Энергетические особенности гетероструктуры *NH/3C/NH*-SiC, наведенные спонтанной поляризацией: общее рассмотрение

© С.Ю. Давыдов^{1,2}, О.В. Посредник²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Санкт-Петербургский государственный электротехнический университет «ЛЭТИ», Санкт-Петербург, Россия E-mail: Sergei.Davydov@mail.ioffe.ru

(Поступила в Редакцию в окончательном виде 19 октября 2010 г.)

В рамках модели, предложенной ранее для описания гетероперехода *NH/3C*, рассмотрено влияние спонтанной поляризации гексагональных областей трехслойной гетероструктуры *NH/3C/NH* на взаиморасположение зон. Значительное внимание уделено исследованию влияния спонтанной поляризации и толщины *3C*-области на энергетические характеристики квантовых ям, образующихся у гетеропереходов.

Работа выполнена при поддержке гранта РФФИ (№ 07-02-00919а) и в рамках программ "Квантовая физика конденсированного состояния" Президиума РАН и "Развитие научного потенциала высшей школы (2009–2010)" Минобрнауки РФ (№ 2.1.1/2503).

1. Введение

12

В последнее время значительное внимание уделяется исследованию влияния спонтанной поляризации P_{sp} на характеристики гетеропереходов (ГП) и гетероструктур (ГС), сформированных на основе кубического и гексагональных политипов карбида кремния [1,2]. Как известно [3-5], все некубические политипы SiC являются пироэлектриками, обладающими значительной спонтанной поляризацией $P_{sp} \sim 10^{-2} \,\mathrm{C/m^2}$. Ясно поэтому, что наличие поляризационного поля $F_{sp} = P_{sp}/\varepsilon_0 \varepsilon$, где ε_0 диэлектрическая постоянная, *є* — диэлектрическая проницаемость соответствующего политипа, должно учитываться [6,7]. В работе [8] была рассмотрена роль P_{sp} в формировании ГП типа NH/3C-SiC, а в [9] то же было проделано для ГС вида NH/3C/NH-SiC, где 3C кубический политип, NH — гексагональный политип (N = 2, 4, 6, 8). В последней работе 3*C*-область (область 2) ГС рассматривалась модельным образом: предполагалось, что безразмерная потенциальная энергия в этой области описывается функцией

$$\tilde{\psi}_2(x) = A\left(\operatorname{ch}\left(\frac{x-x_0}{L_{p2}}\right) - 1\right),\tag{1}$$

где $\tilde{\psi}_2(x) \equiv e\tilde{\varphi}_2(x)/k_BT$, $\tilde{\varphi}_2(x)$ — электростатический потенциал в области 2 с учетом спонтанной поляризации (здесь и далее тильда относится к случаю $P_{sp} \neq 0$), е — величина заряда электрона, k_B — постоянная Больцмана, T — температура, x^2 — координата в направлении, перпендикулярном плоскостям контактов (начало отсчета x = 0 помещаем в середину 3*C*области), $L_{p2} = \sqrt{\varepsilon_0 \varepsilon_2 k_B T / 2e^2 p_2}$ — дебаевская длина экранирования в области 2. Такая модель удобна для описания тонкой 3*C*-прокладки, но не дает возможности перейти к пределу толстой 3*C*-области таким образом, чтобы выполнялось уравнение (11) из [8]. В настоящей работе этот недостаток исправлен.

2. Модель гетероперехода

Рассмотрим структуру n_1 - NH/p_2 - $3C/n_1$ -NH (рис. 1), где n_1 — концентрация электронов в областях 1 и 3 (NH), p_2 — концентрация дырок в области 2 (3C). Для описания гексагональных областей системы воспользуемся результатами работы [9]. Приведенные значения потенциальной энергии (потенциала) в областях 1 ($x \le -L$), 3 ($x \ge L$) и 2 ($-L \le x \le L$) определяются следующими уравнениями (см. подробности в [8]):

$$\frac{d\tilde{\psi}_{1,3}}{dx} = \mp L_{n1}^{-1}\sqrt{e^{-\Delta} - e^{-\psi_1} + \Delta - \psi_1}$$
$$-\frac{\tilde{P}_{sp}}{\varepsilon_1}, \quad |x| \ge L,$$

$$\frac{d\tilde{\psi}_2}{dx} = \mp L_{p2}^{-1} \sqrt{e^{\tilde{\psi}_2} - \tilde{\psi}_2 - e^{\tilde{\psi}_{20}} + \tilde{\psi}_{20}}, \quad |x| \le L.$$
(2)

