06 Электроиндуцированные локальные особенности спектров фототока кристаллов CdZnTe

© А.В. Бут, В.П. Мигаль, А.С. Фомин

Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков, Украина E-mail: khai_physical_lab@xai.edu.ua

Поступило в Редакцию 31 марта 2009 г.

Установлено влияние конфигурации и частоты внешнего электрического поля на спектр фотоотклика $I = f(\lambda)$ кристаллов CdZnTe и показано, что периодическое воздействие импульсами в форме вейвлета Хаара приводит к перестройке спектра фотоотклика кристаллов на частотах, соответствующих определенным максимумам вейвлет-коэффициентов. Показано, что представление спектров фотоотклика в виде параметрических сигнатур $I(\lambda) - dI/d\lambda$ позволяет выделять и оценивать парциальные вклады различных центров фоточувствительности данных кристаллов.

PACS: 72.40.1w, 43.60.Hj, 71.23.An, 71.55.Gs

Формирование наноразмерных атомных кластеров позволяет получать полупроводниковые материалы с уникальными сенсорными и другими свойствами [1]. Однако локальная неустойчивость и нестабильность их характеристик создает новые диагностические и эксплуатационные проблемы. При этом высокая чувствительность таких кристаллов к достаточно малым внешним возмущениям [2] характеризует данный объект исследования как нелинейную систему. Многомасштабность спектра фотоотклика кристаллов $Cd_{1-x}Zn_xTe$ (x = 0.1-0.2), выявленная посредством вейвлет-анализа спектральных зависимостей [3], а также индуцированные локальные неустойчивости и особенности координатных и временны́х фотоэлектрических характеристик [3–6] свидетельствуют о наличии электрически активных дефектов различного типа и масштаба. Они обусловливают спектральные и другие артефакты отклика, проявляющиеся при определенном сочетании внешних и внутренних факторов, а также проблемы с воспроизводимостью и однознач-

72

ностью результатов исследования. Для анализа поведения кристалла как нелинейной системы при внешнем электрическом воздействии одинаково важны не только динамические (относительно грубые), но и информационные (более тонкие) аспекты поведения [6], позволяющие устранить его неопределенность. Поэтому поиск новых способов выявления и исследования электроиндуцированных локальных особенностей спектральных характеристик сенсорных материалов CdZnTe являлся основной целью данной работы.

Исследовались твердые растворы $Cd_{1-x}Zn_xTe$ (x = 0.05-0.2) спектрометрического качества, выращенные из расплава модифицированным методом Бриджмена вертикальной кристаллизации и содержащие дефекты и кластеры различного типа и масштаба [7]. Удельное сопротивление исследуемых образцов, имеющих форму прямоугольного параллелепипеда с размерами $6 \times 6 \times 3$ mm и $11 \times 11 \times 2$ mm, находилось в пределах $\rho \sim 10^{10} - 10^{11} \,\Omega \cdot \mathrm{cm}$. Исследования ростовых дефектов, проведенные рентгеновскими, оптическими диэлектрическими и акустическими методами, выявили их многообразие и наличие флуктуаций состава [7,8]. На противоположные наибольшие грани образцов наносились золотые контакты. Измерения спектров фототока (Φ T) $I = f(\lambda)$ твердых растворов производились в диапазоне длин волн 700-1000 nm в автоматическом режиме с помощью электрометрического преобразователя на основе операционного усилителя AD795 (Analog Devices). Напряженность внешнего постоянного или переменного полей устанавливалась в пределах $10-5 \cdot 10^2$ V/cm. Оцифровка сигнала производилась с частотой выборки 10³-10⁵ Hz посредством промышленной системы сбора данных ADVANTECH PCI-1711L с дальнейшей обработкой на персональном компьютере. При расчете относительного показателя парциальных вкладов центров фоточувствительности g_i использовался цифровой метод определения параметров плоских кривых и фигур (длины l_i , кривизны C_i и площади S_i), реализованный в пакете MatLab.

Для реализации внешнего электрического вейвлетоподобного воздействия применялся генератор импульсов произвольной формы на основе микроковертора C8051F411 (Cygnal), позволяющий задавать частоту в диапазне $f_0 = 0.1-17$ kHz с шагом Δf от 0.01 до 0.5 kHz.

Экспериментально установлено, что спектры стационарного ФТ для большинства кристаллов CdZnTe спектрометрического качества практически не изменяются при многократном циклическом измерении в одинаковых условиях. Однако их вейвлет-анализ указывает не только

на локальные изменения спектров ФТ со сременем, но и на их многомасштабность. Последняя может быть связана как с влиянием разномасштабных внутренних полей, порождаемых электрически активными дефектами, кластерами различного типа и другими причинами, искажающих фотоотклик (ФО), так и с особенностями обработки и представления сигнала ФО в информационном пространстве вейвлет-коэффициентов.

