## 06;07 Динамика предельно коротких оптических импульсов в полупроводниковой сверхрешетке в присутствии магнитного поля

## © М.Б. Белоненко

Волгоградский государственный педагогический университет E-mail: mbelonenko@yandex.ru

## Поступило в Редакцию 20 февраля 2009 г.

На базе связанных уравнений Максвелла для электромагнитного поля и уравнения Больцмана в приближении времени релаксации для одноэлектронной функции распределения получена система уравнений, описывающая распространение предельно коротких оптических импульсов в полупроводниковой сверхрешетке с приложенным магнитным полем. Показано, что первоначальный линейно поляризованный оптический импульс вызывает появление в образце поля с ортогональной поляризацией. Исследована динамика распространения в образце образовавшегося и исходного импульса.

PACS: 42.65.An

Возросший в последнее время интерес к нелинейным явлениям стимулировал создание материалов, способных проявлять нелинейные свойства в экспериментально достижимых условиях. Одним из таких материалов является полупроводниковая сверхрешетка, предсталвяюцая собой структуру, в которой помимо потенциала кристаллической решетки на электрон действует дополнительный, искусственно созданный потенциал с периодом, превышающим период кристаллической решетки. Дополнительный потенциал приводит к дроблению энергетических зон кристалла вблизи краев, вследствие чего существенная нелинейность электронных свойств сврехрешеток заметна уже в полях умеренных напряженностей [1,2]. Отметим и собственно особенности распространения света в таких структурах [3,4].

Современные нанотехнологии позволяют создавать системы довольно сложной геометрической формы, что стимулирует интерес теоре-

40

тиков к изучению таких объектов, как квантовые проволоки, кольца, цилиндры, ямы и колодцы. Особенности геометрии таких структур отражаются на спектре носителей тока и, следовательно, определяют специфику электронных свойств подобных структур. По-видимому, самый простой способ построения сверхрешетки связан с изготовлением в твердом теле регулярной системы квантовых ям, которые, будучи связанными между собой посредством туннельного эффекта, и задают закон дисперсии носителей заряда. При таком подходе можно не только задавать величину и закон дисперсии для минизоны, но и создавать сверхрешетки пониженной размерности, просто изменяя расстояние между квантовыми ямами. Интерес к подобным структурам возрос и в связи с моделью квантового компьютера Танамото [5,6].

Очень важно также, что электромагнитные волны, распространяющиеся в свехструктурах, становятся сильно нелинейными уже при относительно слабых полях (на 2-3 порядка слабее, чем в обычных полупроводниковых материалах). Одним из следствий этого является возможность распространения в сверхершетках электромагнитных уединенных волн, которые являются аналогами солитонов или даже солитонами. Обсуждаемые свойства сверхрешеток вызвали как повышенный теоретический интерес, так и попытки применения в устройствах нелинейной оптики. В качестве примера можно привести исследование распространения в сверхрешетках ультракоротких импульсов света (оптических солитонов) [7,8]. Вместе с тем необходимо отметить, что вне рассмотрения часто остаются собственно электронные свойства, которые могут проявляться в оптической части спектра. В частности, возможна ситуация когда, управляя спектром носителей заряда, к примеру приложенным магнитным полем, можно управлять важными характеристиками оптических импульсов, в частности поляризацией. С физической точки зрения причина этого состоит в явлении, аналогичном эффекту Холла, — в отклонении движущихся под действием электромагнитного поля импульса электронов внешним магнитным полем. Заметим, что в последнее время данная тематика вызывает повышенный интерес исследователей [9,10].

В связи с этим возникает задача исследования распространения предельно коротких оптических импульсов в сверхрешетках в условиях, когда к образцу приложено внешнее магнитное поле, которое может изменить состояние поляризации импульса. Особенный интерес представляют мощные предельно короткие электромагнитные импульсы,

когда можно пренебрегать процессами релаксации во время действия импульса. Это приводит к распространению импульса в режиме, аналогичном режиму самоиндуцированной прозрачности, и, следовательно, не происходит потерь его энергии в образце.