Здесь $L_{n1} = \sqrt{\varepsilon_0 \varepsilon_1 k_B T / 2e^2 n_1}$, $\tilde{P}_{sp}(x) = e P_{sp}(x) / \varepsilon_0 k_B T$, $\psi_1(-\infty) = \psi_3(\infty) \equiv \Delta$, $\psi_{1,3}(\mp L) = \psi_L$, где учтено, что в отсутствие спонтанной поляризации потенциалы в областях 1 и 3 одинаковы. Параметр $\tilde{\psi}_{20} \equiv \tilde{\psi}_2(x_0)$ определяет координату x_0 , для которой выполняется равенство $(d\tilde{\psi}_2/dx)_{x=x_0} = 0$. Таким образом, точка x_0 соответствует экстремуму потенциала $\tilde{\psi}_2(x)$. В случае наличия у потенциала $\tilde{\psi}_2(x)$ минимума, что отвечает зонной диаграмме на рис. 1,¹ знак минус в правой части второго из уравнений (2) относится к значениям $x \leq x_0$, а плюс — к $x \geq x_0$. В случае отсутствия поляризации для симметричной системы, изображенной на рис. 1, координата $x_0 = 0$. Отметим, что координата x_0 может лежать за пределами области 2, что предполагает (исключительно формально, только для определения значения x_0) экстраполяции выражения (2) для $(d\tilde{\psi}_2/dx)$ на всю ось x. Сравнение второго из уравнений (2) с выражением (11) работы [8] показывает, что при $L \to \infty$ параметр $\tilde{\psi}_{20}$ должен обращаться в нуль. Поэтому положим

$$\tilde{\psi}_{20}^{l,r} \equiv \tilde{\psi}_{20}(\mp L) = \tilde{\psi}_0^{l,r} \exp(-L/L_{p2}).$$
(3)

В дальнейшем, как и в работе [9], будем для простоты считать, что от поля спонтанной поляризации F_{sp} зависит лишь положение точки x_0 , но не величина $\tilde{\psi}_{20}^{l,r}$. Тогда положим

$$\tilde{\psi}_{20}^{l,r} \equiv \omega = \omega_0 \exp(-L/L_{p2}), \qquad (4)$$

где $ilde{\psi}_0^{l,r}\equiv\omega_0.$

Потенциалы $\psi_{1,3}$ и ψ_2 должны удовлетворять следующим граничным условиям:

$$\tilde{\psi}_{1}(-L) = \tilde{\psi}_{2}(-L) = \tilde{\psi}_{l},$$

$$\tilde{\psi}_{3}(L) = \tilde{\psi}_{2}(L) = \tilde{\psi}_{r},$$

$$\varepsilon_{1} \left(\frac{d\tilde{\psi}_{1}}{dx}\right)_{x=-L} = \varepsilon_{2} \left(\frac{d\tilde{\psi}_{2}}{dx}\right)_{x=-L},$$

$$\varepsilon_{1} \left(\frac{d\tilde{\psi}_{3}}{dx}\right)_{x=L} = \varepsilon_{2} \left(\frac{d\tilde{\psi}_{2}}{dx}\right)_{x=L}$$
(5)

с дополнительными условиями

$$\psi_1(-L) = \psi_3(L) = \psi_L, \quad P_{sp}(\mp \infty) = 0.$$
 (6)

Как и в работах [8,9], зададим пространственную зависимость спонтанной поляризации в виде

$$P_{sp}(x) = P_s \exp[\pm(x \pm L)/L_{sp}], \quad |x| \ge L, \qquad (7)$$

где L_{sp} — длина экранирования поля спонтанной поляризации. Выражение (7) записано по аналогии с экранировкой локализованного на интерфейсах поляризационного заряда $\sigma_{sp} = P_s$ [9]. Введем также безразмерную поляризацию $\Pi_{sp}(x)$, определив ее как

$$\Pi_{sp}(x) = \Pi_s \exp[\pm(x\pm L)/L_{sp}], \quad |x| \ge L, \qquad (8)$$

где $\Pi_s \equiv L_{sp} \tilde{P}_s / \varepsilon_1$.

