05;07 Интегральный, абсолютный и относительный световыход керамик на основе ZnO

© П.А. Родный, И.В. Ходюк, Е.И. Горохова

Санкт-Петербургский государственный политехнический университет E-mail: Rodnyi@tuexph.stu.neva.ru Научно-исследовательский и технологический институт оптического материаловедения ВНЦ «ГОИ им. С.И. Вавилова», Санкт-Петербург

Поступило в Редакцию 10 марта 2010 г.

Методом одноосного горячего прессования получены керамики оксида цинка и исследованы их оптические и люминесцентно-сцинтилляционные характеристики при рентгеновском и гамма-возбуждении. Полученные керамики ZnO обладают прозрачностью до 35% в области максимума длины волны рентгенолюминесценции (520 nm), абсолютным световыходом в пределах от 10 900 до 25 360 photons/MeV в зависимости от времени формирования импульса спектрометрического усилителя, энергетическим разрешением от 11.8 до 19.2% при полном поглощении гамма-квантов с энергией 662 keV и линейностью относительного световыхода в пределах 2% в диапазоне энергий 35–662 keV.

Оксид цинка вызывает огромный интерес у исследователей, поскольку он обладает рядом особенностей, сочетая в себе свойства полупроводникового материала при значительной доле ионной связи. Порошкообразный ZnO известен как эффективный люминофор, а в виде тонких пленок он используется как детектор частиц в дейтерийтритиевых генераторах [1]. Однако порошкообразные и тонкопленочные материалы применимы лишь для детектирования нейтронов и альфачастиц, а для регистрации гамма- и рентгеновских квантов необходимы сцинтилляторы, обладающие большим объемом (монокристаллы либо оптические керамики) и высокой прозрачностью в спектральной области излучения материала. Получение монокристаллического оксида цинка — сложный, длительный и дорогостоящий технологический процесс. Оптическая керамика, представляющая собой прессованный поликристаллический материал, размер зерна которого может варьироваться в широких пределах, является перспективной альтернативой

62

традиционным монокристаллам как в сцинтилляционной, так и в лазерной технике.

В данной работе представлены результаты по синтезу и исследованию сцинтилляционных и оптических свойств керамик ZnO при рентгеновском и гамма-возбуждениях. Ранее нами были рассмотрены проблемы быстродействия керамик на основе оксида цинка [2]. В данной работе основное внимание уделено интенсивности люминесценции (для сцинтилляторов — это световыход) керамик ZnO.

Для получения керамик применялся метод одноосного горячего прессования исходных порошков оксида цинка [3]. Образцы керамик были получены в форме дисков диаметром 24 mm и толщиной (после полировки) 1.5 mm. Условия изготовления керамических образцов (температура, давление, атмосфера и др.) варьировались с целью получения образцов с максимальной прозрачностью и световыходом. В данной работе представлены результаты исследования двух образцов с наилучшими характеристиками. Образец керамики ZnOI был получен из порошкообразного оксида цинка производства фирмы «Alfa Aesar» с размером исходных частиц 120–160 nm. Для получения керамики ZnOII использовался отечественный, специально очищенный оксид цинка, с размером исходных частиц 300–600 nm.

Измерение спектров оптического пропускания образцов показало, что обе керамики ZnOI и ZnOII обладают высокой, до 50%, прозрачностью в длинноволновой области видимой части спектра. Для $\lambda = 520$ nm коэффициент полного пропускания составляет 35% при толщине образцов 1.5 mm, что является высоким значением для керамики, произведенной из материала, обладающего гексагональной структурой.

Измерение спектров рентгенолюминесценции (РЛ) осуществлялось с использованием рентгеновской трубки с медным анодом, работающей в режиме: 55 kV, 40 mA. Спектры излучения измерялись при помощи монохроматора Acton Research Company VM-504. В качестве фотоприемника использовалось ФЭУ Нататаtsu R934-04. Все измеренные спектральные кривые откорректированы с учетом чувствительности ФЭУ и пропускной способности монохроматора для различных длин волн. Используя данную методику, можно с высокой точностью определить интегральный световыход (ИСВ), вычисляя интеграл интенсивности РЛ.