Действительно, увеличение объема цифрового представления ФО кристалла и его отображение в пространстве вейвлет-коэффициентов, лежащее в основе вейвлет-анализа, устраняет неопределенность поведения кристалла в частотно-временной области [9]. Такой подход также позволяет "высветить" локальные особенности ФО за счет появления подмножеств вейвлет-коэффициентов, величина которых в 20-100 раз больше, чем в других областях ФО [3,10]. Это обусловлено наличием в сигнале локальных возмущений в данный момент времени, а также хорошим соответствием форму выбранного вейвлета и огибающей сигнала ФО. Вследствие этого вейвлет-анализа иногда называют спектральным анализом локальных возмущений [9]. В частности, применение известных вейвлетов (Добеши, Хаара и др.) к преобразованию спектров ФТ кристаллов CdZnTe показало, что только вейвлет Хаара наиболее полно выявляет многомасштабную структуру спектров ФТ [3] и одновременно удовлетворяет критерию минимума информационной энтропии.

С другой стороны, в результате дополнительного воздействия П-образным модулирующим напряжением в кристаллах CdZnTe обнаружена локальная перестройка как частотно-временны́х, координатных, так и спектральных зависимостей ФТ [3,6]. Она проявляется при определенных частотах и скважностях, а также полярностях воздействующего напряжения, что свидетельствует о электроиндуцированном характере локальной перестройки вышеуказанных зависимостей.

Проведенные исследования позволили установить, что для большинства кристаллов спектрометрического качества типовые спектры Φ O, полученные при возбуждении внешним гармоническим полем (рис. 1, *a*), подобны по форме спектрам стационарного Φ T. В то же время последовательное изменение частоты следования двуполярных импульсов меандровой формы (вейвлет Хаара) с шагом 0.1 kHz в диапазоне $f_0 = 0.1-17$ kHz позволило выявить на определенных частотах следования f_n , равных 0.6, 2.7 и 11.4 kHz, сильное изме-

Рис. 1. Спектры фотоотклика $I = f(\lambda)$ при: *а*— гармоническом; *b* — вейвлетоподобном внешних воздействиях на частотах f_1, f_2 и f_3 , равных 600 Hz (штрихпунктирная линия), 2.7 kHz (штриховая линия) и 11.4 kHz (сплошная линия).

нение спектра ΦO (рис. 1, *b*). Это проявляется в перестройке и возникновении новых полос фоточувствительности в диапазонах длин волн $\Delta \lambda_1 = 810 - 830$ nm, $\Delta \lambda_2 = 845 - 875$ nm и $\Delta \lambda_3 = 905 - 965$ nm. При этом изменение масштаба воздействия, т.е. частоты следования импульсов, не всегда сопровождается перестройкой спектров ФО. Как оказалось, частоты следования f_n соответствуют лишь определенным максимумам значений вейвлет-коэффициентов. Вместе с тем уход с частот следования f_n на ±100 Hz сопровождается трансформацией спектра ФО различных кристаллов к виду спектра стационарного ФТ. Более того, на частотах f_n изменение времени сканирования за счет варьирования скважности следования импульсов приводит к дополнительной перестройке спектов ФО. Это указывает на то, что влияние частот следования и формы электрических импульсов на спектр ФО кристалла носит селективный характер. Очевидно, что подобие конфигураций и масштабов между внешними воздействующими и внутренними электрическими полями приводит к проявлению локальных особенностей спектров ФО. Это является своеобразным переносом идеи вейвлет-анализа в область физических исследований кристаллов, так как позволяет индуцировать фотоэлектронные процессы в кристаллах на определенных масштабных уровнях. Кроме того, измерение спектров на частотах следования f_n устанавливает связь между динамическим поведением системы в частотно-временной области и представлением сигнала ФО в информационном пространстве вейвлет-коэффициентов. Подтверждением тому являются несущественные изменения в спектре ФО на частотах, которые соответствуют другим максимумам вейвлет-коэффициентов. Все это позволяет предположить, что подобие конфигурации внешних и внутренних электрических полей при фотовозбуждении приводит к активации различных центров фоточувствительности, для выявления которых спектры ФО преобразовывались в диаграммы $I(\lambda) - dI/d\lambda$, являющиеся, по существу, параметрическими сигнатурами спектров ФО [4]. Они представляют собой замкнутую последовательность i дугообразных участков длиной l_i и кривизной C_i , выделяющих парциальные вклады различных центров фоточувствительности [11], что позволяет оценить характер их перераспределения со временем, при обработке или эксплуатации исследуемых сенсорных материалов. Охватываемая *j*-той сигнатурой площадь S_i интегративно отображает мощность подмножества фотоиндуцированных состояний, определяющих спектр ФО данного кристалла [4,11].

Рис. 2. Сигнатуры спектров фотоотклика $I(\lambda) - dI/d\lambda$ при: *a* — гармоническом, b — вейвлетоподобном внешних воздействиях на частотах f₁, f₂ и f₃, равных 600 Hz (штрихпунктирная линия), 2.7 kHz (штриховая линия) и 11.4 kHz (сплошная линия), в диапазоне длин волн $\lambda = 700 - 1000$ nm.