Все, что касается областей 1 и 3, уже было рассмотрено в работах [8,9]. Здесь же сосредоточимся на

Рис. 1. Энергетическая диаграмма системы NH/3C/NH-SiC. a -без учета спонтанной поляризации; b -с учетом спонтанной поляризации. E_1 и $E_2 -$ энергетические уровни (подзон) в квантовых ямах, образующихся на левом и правом ГП в 3C-области. Уровни, обозначенные E_1 и \bar{E}_1 , соответствуют уровням, обозначенным в тексте $\bar{\varepsilon}_0^l$ и $\bar{\varepsilon}_0^r$.

области 2. Пусть $\omega \gg 1$ и $\exp(\omega) \gg \tilde{\psi}_2(x)$. Расчеты показывают, что $(\tilde{\psi}_2(x) - \omega) \ll 1$. Тогда из уравнения (2) получим следующее выражение:

$$\tilde{\psi}_2(x) \approx \omega + \exp(\omega) \frac{(x - x_0)^2}{4L_{p2}^2},$$
(9)

откуда следует, что

$$\tilde{\psi}_2^{l,r} \equiv \tilde{\psi}_2(\mp L) \approx \omega + \exp(\omega) \, \frac{(L \pm x_0)^2}{4L_{p2}^2}. \tag{10}$$

При $\tilde{\psi}_2(x) \ll 1$ получим

$$\tilde{\psi}_2(x) \approx \omega \operatorname{ch}\left(\frac{x-x_0}{\sqrt{2}L_{p2}}\right),$$
 (11)

так что

$$\tilde{\psi}_2^{l,r} = \omega \operatorname{ch}\left(\frac{L \pm x_0}{\sqrt{2}L_{p2}}\right).$$
(12)

Отметим, что выражение (11) с точностью до начала отсчета энергии совпадает с модельным потенциалом, принятым в работе [9].

¹ Напомним, что изгиб проводящей и валентной зон описывается выражением $E_{c,v}(x) = E_{c,v} - e\tilde{\varphi}(x)$, где $E_{c,v}$ — положение краев зон в объемном образце. Так как мы полагаем потенциал $\tilde{\varphi}(x) > 0$, росту $\tilde{\varphi}(x)$ соответствует убывание $E_{c,v}(x)$.

Оценки влияния спонтанной поляризации на энергетическую структуру гетероперехода

Рассмотрим решения уравнений, возникающих из граничных условий (5),

$$\sqrt{e^{-\Delta} - e^{-\psi_L} + \Delta - \psi_L} \pm \Pi_s^* = \sqrt{\eta(e^{\tilde{\psi}_{l,r}} - e^{\omega} - \tilde{\psi}_{l,r} + \omega)},$$
(13)

где $\Pi_s^* \equiv L_{n1}\tilde{P}_s/\varepsilon_1$. Для численного расчета будем использовать те же значения параметров, что и в работах [8,9]. Полагаем, что параметр $\Delta = \delta \phi / k_B T$ лежит при комнатной температуре ($T = 300 \,\mathrm{K}$) в интервале \sim (10-100). Для типичных значений $n_1 = 10^{19}$, 10^{18} и $10^{17}\,{
m cm^{-3}}$ получим $L_{n1}\approx 8.4$, 26.5 и 84 Å. Будем считать также, что $L_{sp} = L_{n1}$, т.е. v = 1. Принимая $|P_{sp}| \approx 0.53 \cdot 10^{-2} \,\mathrm{C/m}^2$ [5] и $\varepsilon_1 = 9.78$, $\varepsilon_2 = 9.72$ [6], получим для приведенного выше ряда концентраций $|\Pi_s^*| \approx 2.6$ и 20 соответственно. Отношение $\eta = \varepsilon_2 p_2 / \varepsilon_1 n_1$ будем брать из интервала от 10^{-2} до 10^2 . Так как $L_{p2} = L_{n1}(\varepsilon_1/\varepsilon_2)/\sqrt{\eta}$, в том же интервале $L_{p2} \approx (0.1 - 10) L_{n1}$. Остается определить впервые введенный здесь параметр $\tilde{\psi}_{20}^{l,r} = \tilde{\psi}_{0}^{l,r} \exp(-L/L_{p2})$. Прежде всего напомним, что зависимость от координаты х энергии зон проводимости и валентной дается выражениями $E_{c,v}(x) = E_{c,v} - e\tilde{\varphi}(x)$. Согласно грубым оценкам, параметр $\tilde{\psi}_{20}^{l,r}$ может принимать значения от 0 до величин порядка $E_g(3C)/2k_BT$, где $E_g(3C)$ — ширина запрещенной зоны 3С-политипа.

