01;04

Плазменный разряд в магнитоактивной плазме в окрестности электрически изолированной металлической мишени при падении на ее поверхность нейтральных высокоэнергетических частиц

© В.А. Федоров

Радиотехнический институт им. академика А.Л. Минца, Москва E-mail: f_v99@mail.ru

Поступило в Редакцию 5 марта 2010 г.

Исследована возможность зажигания плазменного разряда в окрестности электрически изолированной металлической мишени, находящейся в магнитоактивной плазме, при падении на ее поверхность потока нейтральных высокоэнергетических частиц. Определены условия зажигания разряда в виде требований к параметрам потока падающих частиц и характеристикам плазмы. Проведены оценки величины концентрации электронов и их тока, текущего к поверхности мишени.

В [1] показано, что падение нейтральных высокоэнергетических частиц (атомы водорода H^0) на покоящуюся, электрически изолированную сферическую мишень радиусом R_0 из железа может привести к ее заряжанию из-за возникновения тока эмиссии электронов I_r . При этом потоку H^0 задавалась энергия $W_0 = 30$ MeV и плотность $P_0 = 10^{12}$ сm⁻² · s⁻¹, так как для регистрации заряда мишени требуется выбивание из нее определенного числа электронов [2–5]. Было найдено, что поток H^0 в форме цилиндра радиусом R_0 с параметрами, отмеченными выше, образует $P_r \approx 2.5 \cdot 10^{11}$ сm⁻² · s⁻¹ электронов эмиссии с энергией $W_r \approx 6$ keV и углом вылета $\approx 2\pi$. Таким образом, ток I_r можно представить в виде

$$I_r \approx \pi e P_r R_0^2, \tag{1}$$

где е — заряд электрона.

75

Если $|I_r/I_s| > 1$, где I_s — ток электронов, текущих на мишень из среды, в которой она находится, то мишень начнет заряжаться положительно, т. е. ее электрический заряд и потенциал станут Q > 0, $\varphi > 0$. При условии $\varphi < W_r |e|$ и выполнении равенства $|I_r| = I_s$ рост Qи φ прекратится, а эти функции приобретут максимальные величины $Q_{\text{max}} = Q_0 = \text{const}, \ \varphi_{\text{max}} = \varphi_0 = \text{const}.$ Иначе φ достигнет значения $\varphi = W_r/|e|$ и произойдет запирание электронов эмиссии. Будем считать, что наличие падающего потока H⁰ и равенства токов $|I_r| = I_s$ приводит систему заряженная мишень — плазма к установлению равновесного состояния типа

$$|I_r| = I_s, \qquad \partial/\partial t = 0. \tag{2}$$

В качестве среды, где находится мишень, примем ионосферную плазму, являющуюся магнитоактивной [6]. Учитывая это обстоятельство и (2), запишем [7] $I_s \approx I_T + I_{ion} + I_E$, а (2)

$$|I_r| = I_s \approx I_T + I_{ion} + I_E, \qquad \partial/\partial t = 0.$$
(3)

Здесь I_T — ток тепловых электронов плазмы, I_{ion} – ток вторичных электронов плазмы в случае ионизации нейтральной компоненты электронами плазмы или электронами эмиссии, I_E — ток электрического дрейфа электронов плазмы.

Чтобы найти выражения функций I_{ion} , N_e , где N_e — концентрация вторичных электронов плазмы в токе I_{ion} , в условиях (3), рассмотрим геометрическую схему падения потока H⁰ на покоящуюся сферическую мишень, используя сферическую систему координат с началом в центре мишени и осью Z, направленной параллельно вектору напряженности магнитного поля Земли H₀. Положим, что поток H⁰ в форме цилиндра радиусом R_0 имеет параметры, приведенные выше, и падает на поверхность сферической мишени радиусом R_0 , находящейся в ионосферной плазме на высоте $h \approx 200$ km. Пусть $Q_0 = \text{const} > 0$, а в окрестности мишени существует электрическое поле $\mathbf{E} = \text{const}$ с компонентами \mathbf{E}_R , \mathbf{E}_{θ} , \mathbf{E}_{φ} .