Как и ожидалось, воздействие на кристалл последовательности импульсов напряжения в форме вейвлета Хаара на частотах f_n приводит к наибольшему изменению конфигурации сигнатур $I(\lambda) - dI/d\lambda$ (рис. 2, b). При этом установлено увеличение площади в 1.1-1.3 раза, охватываемой сигнатурами $I(\lambda) - dI/d\lambda$, а следовательно, и мощности подмножеств фотоиндуцированных состояний в рамках обобщенной релаксационной модели [11]. Также отчетливо проявляются дугообразные участки, характеризующиеся различной длиной *l_i* и кривизной *C_i*. В то же время гармоническое возбуждение на тех же частотах f_n (рис. 2, a) не приводит к существенным изменениям в спектре ΦO и соответственно в сигнатуре $I(\lambda) - dI/d\lambda$. Следовательно, подобие конфигураций и масштабов внешних и внутренних электрических полей

обусловливает возникновение новых фотоиндуцированных состояний. Для оценки электроиндуцированных локальных особенностей сигнатур спектра ФО предложен относительный показатель парциальных вкладов центров фоточувствительности $g_i = C_i S_j / l_i$, зависящий от частоты (масштаба) и конфигурации внешнего электрического поля. Сравнение g_i при гармоническом и вейвлетоподобном воздействиях на частотах f_n указывает на наличие как близких, так и существенно отличающихся дугообразных участков, а следовательно, и парциальных вкладов различных центров фоточувствительности. Так, например, выявлено изменение значения параметра g_i (см. таблицу) для наиболее выраженных дугообразных участков № 1, 4, 5, 8 и 9 сигнатур на частоте f_3 . Влияние частоты и конфигурации внешних электрических полей более отчетливо проявляется в интегральном параметре $G_j = \sum_i g_i$ (см. таблицу), изменение которого подтверждает электроиндуцированный

Пат	аметрь	Ig_i	И	G_i	для	сигнат	yp .	I(λ) - d d	$d\lambda$, полу	ученных	на	частоте	11.4	kHz
		- 01		~ /	<u> </u>		/		/	/	,					

Возбуучение		$G_i = \sum \sigma_i$								
Возбуждение	1	2	3	4	5	6	7	8	9	$\sum_{i} 8^{i}$
Вейвлетоподобное	0.54	0.12	0.11	0.10	0.26	0.10	0.13	0.29	0.41	2.06
Гармоническое	0.03	0.10	0.08	0.03	0.06	0.09	0.12	0.04	0.11	0.66

характер данных локальных особенностей спектра ФО. При этом важное значение имеет стабильность параметра G_i. Его контроль позволяет отслеживать и интегративно оценивать стабильность ФО и необратимые изменения свойств кристаллов со временем (после обработки или эксплуатации сенсоров на их основе в экстремальных условиях и т.п.).

Таким образом, фотовозбуждение при воздействии электрических импульсов в форме вейвлета Хаара на частотах, которые соответствуют определенным максимумам вейвлет-коэффициентов, позволяет выявить электроиндуцированные локальные особенности спектральных характеристик фотоотклика данных кристаллов. Применение относительного показателя парциальных вкладов g_i , а также G_i позволяет: а) анализировать электроиндуцированные локальные особенности спектров ФО; б) сравнивать и оценивать стабильность ФО; в) выявлять необратимые изменения различных характеристик со временем.

Поэтому данный подход в сочетании с возможностью анализа ФО посредством параметрических сигнатур $I(\lambda) - dI/d\lambda$ в рамках различных физических моделей предоставляет качественно новые возможности при исследовании материалов, склонных к естественной самоорганизации дефектов в нано-, мезокластеры.

Работы выполнена при финансовой поддержке Государственного фонда фундаментальных исследований Украины.

Список литературы

- [1] Мильвидский М.Г., Чалдышев В.В. // ФТП. 1998. Т. 32. В. 5.
- [2] Косяченко Л.А., Маслянчук Е.Л., Раренко И.М. // ФТП. 2004. Т. 38. В. 8. C. 1018.
- [3] Мигаль В.П., Фомин И.С. // Письма в ЖТФ. 2006. Т. 32. В. 11. С. 44.

- [4] Комарь В.К., Мигаль В.П., Фомин А.С. // ФТП. 2006. Т. 40. В. 2. С. 133.
- [5] Mygal V.P., Phomin A.S. // Functional Materials. 2006. V. 13. N 2. P. 233.
- [6] Кадомцев Б.Б. Динамика и информация. М.: Физматлит, 2004.
- [7] Komar V., Gektin A., Mygal V. et al. // Nuclear Instr. and Methods in Phys. Research. 2001. V. 458 (1–2). P. 113.
- [8] Белоусов П.П., Белоусов П.Я., Дубнищев Ю.Н. // Письма в ЖТФ. 2005.
 Т. 31. В. 22. С. 56.
- [9] Астафьева Н.М. // УФН. 1996. Т. 166. № 11. С. 1145.
- [10] But A.V., Mygal V.P., Phomin A.S. // Functional Materials. 2009. V. 16. N 1. P. 5.
- [11] Мигаль В.П. // ФТП. 2001. Т. 35. В. 10. С. 1188.