Рис. 1. Спектры рентгенолюминесценции YAP сцинциллятора и сцинтилляционных керамик ZnOI и ZnOII.

На рис. 1 представлены спектры РЛ исследуемых керамик в сравнении со спектром стандартного сцинтилляционного кристалла YAIO₃ : Се (YAP). Обе керамики ZnOI и ZnOII обладают интенсивной люминесценцией в длинноволновой области спектра. Известно, что внутризонная люминесценция ZnO может быть связана с вакансиями цинка V_{Zn} [4], вакансиями кислорода V_O [5] и другими центрами [2]. В работе [6] показано, что за широкую полосу люминесценции с максимумом 2.35 eV ответственны V_{Zn} центры, а кислородные вакансии приводят к более коротковолновому излучению: 2.53 eV. Положение и полуширина полосы РЛ (рис. 1, табл. 1), регистрируемой в керамиках ZnO, позволяет приписать эту полосу V_{Zn} центрам. Очевидно, меняя условия синтеза керамик, нам удалось создать в образцах большое число вакансий цинка, которые обеспечивают высокую интенсивность РЛ. ИСВ, который определялся как площадь под кривой РЛ, оказался

Таблица 1. Параметры рентгенолюминесценции и интегральный световыход УАР и исследуемых керамик: положение максимума (λ_m) и полуширина ($\Delta\lambda$) полосы РЛ, интегральный световыход (ИСВ) в процентах от ИСВ ҮАР

Сцинтиллятор	$\lambda_{\rm m}$, nm	Δλ, nm	ИСВ, %
YAP	356	51	100
ZnO I	518	110	188
ZnO II	517	111	161

в керамиках ZnOI и ZnOII в 1.88 и 1.61 раза выше относительно аналогичного в сцинтилляторе YAP (см. табл. 1).

Измерение абсолютного световыхода (ACB) исследуемых керамик проводилось с использованием ФЭУ Нататаtsu R6231-100. Для усиления и формирования сигнала, поступающего на аналого-цифровой преобразователь Ortec 114 16k ADC, использовались самодельный предусилитель и спектрометрический усилитель Ortec 672. ACB определялся путем сравнения позиции максимума фотопика для спектра ¹³⁷Cs (662 keV) с позицией центра веса одноэлектронного спектра. Для увеличения эффективности сбора световых фотонов, образовавшихся в результате поглощения гамма-излучения, исследуемые образцы были накрыты несколькими слоями отражающей тефлоновой ленты.

На рис. 2 приведены энергетические спектры керамики ZnOII при различных значениях времени формирования импульса спектрометрического усилителя. Насколько нам известно, ранее не удавалось измерить аналогичные спектры для керамик ZnO из-за недостаточной прозрачности и низкого световыхода. При использовании для измерений формирующего импульса длительностью 0.5, 1, 3 и 10 μ s были получены следующие значения абсолютного световыхода керамики ZnOII: 10 900 ± 100, 14 610 ± 250, 20 710 ± 530 и 25 360 ± 800 photons/MeV соответственно. Световыход YAP сцинтиллятора, измеренный при аналогичных условиях и времени формирования импульса 10 μ s, составил 30 190 ± 100 photons/MeV. Энергетическое разрешение керамики ZnOII, определенное из кривых, представленных на рис. 2, лежит в диапазоне от 11.8 до 19.2% в зависимости от времени формирования импульса (см. табл. 2).

Рис. 2. Энергетические спектры ¹³⁷Cs, измеренные с использованием сцинтилляционной керамики ZnOII при различных значениях времени формирования импульса спектрометрического усилителя.