Рассмотрим сначала случай отсутствия поляризации. Тогда в уравнении [12] нужно положить Π_0^* равным нулю, в результате чего можно считать, что $\tilde{\psi}_2^{l,r} = \psi_L$. Тогда вместо (12) получим уравнение

$$\frac{\Delta + e^{-\Delta}}{\eta} + e^{\omega} - \omega = e^{\psi_L} + \frac{1 - \eta}{\eta} \psi_L + \frac{e^{-\psi_L}}{\eta}.$$
 (14)

Результаты расчетов пограничного потенциала $\psi_L(\xi)$, где приведенная полутолщина 3*C*-области $\xi \equiv L/L_{p2}$, представлены на рис. 2, *а* для $\Delta = 100$ (см. далее), $\omega_0 = 10$. Из рис. 2 следует, что при $\eta = 0.01$ насыщение зависимостей $\psi_L(\xi)$ наступает при $\xi^* \approx 0.5$. Это насыщение и отражает переход от тонкой 3*C*-области к толстой. Для значений η , равных 1 и 100, получим соответственно $\xi^* \approx 1$ и 2. Можно показать, что в случае $\Delta \gg 1$ и $\eta \leq 1$ насыщение наступает при $\xi^* \sim \ln[\omega_0/\ln(\Delta/\eta)]$. Если же $\Delta \sim \eta$, то $\xi^* \sim \ln[\varphi_0/(1 + \Delta/\eta)]$. Увеличение ξ^* с ростом η объясняется уменьшением дебаевской длины L_{p2} . При рассматриваемых параметрах $\psi_L \sim \ln[\exp(\omega) + \Delta/\eta]$. В случае, когда $\exp(\omega) \gg (\Delta/\eta)$, имеем $\psi_L \sim \ln(\omega_0) - (L/L_{p2})$. Эти зависимости иллюстрируются на рис. 2, *a* и *b*.

Определим теперь зависимость координаты $\xi_0 \equiv x_0/L_{p2}$ от безразмерного параметра спонтанной поляризации Π_s^* . По аналогии с работой [8] положим $\tilde{\psi}_2(x) = \psi_2(x) + \chi_2(x)$, причем будем считать, что

Рис. 2. Зависимость граничного значения потенциала ψ_L от приведенной полутолщины 3*C*-области $\xi \equiv L/L_{p2}$ в отсутствие спонтанной поляризации. $a - \Delta = 100, \omega_0 = 10, \eta = 0.01$ (*1*), 1 (*2*) и 100 (*3*); $b - \eta = 1, \Delta = 25$ (*I*) и 100 (*2*), $\omega_0 = 10$ (*I*) и 5 (*2*).

 $\chi_2^{l,r}\equiv\chi_2(\pm L)\ll\psi_L$. Предположим для простоты, что $\chi_2^{l,r}\ll 1.$ Тогда, из формулы (4) и уравнения (13) найдем

$$\chi_2^{l,r} \approx \pm 2\Pi_s^* \frac{\sqrt{e^{-\Delta} - e^{-\psi_L} + \Delta - \psi_L}}{\sqrt{\eta} [\exp(\psi_L) - 1]}.$$
 (15)

С учетом того обстоятельства, что не равное нулю значение x_0 возникает только при наличии спонтанной поляризации, получим для случая (9)

$$\chi_2^{l,r} = \pm \frac{1}{2} \xi_0 \xi \exp(\omega). \tag{16}$$

Рис. 3. Зависимость поляризационных поправок $\chi^l \equiv \chi_2^l$ и $\chi^r \equiv \chi_2^r$ к потенциалу ψ_L для интерфейсов 4H/3C (*I*) и 6H/3C (*2*) от приведенной полутолщины 3C-области $\xi \equiv L/L_{p2}$. $\Delta = 100, \, \omega_0 = 10, \, \eta = 1, \, n_1 = 10^{18} \, \mathrm{cm}^{-3}$.

