06;07

Модулятор света на экситонах в квантовой яме оптического микрорезонатора

© С.Г. Ерохин, L.D. Deych, A.A. Lisyansky, А.Б. Грановский

Московский государственный университет им. М.В. Ломоносова, Москва, Россия Physics Department, Queens College of the City University of New York, Flushing, NY 11367 USA E-mail: granov@magn.ru, yerokhin@magn.ru

Поступило в Редакцию 10 марта 2009 г.

Предложен и теоретически обоснован принцип работы модулятора света, основанный на управлении магнитным или электрическим полем частотой экситонов в квантовой яме оптического микрорезонатора. Показано, что основным преимуществом предложенной схемы является большая глубина модуляции излучения, а при использовании ферромагнитных полупроводников при комнатной температуре для формирования экситонных состояний в квантовой яме возможна работа модулятора при комнатной температуре в относительно слабых магнитных полях.

PACS: 71.35.Ji

В последние годы достигут значительный прогресс в разработке пространственных модуляторов света, являющихся ключевыми элементами устройств голографической памяти, обработки оптических данных, трехмерных дисплеев и других оптических элементов управления распространения светом [1–3]. Так как оптические свойства материала определяются диагональными и недиагональными компо-

1

нентами тензора диэлектрической проницаемости, то приципы работы модуляторов света основаны на изменении этих компонентов под влиянием магнитного или электрического полей, деформаций или нагрева. К сожалению, большинство из разработанных методов модуляции света не обеспечивают достаточного быстродействия, глубины модуляции излучения, либо требуют применения достаточно сильных полей [2,3]. Наиболее быстродействующими и поэтому перспективными являются модуляторы, управляемые магнитным полем [1]. К их числу прежде всего относится магнитооптический пространственный модулятор света (МОПМС) [1], работающий на модуляции недиагональных компонентов тензора диэлектрической пронициемости. Так как недиагональные компоненты тензора диэлектрической проницаемости обусловлены действием спин-орбитального взаимодействия и поэтому малы, то и глубина модуляции МОПМС незначительна. Кроме того, для работы МОПМС требуются дополнительные поляризатор и анализатор излучения. Другим принципом модуляции излучения с использованием магнитных материалов могло бы служить изменение диагональных компонентов тензора диэлектрической проницаемости в магнитном поле, так называемый магниторефрактивный эффект [4,5], но этот эффект также весьма мал (несколько процентов) и практически исчезает в видимой области спектра. В данной работе предлагается новый принцип модуляции излучения. Этот принцип основан на сильной зависимости спектра экситонов от величины магнитного или электрического поля. Совмещая экситонный резонанс с резонансом Фабри-Перо и управляя экситонным резонансом с помощью магнитного или электрического поля, можно весьма эффективно, как показано ниже, модулировать излучение.

В настоящее время технология позволяет формировать экситонные состояния в квантовых ямах (КЯ), достаточно стабильных при комнатной температуре [6], а в новых ферромагнитных при комнатной температуре полупроводниках и оксидах (см., например, [7,8]) управление спектром экситонов возможно в относительно слабых полях, поэтому такой принцип работы модулятора представляется перспективным.

Следует также отметить, что системы с планарным дефектом, содержащим одну или несколько КЯ, детально исследовались в прошлом, но в основном при сильном взаимодействии дефектной моды с экситонами, когда образуются гибридные экситон-дефект-поляритонные моды [9]. В данной работе рассматривается случай слабого взаимодействия дефектной моды с экситонами, при котором взаимодействие света с

Рис. 1. Схема резонатора Фабри-Перо с квантовой ямой. Параметры квантовой ямы: боровский радиус экситона $a_{ex} = 10$ nm, ширина квантовой ямы d = 15 nm, продольно-поперечное расщепление экситона $\hbar\omega_{LT} = 0.1$ meV, нетрадиционное затухание $\Gamma = 0.5$ meV, радиационное затухание $\Gamma_0 = 50 \,\mu$ eV (согласно данным [6,10]). Параметры резонатора: диэлектрические проницаемости и толщины слоев соответственно $\varepsilon_1 = 5$, d = 70 nm, $\varepsilon_2 = 3$, $d_2 = 140$ nm, количество периодов 6.

экситонами сводится к резонансному увеличению поглощения света на частоте экситонов. Важно, что именно этот режим в отличие от случая сильного взаимодействия может быть реализован и при комнатной температуре.

