05;06

Изучение дефектной структуры эпитаксиальных слоев GaN на основе анализа пиков трехволновой дифракции рентгеновских лучей

© Р.Н. Кютт

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: r.kyutt@mail.ioffe.ru

Поступило в Редакцию 25 февраля 2010 г.

Проведены измерения многоволновой дифракции рентгеновских лучей в эпитаксиальных пленках GaN с разной плотностью дислокаций. Использовалась схема Реннингера с первичным запрещенным отражением 0001. Проанализирована угловая ширина трехволновых дифракционных пиков как в направлении φ -сканирования (вращение вокруг нормали к поверхности), так и θ -моды сканирования (вращение около брэгговского угла). Обнаружено расщепление трехволновых пиков Реннингера, обусловленное крупноблочной структурой слоев. Показана высокая чувствительность полуширины пиков θ -моды для некоторых трехволновых комбинаций к плотности дислокаций.

Структурному исследованию эпитаксиальных слоев А^{III}-нитридов посвящено немало экспериментальных работ, выполненных методами рентгеновской дифрации. К настоящему времени дислокационная структура таких слоев хорошо изучена. Эпитаксиальные слои А^{III}-нитридов (GaN, AlN, InN) имеют структуру типа вюрцита и выращиваются в большинстве случаев на подложке сапфира, при этом рассогласование в плоскости интерфейса (0001) очень велико (13% для GaN). Это приводит к генерации большой плотности дислокаций. В большинстве случаев в них преобладает система прямолинейных, прорастающих перпендикулярно поверхности дислокаций краевого и винтового типов.

В рентгенодифракционных работах дислокационная структура характеризуется, как правило, на основе мозаичной модели с введением таких параметров, как размер блоков в двух направлениях, деформация в блоках, развороты блоков вокруг оси, параллельной поверхности (tilting) и вокруг нормали к поверхности (twisting). В работе [1]

14

была предложена более детальная характеризация нитридных слоев с введением тензора микродисторсии. Для того чтобы получить все компоненты тензора микродисторсии, требуется измерение $\theta - 2\theta$ и θ -мод сканирования в 3 геометриях дифракции. В [1] для этого использовались симметричная брэгговская геометрия, симметричная Лауэ-геометрия и наклонная или скользящая дифракция. Из анализа полуширин измеренных дифракционных пиков определяются размеры областей когерентного рассеяния в двух направлениях и компоненты тензора микродисторсии, а из последних оценивается плотность различных семейств дислокаций.

По упрощенной мозаичной модели также требуется комбинация симметричных, асимметричных и наклонных брэгговских отражений [2]. Переход от одной геометрии к другой с соответствующей настройкой образца представляет собой довольно сложную экспериментальную процедуру.

Пики многоволновой дифракции уже сочетают в себе отражения в различных геометриях. Поэтому они несут информацию об уширении в разных направлениях. Это может позволить определять структурное состояние кристалла более простым способом, не меняя геометрии измерений.

Самой простой схемой наблюдения многоволновой дифракции является схема сканирования Реннингера [3]. В ней образец настраивается на получение симметричного брэгговского отражения H_1 и затем, оставаясь в этих условиях, вращается вокруг вектора обратной решетки **OH**₁ (или, что то же самое, вокруг нормали к поверхности). В качестве первичного берется запрещенное или очень слабое (квазизапрещенное) отражение. В этом случае при попадании на сферу Эвальда узла H_2 на диаграмме сканирования (зависимости интенсивности луча, идущего в направлении \mathbf{k}_h , от азимутального угла φ) появляется трехволновой пик.

Для эпитаксиальных слоев многоволновая дифракция использовалась лишь в нескольких работах, где из углового положения многоволновых пиков на диаграмме Реннингера определялись параметр решетки и деформация эпитаксиального слоя [4–6]. Для эпитаксиальных пленок GaN диаграммы Реннингера были измерены в работах [7–9]. Авторы работы [6] измерили положение и относительную интенсивность трехволновых рефлексов на шкале зависимости от угла φ и показали их соответствие расчету [10]. В работах [7,8] было показано различие

$ ho, { m cm}^{-2}$	Nº 1	Nº 2	Nº 3
ρ (screw thread.), cm ⁻² ρ (edge thread.), cm ⁻² ρ (sm. angle houndaries) cm ⁻²	$\begin{array}{c} (3.4\pm0.5)\cdot10^7\\ (7\pm1)\cdot10^8\\ (1.1\pm0.3)\cdot10^9\end{array}$	$\begin{array}{c} (3\pm0.5)\cdot10^8\\ (4.5\pm0.5)\cdot10^8\\ (6.2\pm0.5)\cdot10^8\end{array}$	$0 \\ (1.2 \pm 0.3) \cdot 10^9 \\ (2.5 \pm 0.2) \cdot 10^9$
ρ (horiz), cm ⁻²	$(4.5\pm0.5)\cdot10^7$	$(1.2\pm0.2)\cdot10^8$	$(4.5\pm0.5)\cdot10^9$

Плотность семейств дислокаций в слоях GaN, полученная из измерений двухволновой дифракции

ширины трехволновых дифракционных пиков для слоев GaN, выращенных в разных условиях, но без подробного анализа и выявления какихлибо закономерностей. В настоящей работе на примере трех образцов с пленками GaN проанализировано влияние параметров микроструктуры пленок на экспериментальную картину трехволновой дифракции.