Сопоставляя выражение (16) с формулой (15), получим приближенно

$$\frac{\xi_0}{\Pi_s^*} \approx \frac{4}{\xi} \sqrt{\frac{\Delta}{\eta}} \exp[-(\omega + \tilde{\psi}_L)].$$
(17)

Так как здесь основная зависимость (ξ_0/Π_s^*) от приведенной полутолщины 3*C*-пленки ξ задается экспонентой, с ростом ξ отношение (ξ_0/Π_s^*) увеличивается. Отметим, что зависимость (ξ_0/Π_s^*) от параметра η такая же, как и в работе [8].

Для случая (11)

$$\chi_2^{l,r} = \pm(\varepsilon_0/\sqrt{2})\omega \operatorname{sh}(\xi/\sqrt{2}). \tag{18}$$

Сопоставление выражения (18) с формулой (15) дает

$$\frac{\xi_0}{\Pi_s^*} \approx \frac{2\sqrt{2}}{\omega} \sqrt{\frac{\Delta}{\eta}} \operatorname{sh}(\xi/\sqrt{2}).$$
(19)

Здесь также отношение (ξ_0/Π_s^*) растет с увеличением ξ . Потенциал ψ_L убывает с ростом ξ , а $\chi_2^{l,r}$, наоборот, растет; следовательно, спонтанная поляризация в большей степени играет роль для толстых пленок.

Для проведения численного расчета рассмотрим в качестве гексагональных компонентов ГС политипы 6*H*- и 4*H*-SiC. Воспользовавшись результатами работы [5], примем $P_s = 0.53 \cdot 10^{-2}$ и $0.79 \cdot 10^{-2}$ С/m² соответственно. Диэлектрическую проницаемость 3*C*-политипа примем равной 9.72 [7]. Длины экранирования L_{n1} для типичных значений $n_1 = 10^{19}$, 10^{18} и 10^{17} сm⁻³ составляют при T = 300 K соответственно 8.38, 26.5 и 83.8 Å [8]. Тогда получим для множителя (k_BT/eL_{n1}) значения $3.1 \cdot 10^5$, $0.98 \cdot 10^5$ и $0.31 \cdot 10^5$ V/ст соответственно. Как показано в [8], величина параметра $\Delta = \delta \phi / k_B T$, где $\delta \phi$ — модуль разности работ выхода NH- и 3C-политипов, образующих ГП. Максимальное значение разности работ выхода полупроводников $(\delta \phi)_{\max} = \chi(3C) + E_g(3C) - \chi(NH),$ где $\chi(...)$ — сродство к электрону указанного в скобках политипа SiC ($\chi = 3.45$ и 3.17 eV для 6*H*- и 4*H*-SiC соответственно [10,11]). Тогда получим для контактов 6H/3C и 4H/3C значения $(\delta\phi)_{\rm max} \approx 2.95$ и $3.23 \, {\rm eV}$, что дает при комнатной температуре $\Delta_{max} \approx 114$ и 124. При этом мы считали, что уровень Ферми (точнее, химический потенциал ζ, изображенный на рис. 1) в *п*-политипе совпадает с дном зоны проводимости, а в р-политипе — с потолком валентной зоны. Минимальное значение разности работ выхода $(\delta\phi)_{\min} = \chi(3C) - \chi(NH) + \frac{1}{2}[E_g(3C) - E_g(NH)],$ что дает для 6H/3C и 4H/3C значения 0.25 и 0.415 eV, откуда $\Delta_{\min} \approx 10$ и 16 соответственно.²

Рис. З демонстрирует рост величины поляризационных поправок χ^l и χ^r к потенциалу ψ_L для интерфейсов 6H/3C и 4H/3C при увеличении толщины 3C-области. При $\xi \gg 1$ зависимости $\chi^{l,r}(\xi)$ испытывают насыщение.