Предлагаемая структура (рис. 1) представляет собой оптический микрорезонатор, или, что эквивалентно, резонатор Фабри-Перо, в котором сформированная КЯ с экситонными состояниями встроена между двумя одномерными фотонными кристаллами, являющимися зеркалами в схеме Фабри-Перо [1]. Данная структура помещается во внешнее магнитное поле, а при управлении электрическим полем слои, между которыми находится КЯ, должны быть выполнены из прозрачного проводника, типа используемых в оптических модуляторах [2]. Параметры зеркал выбираются так, чтобы создать запрещенную зону в спектре излучения, а слой с КЯ ответствен за формирование дефект-моды в этой запрещенной зоне [1]. В отсутствие магнитного или электрического поля данная структура имеет два резонанса.

Спектральная позиция первого резонанса определяется дефект-модой, т.е. толщиной и диэлектрической проницаемостью слоя, в котором сформирована КЯ. Второй — экситонный резонанс — определяется в основном электронной структурой материала КЯ, и его частота может как совпадать, так и не совпадать с частотой дефект-моды. В данной схеме параметры зеркал и КЯ выбраны так, что в отсутствие внешнего воздействия частота дефект-моды совпадает с частотой экситонов. Именно эта частота и есть рабочая частота модулятора. Если бы не было экситонов, то в отсутствие внешних воздействий свет туннелировал бы через дефект-моду с коэффициентом прохождения, приближающимся к 100%, как и в обычной схеме Фабри-Перо [1]. Но так как именно на этой частоте возбуждаются экситоны, то свет полностью поглощается и коэффициент прохождения близок к нулю. Электрическое поле влияет на спектральную позицию экситонного резонанса. Магнитное поле расщепляет экситонный резонанс на две моды для лево- и правополяризованных по кругу волн. Таким образом, приложение магнитного или электрического поля приводит к расщеплению или смещению экситонного резонанса соответственно, и, как следствие этого, на частоте дефект-моды уже нет поглощения света экситонами, восстанавливаются условия резонансного тунелирования через дефектмоду, что и выражается в резком увеличении прохождения света, которое иллюстрируется приведенными ниже результатами расчета. Используя механическую аналогию, можно сказать, что частота дефектмоды — это щель в экране, через которую проходит свет, а роль затвора играет экситонный резонанс, управляемый внешним воздействием. Очевидно, что эффективность модуляции такого устройства определяется спектральной шириной дефект-моды и экситонного резонанса, а быстродействие лимитируется только характерными временами изменения магнитного поля, т.е. заведомо не хуже, чем у МОПМС. В отличие от экситонов в объеме полупроводника, экситоны в КЯ стабильны при комнатных температурах, так что данный модулятор не требует охлаждения. КЯ может быть сделана из парамагнитных полупроводников, параметры экситонов в таких КЯ хорошо известны [10] и мы их используем ниже для расчетов. Но у парамагнитных полупроводников, как правило, g-фактор близок к 2, и тогда управляющие магнитные поля достаточно велики (более 20 kOe). В низкотемпературных разбавленных магнитных полупроводниках за счет обменного взаимодействия электронов и дырок, составляющих экситоны, с локализованными магнитными моментами имеет место гигантское зеемановское расщепление,

Рис. 2. Спектральные зависимости коэффициента прохождения света *T* модулятора в приложенном магнитном поле $(a - \omega_+ = \omega_-, b - \omega_+ - \omega_- = 0.005 \text{ eV}, c - \omega_+ - \omega_- = 0.02 \text{ eV})$ и зависимость коэффициента прохождения света на резонансной частоте от приложенного магнитного поля для модулятора в схеме Фабри-Перо (d - сплошная линия) и для одиночной квантовой ямы без диэлектрических зеркал (d - пунктирная линия). $(\omega_+ - \omega_- = \alpha H, \text{где } \alpha - \kappa_0)$ коэффициент пропорциональности, H - величина магнитного поля).

при котором эффективный *g*-фактор может быть усилен на два-три порядка [11], что означает возможность уменьшения управляющего поля всего до сотен эрстед. В недавних работах достигнут значительный прогресс в разработке ферромагнитных при комнатной температуре

полупроводников и оксидов (см., например [7,8]), и, следовательно, формирование КЯ из таких новых материалов позволит уменьшить управляющие поля до сотен эрстед даже при комнатной температуре. Единственным отличием в рассматривамой модели парамагнитной и ферромагнитной КЯ является только диапазон управляющих полей.

Для расчета оптических свойств описанной выше структуры мы используем подход, разработанный [6,12] с учетом нелокального характера взаимодействия света с экситонами. Результаты расчета представлены

Рис. 3. Спектральные зависимости коэффициента прохождения света *T* модулятора в приложенном электрическом поле $(a - \omega = \omega_0 + 0.005 \text{ eV}, b - \omega = \omega_0 + 0.02 \text{ eV})$ и зависимость коэффициента прохождения света на резонансной частоте от приложенного электрического поля для модулятора в схеме Фабри-Петро (*c* — сплошная линия) и для одиночной квантовой ямы без диэлектрических зеркал (*c* — пунктирная линия, $\omega - \omega_0 = \beta E$, где β — коэффициент пропорциональности, *E* — величина электрического поля).