Для ионизации нейтральных частиц плазмы необходимо, чтобы электрон в электрическом поле набрал среднюю энергию $W_e \sim m_e V_e^2/3$, где m_e , V_e — масса электрона и его эффективная скорость, при которой сечение ионизации $\sigma(W)$ максимально [8]. При этом напряженность электрического поля в области ионизации должна быть $E_{ion} \sim \varphi_{ion}/L_{ion}$, где φ_{ion} , L_{ion} — потенциал и длина ионизации. На

Механизмы ионизации нейтральной компоненты плазмы начинают работать, лишь спустя промежуток времени ионизации t_{ion} , который равен [8] $t_{ion} \approx 1/[n_0 \sigma(W_{N_2})_{max} V_e]$. Если длительность импульса падающих частиц $\Delta t < t_{ion}$, то процесс ионизации нейтральных частиц плазмы не может начаться. Поэтому для появления вторичных электронов плазмы и тока I_{ion} необходимо, чтобы $\Delta t \gg t_{ion}$. Отметим, что ионизация носит пороговый характер, так как существует ограничение на n_0 как сверху, так и снизу [8]. При больших величинах n_0 на длине L_{ion} имеем $W_e \ll W_{ion}$, а при малых n_0 на длине L_{ion} имеем $W_e \gg W_{ion}$.

Наличие **H**₀ приводит к тому, что электроны плазмы движутся к мишени в основном вдоль **H**₀ по "магнитной трубке" [7]. Поэтому сбор тока I_T происходит с плоскости радиусом $R \approx R_0 + r_{eT_e^0} + r_{eH}$, где $r_{eT_e^0} \approx v_{eT_e^0}/\omega_{eH}$, $r_{eH} \approx V_e/\omega_{eH}$ — циклотронный радиус тепловых электронов плазмы и электронов, вращающихся в полях **E** и **H**₀, $v_{eT_e^0}$ — тепловая скорость электронов плазмы, ω_{eH} — циклотронная частота. Отсюда имеем $I_T \approx I_{0H}[1 + r_{eH}/(R_0 + r_{eT_e^0})]^2$. Здесь $I_{0H} \approx I_0(1 + r_{eT_e^0}/R_0)^2$ ток электронов плазмы на мишень, когда $I_r = 0$ и ее тепловой потенциал равен $\varphi_{T_e^0} = kT_e^0/e$, где k — постоянная Больцмана, T_e^0 — тепловая температура электронов плазмы, $I_0 = 2\pi R_0^2 e n_e^0 v_{eT_e^0}$, n_e^0 — концентрация электронов невозмущенной плазмы.

Положим величину φ_0 очень большой, что имеет место, если выполнены неравенства [9]

$$R_0 \gg D, \qquad \varphi_0 \gg \varphi_c = \frac{kT_e^0}{|e|} \left(\frac{R_c}{D}\right)^{4/3},$$
(4)

где D — радиус Дебая, R_c — радиус пространственного заряда. При выполнении неравенств (4) φ в окрестности мишени изменяется по кулоновскому закону $\varphi \approx \varphi_0 R_0 / R$ [9], а функция R_c может быть представлена следующим образом [9]:

$$R_c = 0.803 R_0 \left[\frac{|e|\varphi_0}{kT_e^0} \left(\frac{D}{R_0} \right)^{4/3} \right]^{3/7}.$$
 (5)

Принимая во внимание выражение $\varphi \approx \varphi_0 R_0/R$, запишем r_{eH} в виде

$$r_{eH}(R,\theta=\pi/2) \sim \frac{1}{\omega_{eH}} \sqrt{\frac{2|e|}{m_e}} \varphi_0 \frac{R_0}{R}.$$
 (6)

Здесь $V_e \sim \sqrt{2|e|/m_e(\varphi_0 R_0/R)}$, $R \approx R_0 + r_{eH}$, так как $\varphi_0 \gg |\varphi_{T_e^0}|$, а $r_{eT_e^0} \ll r_{eH}$. Сравнивая величины R_c и r_{eH} для параметров ионосферной плазмы на высоте $h \approx 200$ km при $\varphi_0 \ge 100$, получим $R_c < r_{eH}$. Благодаря экранировке заряда мишени плазмой на границе R_c имеем $|\mathbf{E}| \sim 0$, поэтому положим $R \approx R_0 + (R_c - R_0)/2$, а I_T перепишем в виде

$$I_T \approx I_{0H} \left[1 + \frac{(R_c - R_0)}{2(R_0 + r_{eT_e^0})} \right]^2.$$
(7)

Пусть все условия возникновения процесса ионизации нейтральной компоненты ионосферной плазмы в окрестности мишени, о которых говорилось выше, выполнены и ионизация имеет место. В этом случае N_e , I_{ion} , текущие к заряженной мишени, будут удваиваться на каждой длине L_{ion} . Учитывая сказанное выше, имеем

$$N_e \approx n_e^0 2^{R_{ion}/L_{ion}}, \qquad I_{ion} \approx I_T 2^{R_{ion}/L_{ion}}.$$
(8)

Здесь $R_{ion} \approx (R_c - R_0) \ge L_{ion}$ — размер области ионизации или расстояние, на котором возможно образование вторичных электронов плазмы. Отсюда число актов ионизации нейтральной компоненты плазмы в окрестности мишени будет равно $\eta = [R_{ion}/L_{ion}]$, где η — целая часть.