Эпитаксиальные слои GaN толщиной около $10\,\mu$ m были выращены на подложках (0001)-сапфира методом газотранспортной эпитаксии. Предварительно образцы были исследованы методом двухволновой рентгеновской дифракции. На основе анализа полуширин экспериментальных дифракционных пиков по методике, описанной в [1], были получены параметры микроструктуры слоев: плотности отдельных семейств дислокаций и размеры областей когерентного рассеяния в двух направлениях. Значения плотности дислокаций приведены в таблице.

Диаграммы Реннингера измерялись на высокоразрешающем дифрактометре в двухкристальной схеме, использовалось CuK_{α} -излучение, монохроматором служил совершенный кристалл Ge(111). В качестве первичного отражения использовалось симметричное брэгговское отражение 0001, запрещенное для кристаллов со структурой вюрцита. Сканирование по Реннингеру (измерение зависимости интенсивности от азимутального угла поворота φ) проводилось как с грубым шагом (для измерений в интервале $0-180^{\circ}$), так с меньшим шагом в 0.03° в угловом интервале $0-30^{\circ}$. На максимуме каждого трехволнового пика измерялись кривые θ -сканирования.

На рис. 1 приведена диаграмма Реннингера для образца 1 (наиболее совершенного). Как и следует из геометрических соображений, наблюдается 10 трехволновых пиков в угловом интервале в 30°, за-

Рис. 1. Диаграмма Реннингера для образца 1 эпитаксиальных пленок GaN, измеренная на первичном отражении (0001). Си*K*_{*a*}-излучение.

тем они зеркально отражаются при угле $\varphi = 30^{\circ}$ и эта комбинация периодически повторяется через каждые 60°. Пики идентифицированы на рис. 1. Их угловое положение также соответствует расчету за исключением пика около $\varphi = 25^{\circ}$ (отмечен вопросительным знаком), которого нет в таблице, приведенной в работе [6]. Все пики значительно шире тех, что обычно измеряются для совершенных кристаллов Si и Ge. Относительная интенсивность трехволновых пиков Реннингера в основном соответствует расчету, наиболее интенсивным из них является комбинация $(1\bar{1}00)/(\bar{1}101)$ (обозначена как MP-5), затем следуют пики MP-3 и MP-8. Для двух других образцов диаграммы Реннингера аналогичны приведенной, но для образца 3 с наибольшей плотностью дислокаций пики более широкие, а близлежащие пики почти не разрешаются.

Если увеличить отдельные участки диаграммы φ -сканирования, то видно, что пиков на ней гораздо больше, чем положенное число трехволновых комбинаций. Это указывает на расщепление пиков, вы-

званное, очевидно, крупноблочной структурой пленки, при которой блоки развернуты относительно друг друга вокруг оси вращения, т.е. вокруг нормали к поверхности. При этом углы разворота между блоками обычно меньше, чем угловые расстояния между отдельными трехволновыми рефлексами. Однако в некоторых случаях они близки друг другу, например в области углов $(25-30)^{\circ}$. Тогда для того чтобы разделить эффект расщепления и разные рефлексы, можно измерить в положении каждого максимума кривые θ -сканирования. Для отражений от разных рефлексов — разную. Еще один способ такого разделения — сравнить форму кривой по обе стороны от линии зеркального отражения при $\varphi = 30^{\circ}$. Пики от разных рефлексов должны иметь зеркально отраженную форму, а расщепленные пики от одного рефлекса — одинаковую.

Очевидно, что если мы имеем дело с развернутыми по углу φ блоками, то количество пиков и их форма должны быть одинаковыми для разных трехволновых комбинаций. Это и демонстрирует рис. 2, *a*, *b*, на котором приведена тонкая структура для двух трехволновых комбинаций (0113)/(0112) и (1100)/(1101) для образца 1. Видно, что в освещаемую пучком область попадают 4 крупных блока с углом разворота около 0.2°.

