s с молекулами воды.

Используя экспериментальные зависимости P(t), справочные P-v-T данные для воды и уравнение состояния Редлиха-Квонга так, как это описано в [15], были получены (рис. 2) временные зависимости количества молей H₂ $N_{\rm H}(t)$. Кинетика изменения $N_{\rm H}(t)$ описана следующим уравнением:

$$dN_{\rm H}/dt = \rho_w v_T S K_0 \exp[-E/RT], \qquad (5)$$

где $\rho_w(t) = \rho_w^* - N_{\rm H}(t)/V$ — текущая плотность воды и ρ_w^* — плотность воды в момент начала окисления при $t = t^*$. Уравнение (5) соответствует кинетике первого порядка по плотности воды и аррениусовой зависимости константы скорости производства H₂ от температуры; *E* — энергия активации; K_0 — безразмерная константа. При записи (5) считалось, что $dN_{\rm H}/dt \sim S$ и скорость диффузионного перемешивания молекул H₂O и H₂ в реакторе превышает скорость производства H₂. Оказалось, что экспериментальные значения $K = (dN_{\rm H}/dt)/\rho_w v_T S$ хорошо ($r^2 = 0.99$) описываются уравнением (5) при $K_0 = (1.52 \pm 0.37) \cdot 10^{-2}$ и *E* = 130.6 ± 7.2 kJ/mol вплоть до момента времени *t*, соответствующего окислению 30% массы (Zr)_s.

Обнаружено, что сверхкритическая вода окисляет твердые массивные образцы циркония с образованием H_2 и наноразмерных кристаллов ZrO₂. При этом распределение частиц по размерам, степень их срастания и особенности кристаллической структуры зависят от условий реализации процесса. Установлено, что скорость окисления увеличивается, а время задержки начала окисления уменьшается с ростом температуры и плотности воды. Получены кинетические уравнения, описывающие синтез наночастиц ZrO_2 .

Авторы выражают благодарность В.И. Зайковскому (Институт катализа им. Г.К. Борескова СО РАН) за проведение электронно-микроскопического анализа.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 09-08-00206) и Программы фундаментальных исследований президиума РАН 13.8.

Список литературы

- [1] Steele B.C.H., Heinzel A. // Nature. 2001. V. 414. P. 345-352.
- [2] Zhang Q., Shen J., Wu G., Chen L. // Int. J. Inorg. Mater. 2000. V. 2. P. 319–323.
- [3] Koch T., Ziemann P. // Appl. Surf. Sci. 1996. V. 99. P. 51-57.
- [4] Xianshuang X., She L., Qingshan Z. et al. // J. Mater. Chem. 2007. V. 17. P. 1627–1630.
- [5] Yan B., Wu J., Xie C. et al. // J. Supercrit. Fluids. 2009. V. 50. P. 155–161.
- [6] Caracoche M.C., Martinez J.A., Rivas P.C. et al. // J. Phys.: Conf. Ser. 2009.
 V. 167. P. 012041.
- [7] Kumari L., Li W., Wang D. // Nanotechnology. 2008. V. 19. P. 195 602.
- [8] Zhu H., Yang D., Xi Z., Zhu L. // J. Am. Ceram. Soc. 2007. V. 90. P. 1334–1338.
- [9] Becker J., Hald P., Brembolm M. et al. // ACS Nano. 2008. V. 2. P. 1058–1068.
- [10] Vostrikov A.A., Fedyaeva O.N., Shishkin A.V., Sokol M.Y. // J. Supercrit. Fluids. 2009. V. 48. P. 154–160.
- [11] Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: Справочник. М.: Дрофа, 2006.
- [12] Востриков А.А., Дубов Д.Ю. // ЖЭТФ. 2004. Т. 98. № 2. С. 222–232.
- [13] Фоменко В.С. Эмиссионные свойства материалов. Киев: Наук. думка, 1981.
- [14] Hodgson A., Haq S. // Surface Sci. Res. 2009. V. 64. N 9. P. 381-451.
- [15] Востриков А.А., Федяева О.Н., Фадеева И.И., Сокол М.Я. // Сверхкритические флюиды: теория и практика. 2010. Т. 5. № 1. С. 12–25.