на рис. 2 и 3. Оптические параметры слоев зеркал и КЯ для расчета приведены в подписях к рисункам, они соответствуют литературным данным, а толщины слоев выбраны так, чтобы частота дефект-моды и экситонов соответствовала энергии 1.5 eV. Как видно из рис. 2, *a*, в

отсутствие магнитного (или электрического) поля свет не проходит через модулятор, так как дефект-мода находится в запрещенной зоне, а туннелирование через дефект-моду полностью подавлено экситонами. Приложение магнитного поля (рис. 2, *b*) расщепляет экситонный резонанс на два при частоте ω_+ и ω_- . Разность между этими частотами пропорциональна приложенному магнитному полю и эффективному *g*-фактору. С увеличением магнитного поля (рис. 2, *c*) разность этих частот превышает спектральную ширину дефект-моды и свет полностью проходит через систему. Аналогичен процесс и при приложении электрического поля (рис. 3), которое приводит к смещению экситонного резонанса, т. е., смещая или расщепляя экситонный резонанс, мы открываем возможность туннелирования света через дефектную моду.

Наиболее важным свойством предложенной схемы является возможность достижения близкой к 100% модуляции (рис. 2, d и 3, c). В отличие от одиночной КЯ (рис. 2, d и 3, c), для которой в отсутствие управляющего поля свет не полностью поглощается экситонами и частично проходит через систему, в схеме Фабри-Перо высокая добротность обеспечивает сильное (до 100%) поглощение света. Крутизна характеристики, т.е. наклон кривых на рис. 2, d и 3, c определяется как параметрами экситонов, так и добротностью резонатора Фабри-Перо.

В заключение отметим, что возможность управления работой предложенного модулятора как электрическим, так и магнитным полем

представляется также достоинством этой схемы. Так, например, при разработке пространственного модулятора света с высокой разрешающей способностью или интегральных элементов оптики использование в качестве управления электрического поля может оказаться предпочтительнее.

Работа выполнена при поддержке РФФИ (гранты 07-02-91583_АСП, 08-02-91205_Яф, 09-02-00309) и фонда "Династия".

Список литературы

- Inoue M., Fujikawa R., Baryshev A., Khanikaev A., Lim P.B., Uchida H., Aktsipetrov O., Fedyanin A., Murzina T., Granovsky A. // J. Phys. D: Appl. Phys. 2006. V. 39. P. R151–R161.
- [2] Fuji T., Suzuki T., Fujimori Y., Nakamura T., Moriwake M., Takasu H. // Japan. J. Appl. Phys. 2006. V. 45. N 9B. P. 7520–7524.
- [3] Spatial light modulator technology: materials, devices and applications / Ed. Uzi Efros. N.Y.: Marcel Dekker Inc., 1995. 665p.
- [4] Сухоруков Ю.П., Телегин А.В., Ганьшина Е.А. // Письма в ЖТФ. 2005. Т. 31.
 В. 11. С. 78–84.
- [5] Грановский А.Б., Ганьшина Е.А., Юрасов А.Н., Борискина Ю.В., Ерохин С.Г., Ханикаев А.Б., Инуе М., Виноградов А.П., Сухоруков Ю.П. // Радиотехника и электроника. 2007. Т. 52. № 9. С. 1152–1159.
- [6] *Ivchenko E.L.* Optical Spectroscopy of Semiconductor Nanostructures. Springer, Alpha Science International, 2005. 425 p.
- [7] Magnetism in Semiconducting Oxides / Ed. Nguyen Hoa Hong. Trans. Research Network, 2007. 382 p.
- [8] Fukumura T., Tayosaki H., Yamada Y. // Semiconductor Science and Technology. 2005. V. 20. P. S103–S111.
- [9] Skolnick M.S., Fisher T.A., Whittaker D.M. // Semicond. Sci. Technol. 1998.
 V. 13. P. 645–669.
- [10] Ivchenko E.L., Kavokin A.V., Kochereshko V.P., Posina G.R., Uraltsev I.N., Yakovlev D.R., Bicknell-Tassius R.N., Waag A., Landwehr G. // Phys. Rev. B. 1992. V. 46. N 12. P. 7713–7722.
- [11] Furdyna J.K. // J. Appl. Phys. 1988. V. 64. N 4. P. R29-R47.
- [12] Solnyshkov D.D., Glazov M.M., Shelykh I.A., Kavokin A.V., Ivchenko E.L., Malpuech G. // Phys. Rev. B. 2008. V. 78. N 8. P. 165323 (8).