Полуширина пиков φ -сканирования мало зависит от типа трехволновой комбинации, что подтверждает тот уже упомянутый выше факт, что основной вклад в уширение вносит так называемый twisting, т. е. локальные развороты вокруг нормали к поверхности (последние, как известно, определяются краевыми прорастающими дислокациями и состоящими из них дислокационными стенками). На это же указывает и сравнение полуширин пиков Реннингера для трех образцов. Образцы 1 и 2, имеющие одинаковый эффективный угол таких разворотов, дают практически одинаковые полуширины пиков φ -сканирования (0.2–0.3)°. Для образца 3 со значительно большей плотностью упомянутых дислокаций (см. таблицу) наблюдается заметно большая ширина пиков Реннингера (0.5–0.6)°.

Для кривых θ -сканирования также наблюдаются свои закономерности. Разумеется, они также заметно уширены по сравнению с пиками θ -моды, измеряемыми для совершенных монокристаллов. Но полуширина пиков сильно (в несколько раз) меняется от рефлекса к рефлексу. Самыми широкими из них являются пики, относящиеся

Рис. 2. Тонкая структура трехволновых пиков Реннингера от образца 2 эпитаксиального слоя GaN. Трехволновые комбинации: $a - (1\bar{1}00)/(\bar{1}101)$, $b - (3\bar{2}\bar{1}0)/(\bar{3}211)$.

Рис. 3. Пики θ -сканирования трехволнового рефлекса $(01\overline{1}3)/(0\overline{1}1\overline{2})$ на диаграмме Реннингера для эпитаксиальных слоев GaN. Образцы 1 (сплошная линия), 2 (пунктирная), 3 (штриховая).

к трехволновым комбинациям, для которых вектор обратной решетки **OH**₂ параллелен поверхности (Лауэ-отражение), в наших обозначениях это трехволновые рефлексы MP-2, MP-5, MP-10. Поскольку Лауэрефлексы чувствительны к краевым прорастающим дислокациям [1], то, скорее всего, последние и являются ответственными за дополнительное уширение соответствующих пиков θ -моды. А самый узкий пик наблюдается для комбинации (0113)/(0112), в которой вектор **OH**₂ имеет большую составляющую, нормальную к поверхности, и малую, параллельную ей.

На рис. 3 приведены дифракционные кривые θ -моды сканирования, измеренные на максимуме трехволновой комбинации MP-3 (самые узкие пики из всех комбинаций) для всех трех образцов. Из сравнения полуширин пиков видно, что пики для образцов 1 и 2 близки друг к другу, а пики для образца 3 значительно шире.

С другой стороны, если сравнивать полуширины пиков θ -сканирования разных трехволновых комбинаций, то окажется, что для самого

совершенного образца 1 они отличаются гораздо меньше (585" — самый узкий, 1150" — самый широкий), чем для самого дефектного образца 3 (соответственно 1280" и 4650"). Это говорит о том, что трехволновые комбинации $(3\bar{1}20)/(\bar{3}121)$ —МР-2 и $(1\bar{1}00)/(\bar{1}101)$ —МР-5 являются наиболее чувствительными к плотности дислокационных ансамблей, в основном к краевым дислокациям, локализованным в малоугловых границах, и к горизонтальным дислокациям.

Таким образом, измерение и анализ трехволновой дифракции в эпитаксиальных слоях GaN показывают высокую чувствительность угловой ширины пиков Реннингера к дислокационной структуре слоев.

Список литературы

- Ratnikov N.N., Kyutt R.N., Shubina T.V., Pashkova T., Monemar B. // J. Phys. D. Appl. Phys. 2001. V. 34. P. A30.
- [2] Sricant V., Speck J.S., Clarke D.R. // J. Appl. Phys. 1997. V. 82. P. 4286.
- [3] Renninger M. // Z. Phys. 1937. V. 106. P. 141.
- [4] Chang S.L. // Appl. Phys. Lett. 1980. V. 37. P. 819.
- [5] Sasaki J.M., Cardoso L.P., Campos C., Roberts K.J., Clark G.F., Pantos E., Sacilotti M.A. // J. Appl. Phys. 1996. V. 79. P. 3492.
- [6] Freitas R.O., Lamas T.E., Quivy A.A., Morelhao S.L. // Phys. Stat. Sol. (a). 2007.
 V. 204. P. 2548.
- [7] Blasing J., Krost A. // Phys. Stat. Sol. 2004. V. 201. P. 17.
- [8] Blassing J., Krost A., Hertkorn J. et al. // J. Appl. Phys. 2009. V. 105. P. 033 504.
- [9] Ahe M. von der, Cho Y.S., Kaluza N. et al. // XTOP 2008. 9th Biennial Conference on High Resolution X-ray Diffraction and Imaging. September 15–19, 2008. Linz, Austria. Abstracts. P. 96.
- [10] Rossmanith E. // Acta Cryst. 2006. V. A62. P. 174.