Величину отношения R_{ion}/L_{ion} оценим, используя соотношение $\varphi_0 \sim \varphi_{ion}R_{ion}/L_{ion}$, из которого имеем

$$R_{ion}/L_{ion} \sim \varphi_0/\varphi_{ion}.$$
 (9)

Принимая во внимание (9), выражения (8) перепишем следующим образом:

$$N_e \approx n_e^0 2^{\varphi_0/\varphi_{ion}}, \qquad I_{ion} \approx I_T 2^{\varphi_0/\varphi_{ion}}.$$
 (10)

Ток I_E представим в виде [7]

$$I_E \sim e n_e^0 \int_{S(R=R_0)} V_E dS \sim I_0 \frac{\pi}{2v_{eT_e^0}} \sqrt{\frac{2|e|}{m_e}} \varphi_0.$$
(11)

Здесь $|V_E| \sim c E_{\varphi}/H_0$ — скорость электрического дрейфа электронов плазмы, c — скорость света. Формула (11) справедлива, ес-

ли $|E_{\varphi}/H_0| \ll 1$ $(d|\mathbf{E}|/dR) \ll 1$ на интервале $R_0 < R < R_0 + r_{eH}$, а $\omega_{eH} \gg \nu$, где ν — частота столкновений электронов плазмы с другими частицами. Данные условия соответствуют тому, что скорость электронов плазмы не должна быть релятивистской и имеет место адиабатичность и замагниченность электронов плазмы. При этом обычно выполняются соотношения $|E_R/E_{\varphi}| \ll 1$ и $|V_{eR}/V_{e\varphi}| \ll 1$ [7]. Таким образом, считаем, что ток I_E на количество вторичных электронов плазмы не влияет, а влияет лишь на установление равновесного состояния (3).

Положим, что $R_0 = 10$ сm, $\Delta t \gg t_{ion} \approx 2$ ms, а параметры невозмущенной плазмы равны: $n_e^0 = 5 \cdot 10^5$ сm⁻³, $v_{eT_e^0} = 1.5 \cdot 10^7$ сm/s, D = 0.5 сm, $T_e^0 = 1200$ K, $\omega_{eH} \approx 8 \cdot 10^6$ s⁻¹, $\nu \approx 2 \cdot 10^3$ s⁻¹ [6]. Подставляя параметры невозмущенной плазмы в (4)–(7) и задавая величины $\Delta = \varphi_0/\varphi_{ion} = 2, 3, \ldots, 10$, определим значения функций $\varphi_0, \varphi_c, R_c, r_{eH}$, а затем $|I_r(R_0)| = I(R_0), N_e(R_0 + 0)$. Зная величины $I(R_0)$ и R_{ion} , из (1) найдем P_r , а L_{ion} из $\varphi_0 \sim \varphi_{ion}R_{ion}/L_{ion}$. Считая, что $P_r \propto P_0$, получим значение плотности потока H^0 , при которой возможно существование плазменного разряда $P_0 \approx 4P_r$. Найденные величины функций, упомянутые выше, приведены в таблице.

Результаты вычислений параметров плазменного разряда в равновесном состоянии

Δ	$\phi_0, \\ \mathrm{V}$	$egin{array}{c} arphi_c, \ V \end{array}$	R_c , cm	R _{ion} , cm	L _{ion} , cm	$N_e(R_0+0)$ 10 ⁻⁵ , cm ⁻³	$ I_r(R_0) ,$ A	$P_r \ 10^{-15}, \ cm^{-2} \cdot s^{-1}$	$P_0 \ 10^{-15}, cm^{-2} \cdot s^{-1}$
2	200	32.3	37.1	27.1	13.6	20	0.02	0.4	1.6
3	300	40.7	44.2	34.2	11.4	40	0.05	0.9	3.6
4	400	48.0	50.0	40.0	10.0	80	0.11	2.3	9.2
5	500	54.5	55.0	45.0	9.0	160	0.26	5.3	21.2
6	600	60.5	59.5	49.5	8.2	320	0.60	12.0	48.0
7	700	66.1	63.5	53.5	7.6	640	1.33	26.6	106.4
8	800	71.3	67.3	57.3	7.2	1280	2.94	58.8	235.2
9	900	76.2	70.7	60.7	6.7	2560	6.37	127.4	509.6
10	1000	81.0	74.0	64.0	6.4	5120	13.76	275.2	1100.8