Оценки влияния спонтанной поляризации на положение уровней в квантовой яме

Рассмотрим влияние спонтанной поляризации на положение уровней (подзон) в квантовых ямах (КЯ), образующихся на левом и правом ГП в 3*C*-области (рис. 1, *a*). Для оценки положения уровней энергии основного состояния (энергии подзон) воспользуемся моделью треугольной потенциальной ямы с бесконечными стенками [12,13]. Согласно этой модели, энергии основного состояния, отсчитываемые от дна КЯ, для левого и правого ГП определяются формулой

$$\bar{\varepsilon}_0^{l,r} \approx 1.856 \cdot \left(\frac{e^2 (F^{l,r})^2 \hbar^2}{m^*}\right)^{1/3},$$
 (20)

где $F^{l,r}$ — напряженность электрического поля на левом и правом ГП, $m^* = 0.316m_e$ — эффективная масса в 3*C*-политипе (m_e — масса свободного электрона) [6]. Как показано в работах [10,11], разрывы зон проводимости ΔE_c на контактах 6*H*/3*C*-SiC и 4*H*/3*C*-SiC равны соответственно 0.55 и 0.835 eV. Поэтому моделью такой ямы можно пользоваться только в случае, если $\bar{\epsilon}_0^{l,r} \ll \Delta E_c$.

Оценим значения полей на ГП. Как следует из выражения (13), контактное поле $F_c \sim (k_B T/eL_{n1})\sqrt{\Delta}$, что при $\Delta = 100$ составляет величину порядка 10^6 V/cm. Поле спонтанной поляризации $F_{sp} = P_{sp}/\varepsilon_0\varepsilon_1$ равно $0.62 \cdot 10^6$ и $0.92 \cdot 10^6$ V/cm для 6H- и 4H-SiC соответственно. Таким образом, поля F_c и F_{sp} имеют

² Определенное таким образом значение минимальной разности работ выхода соответствует контакту двух политипов с собственной проводимостью.

Рис. 4. Зависимости полей на левом F' и правом F' интерфейсах от приведенной полутолщины 3*C*-области $\xi \equiv L/L_{p2}$ для интерфейсов 4*H*/3*C* (1) и 6*H*/3*C* (2). $\omega_0 = 10$, $\eta = 1$, $n_1 = 10^{18}$ cm⁻³. $\Delta = 100$ (*a*) и 25 (*b*).

один и тот же порядок. При $F^{l,r} \sim 10^6 \text{ V/cm}$ получаем $\bar{\epsilon}_0^{l,r} \sim 0.25 \text{ eV}$. Таким образом, формулу (20) можно использовать только для грубых оценок.

Значения напряженности электрических полей $F^{l,r}$ на интерфейсах $x = \mp L$ определяются формулами (2) и (5), что с учетом (7) дает

$$F^{l,r} = \pm \frac{k_B T}{eL_{n1}} \sqrt{e^{-\Delta} - e^{-\psi_L} + \Delta - \psi_L} + \frac{P_s}{\varepsilon_0 \varepsilon_1}.$$
 (21)

Здесь первое слагаемое в правой части уравнения отвечает контактному полю F_c , второе слагаемое —

поляризационному полю F_{sp} . Полагая $P_s > 0,^3$ получаем ситуацию, когда на левом контакте поля́ F_c и F_{sp} складываются, а на правом вычитаются.

Результаты численных расчетов полей на левом F^{l} и правом F^{r} интерфейсах в функции от приведенной полутолщины 3*C*-области $\xi \equiv L/L_{p2}$ для 6*H*- и 4*H*-политипов представлены на рис. 4. Прежде всего отметим различия рис. 4, *a* и *b*, заключающиеся в том, что при $\Delta = 100$ знаки полей на левом и правом ГП противоположны (рис. 1, *a*), тогда как при $\Delta = 25$ — одинаковы (рис. 1, *b*).⁴ Объясняется это тем обстоятельством, что в первом случае $|F_c| > F_{sp}$, а во втором $|F_c| < F_{sp}$. Таким образом, во втором случае КЯ на правом ГП не образуется. Из рис. 4, *b* видно, что при этом КЯ будет существовать в валентной зоне. Так как для ГП типа 6*H*/3*C* и 4*H*/3*C* величины разрывов валентных зон крайне малы [10,11], квантованные уровни (подзоны) в этих ямах отсутствуют.