На рис. 3 представлена зависимость относительного световыхода (OCB) керамики ZnO от энергии падающего рентгеновского излучения. Измерения проводились по схеме, аналогичной описанной ранее для

Таблица 2. Параметры сцинтилляционной керамики ZnOII при различных значениях времени формирования импульса (τ) в спектрометрическом усилителе: положение максимума фотопика от ¹³⁷Cs 662 keV (x_{max}), энергетическое разрешение (R) и число сцинтилляционных фотонов (N_{ph})

$ au, \mu s$	x_{\max} , канал	<i>R</i> , %	$N_{\rm ph}$, photons/MeV
0.5	4135 ± 8	13.3 ± 0.5	10900 ± 100
1.0	5545 ± 23	11.8 ± 0.2	14610 ± 250
3.0	7863 ± 51	16.1 ± 1.0	20710 ± 530
10.0	9626 ± 77	19.2 ± 1.6	25360 ± 800

Письма в ЖТФ, 2010, том 36, вып. 15

Рис. 3. Зависимость ОСВ сцинтилляционной керамики ZnOII от энергии падающего излучения. Сплошной линией представлена длина релаксации фотонов в ZnO.

АСВ, с отличием в том, что вместо источника гамма-излучения применялось излучение синхротрона. ОСВ был определен как отношение АСВ при данной энергии квантов падающего излучения к величине этой энергии. На рис. 3 ОСВ представлен в процентах от АСВ при 662 keV, деленного на 662 keV.

Согласно полученным экспериментальным данным, относительный световыход в интервале энергий 35–662 keV изменяется в пределах 2% (рис. 3), что является хорошим показателем по сравнению с другими материалами. Однако при понижении энергии падающего излучения, вблизи 12 keV, регистрировался локальный минимум ОСВ, достигающий значения 82% в своей низшей точке. В интервале 12–35 keV изменение ОСВ составляет 16%. Данный спад коррелирует с представленной на рис. 3 сплошной линией — длиной релаксации гамма-излучения в ZnO. Зависимость ОСВ от энергии падающего рентгеновского или гамма-излучения является прямым следствием более фундаментальной

зависимости световыхода от энергии вторичных электронов [7]. По мере приближения энергии рентгеновского излучения к энергии связи *К*-электрона в оболочке атома Zn, равной 9.659 keV, энергетический спектр вторичных фотоэлектронов смещается в область низких значений. Данное смещение приводит к увеличению плотности ионизации, что в свою очередь приводит к уменьшению эффективности сцинтилляционного материала и, как следствие, к уменьшению абсолютного и относительного световыхода.

Таким образом, полученные керамики ZnO обладают высокой прозрачностью в видимой области спектра, высоким световыходом, удовлетворительным энергетическим разрешением и линейностью относительного световыхода в области энергий от 35 до 100 keV. Данные характеристики делают керамики ZnO перспективными сцинтилляционными материалами для использования в детекторах рентгеновского и гамма-излучений в диапазоне средних энергий (30–662 keV).

Список литературы

- Beyerle A., Hurley J.P., Tunnele L. // Nucl. Instr. Meth. in Phys. Res. A. 1990. V. 299. P. 458.
- [2] Demidenko V.A., Gorokhova E.I., Khokyuk I.V., Khristich O.A., Mikhrin S.B., Rodnyi P.A. // Radiation Measurements. 2007. V. 42. P. 549.
- [3] Горохова Е.И., Родный П.А., Ходюк И.В., Ананьева Г.В., Демиденко В.А., Bourret-Courchesne E.D. // Оптический журнал. 2008. Т. 75. № 11. С. 66.
- [4] Orgur U, Alivov Ya.I., Liu C., Teke A., Reshnikov M.A., Dogan S., Avrutin V., Cho S.-J., Morkoc H. // J. Appl. Physics. 2005. V. 98. P. 041 301.
- [5] Чубенко Е.Б., Бондаренко В.П., Balucani М. // Письма в ЖТФ. 2009. Т. 35. В. 24. С. 74.
- [6] Moe Berseth T., Svenson B.G., Kuznetsov A.Yu., Klason P., Zhao Q.X., Willander M. // Appl. Phys. Letters. 2006. V. 89. P. 262112.
- [7] Moses W.W., Payne S.A., Choong W.-S., Hull G., Reutter B.W. // IEEE Trans. Nucl. Sci. 2008. V. 55. N 3. P. 1049.