Из данных таблицы следует, что неравенства (4) выполнены и применение используемых формул оправдано, а электрическое поле далеко проникает в плазму ($R_c \gg R_0$) и сильно увеличивает R_{ion} , а следовательно, $N_e(R_0 + 0)$. Имеем $R_c/R_0 \approx 4 \div 8$, $N_e(R_0 + 0)/n_e^0 \approx 4 \div 10^3$, когда 200 $\leq \varphi_0 \leq 1000$ V, а $\sigma(W_{N_2})_{max}/\sigma(W_{N_2}) \leq 3$. При этом убывание поля по закону $\varphi = \varphi_0 R_0/R$ определяет следующие пределы изменения φ на границе R_c : $\varphi(R_c \approx 37 \text{ cm}, \varphi_0 = 200 \text{ V}) \approx 54 \text{ V}, \varphi(R_c \approx 74 \text{ cm}, \varphi_0 = 1000 \text{ V}) \approx 135 \text{ V}.$ Поэтому в качестве R_{ion} принималось расстояние $R_{ion} \approx (R_c - R_0)$. Отметим, что отсутствие \mathbf{H}_0 в [10] увеличивает приблизительно в два раза поверхность сбора как тепловых электронов плазмы, так и вторичных электронов.

В заключение приведем некоторые результаты работы [11], где определялось изменение φ_0 сферического электрически изолированного источника электронов в плазме, когда $\mathbf{H}_0 = 0$. В качестве начальных условий были заданы: $R_0 = 10 \text{ cm}$, $I_r(R_0) = -J[(1 - \exp(-Bt)]$, где J = 5 A, $B = 10^6$, $E_r \approx 75 \text{ keV}$, $n_e^0 = 10^6 \text{ cm}^{-3}$, $\Delta t = 0.2 \,\mu$ s. Ионизация не учитывалась, так как $\Delta t < t_{ion} \approx 1.5 \text{ ms}$. Результаты решения показали, что $\varphi_0 \approx 9 \text{ kV}$. Большая величина φ_0 связана с тем, что в нейтрализации заряда источника не участвовали вторичные электроны плазмы. Таким образом, плазменный разряд существенно влияет на величину φ_0 , так как $N_e(R_0 + 0)/n_e^0 \gg 1$.

Список литературы

- [1] Голышков В.А., Федоров В.А. // ЖТФ. 2008. Т. 78. В. 4. С. 121–124.
- [2] Каминский А.К., Мещеров Р.А., Николаев В.С. // Тр. Радиотехнического института АН СССР. М., 1973. № 16. С. 330–335.
- [3] Бохан А.П., Бохан П.А., Закревский Дм.Э. // ЖТФ. 2005. Т. 75. В. 9. С. 126– 128.
- [4] Васильев Б.И., Грасюк А.З., Дядькин А.П. и др. // Квант. электрон. 1981. Т. 18. № 11. С. 2390-2396.
- [5] Васильев Б.И., Грасюк А.З., Золотарев В.А. и др. // ЖТФ. 1986. Т. 56. В. 4. С. 780–782.
- [6] Гуревич А.В., Шварцбург А.Б. Нелинейная теория распространения радиоволн в ионосфере. М.: Наука, 1973. 272 с.
- [7] Франк-Каменецкий Д.А. Лекции по физике плазмы. М.: Атомиздат, 1964. 284 с.

- [8] Райзер Ю.П. Физика газового разряда. М.: Наука, 1992. 536 с.
- [9] Альперт Я.Л., Гуревич А.В., Питаевский Л.П. Искусственные спутники в разреженной плазме. М.: Наука, 1964. 382 с.
- [10] Федоров В.А. // Письма в ЖТФ. 2009. Т. 35. В. 12. С. 55–59.
- [11] Федоров В.А. // ЖТФ. 1980. Т. 50. В. 7. С. 1396–1399.