Далее, рис. 4 демонстрирует довольно слабую зависимость полей F^l и F^r от ξ . Здесь дело заключается в том, что значения радикала $R \equiv \sqrt{e^{-\Delta} - e^{-\psi_L} + \Delta - \psi_L}$ не слишком сильно зависят от толщины 3*C*-области. Так, например, для случая $\eta = 1$ величина *R* при $\Delta = 100$ в диапазоне изменений ξ от 0 до 5 увеличивается от 9.49 до 9.77, а при $\Delta = 25$ — от 3.87 до 4.66. Так как согласно формуле (20) энергия $\bar{\varepsilon}_0^{l,r} \propto (F^{l,r})^{2/3}$, не следует (во всяком случае, для достаточно болыших значений Δ) ожидать значительного роста энергии уровней в КЯ с увеличением ξ .

5. Заключение

Подытоживая, отметим, что в отличие от работ [8,9] здесь рассмотрена достаточно общая модель гетероструктуры, в рамках которой детально изучены основные особенности влияния спонтанной поляризации на энергетические характеристики. В связи с этим отметим одно обстоятельство. Условие (6), где мы полагали $P_{sp}(\mp\infty) = 0$, означает, что на внешних поверхностях трехслойной системы электростатическое поле отсутствует. Это предполагает наличие определенной пассивации этих граней: например, существование адсорбционных покрытий, гасящих поляризационные поля. Можно было бы, конечно, положить $P_{sp}(\mp\infty) = P_{\mp\infty}$, где $P_{\mp\infty}$ — некоторые константы. Это, однако, не приведет к каким-либо новым результатам.

В заключение сформулируем основные результаты работы: 1) учет наличия спонтанной поляризации в гексагональных обкладках трехслойной геометрически

³ Напомним (см. [9] и ссылки, приведенные там), что положительный знак *P_s* означает, что левый *NH*-компонент рассматриваемой структуры контактирует с 3*C*-компонентом плоскостью, содержащей атомы кремния, а правый *NH*-компонент — плоскостью, содержащей атомы углерода.

⁴ Отметим, что положительное значение поля F отвечает возрастающим функциям $E_{c,v}(x)$.

симметричной системы NH/3C/NH приводит к ее энергетической асимметрии, причем асимметрия нарастает пропорционально величине спонтанной поляризации; 2) в случае, когда в зоне проводимости трехслойной гетероструктуры существуют две квантовые ямы, локализованные у левого и правого интерфейсов, учет поляризации сказывается на них по-разному, приводя к уширению одной из этих ям и к сужению другой.

Автор признателен А.А. Лебедеву за полезные обсуждения.

Список литературы

- [1] A. Fissel. Phys. Rep. 379, 149 (2003).
- [2] A.A. Lebedev. Semicond. Sci. Technol. 21, R 17 (2006).
- [3] A. Qteish, V. Heine, R.J. Needs. Phys. Rev. B 45, 6534 (1992).
- [4] A. Qteish, V. Heine, R.J. Needs. Phys. Rev. B 45, 6376 (1992).
- [5] С.Ю. Давыдов, А.В. Трошин. ФТТ 49, 723 (2007).
- [6] A. Fissel, U. Kaizer, B. Schröter, W. Richter, F. Bechstedt. Appl. Surf. Sci. 184, 37 (2001).
- [7] V.M. Polyakov, F. Schwierz. J. Appl. Phys. 98, 023 709 (2005).
- [8] С.Ю. Давыдов, А.В. Трошин. ФТП 42, 1318 (2008).
- [9] С.Ю. Давыдов, А.В. Трошин. ФТП 42, 1225 (2008).
- [10] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. ФТП 39, 12, 1440 (2005).
- [11] С.Ю. Давыдов. ФТП 41, 718 (2007).
- [12] В.М. Галицкий, Б.М. Карнаков, В.И. Коган. Задачи по квантовой механике. Наука, М. (1992). 880 с.
- [13] В.Я. Демиховский, Г.А. Вугальтер. Физика квантовых низкоразмерных структур. Логос, М. (2000). 248 с.