Суммируя вышесказанное, можно сделать вывод, что задача исследования динамики нелинейных электромагнитных волн и изучения их поляризации в сверхструктурах с приложенным внешним магнитным полем представляется достаточно важной и актуальной.

Рассмотим двумерную сверхрешетку со спектром, заданным в виде ряда Фурье:

$$\varepsilon(p_x, p_y) = -\Delta \sum_{m,n=0} A_{mn} \cos map_x \cos nap_y, \qquad (1)$$

где  $\Delta$  — ширина минизоны, *a* — период сверхрешетки,  $p_x$ ,  $p_y$  — компоненты квазиимпульса электрона, заданные в первой зоне Бриллюэна. Считая, что предельно короткий оптический импульс распространяется в направлении оси *z* (перпендикулярно плоскости сверхрешетки), будем описывать электромагнитное поле импульса классически, на основании уравнений Максвелла. Так, в интересующем нас случае, в калибровке  $\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$ , уравнения Максвелла с учетом диэлектрических и магнитных свойств полупроводниковых сверхрешеток [11] можно записать как

$$\frac{\partial^2 \mathbf{A}}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} + \frac{4\pi}{c} \mathbf{j} = \mathbf{0};$$
(2)

причем здесь пренебрегается дифракционным расплыванием лазерного пучка в направлениях, перпендикулярных оси распространения. Вектор — потенциал **A** считается имеющим вид  $\mathbf{A} = (A_x(z, t), A_y(z, t), 0)$ , а ток имеет вид  $\mathbf{j} = (j_x(z, t), (z, t), 0)$ .

Для определения тока воспользуемся полуклассическим приближением [12], взяв закон дисперсии (2) из квантово-механической модели и описывая эволюцию ансамбля частиц классическим кинетическим уравнением Больцмана в приближении времен релаксации:

$$\frac{\partial f}{\partial t} + \left(-\frac{q}{c}\frac{\partial A_x}{\partial t} + qhv_y\right)\frac{\partial f}{\partial p_x} + \left(-\frac{q}{c}\frac{\partial A_y}{\partial t} - qhv_x\right)\frac{\partial f}{\partial p_y} = \frac{F_0 - f}{\tau}, \quad (3)$$

где h — приложенное к образцу магнитное поле, параллельное оси z;  $v_x = \partial \varepsilon / \partial p_x$ ,  $v_y = \partial \varepsilon / \partial p_y$ ;  $F_0$  — есть равновесная функция распределе-

ния Ферми:

$$F_0 = \frac{1}{1 + \exp(E(\mathbf{p})/k_{\rm B}T)}$$

*T* — температура,  $k_{\rm B}$  — постоянная Больцмана. Время релаксации *τ* можно оценить, согласно [13], как примерно 10<sup>-12</sup> s. Поскольку типичные длительности предельно коротких импульсов составляют порядка 10<sup>-15</sup> s, уравнение (3) можно решать в бесстолкновительном пределе *τ* → ∞. Запишем выражение для компоненты тока  $j_{\alpha}(z, t)(\alpha = x, y)$ :

$$j_{\alpha} = q \int dp \nu_{\alpha} f. \tag{4}$$

Воспользуемся далее методом "среднего электрона" [14–16], в котором можно выразить ток через решение классических уравнений движения для электрона в заданных полях:

$$\frac{dp_x}{dt} = -\frac{q}{c}\frac{\partial A_x}{\partial t} + qhv_y,$$

$$\frac{dp_y}{dt} = -\frac{q}{c}\frac{\partial A_y}{\partial t} - qhv_x$$
(5)

с начальными условиями  $p_x|_{t=0} = p_{x0}$ ;  $p_y|_{t=0} = p_{y0}$ . В пределе  $\tau \to \infty$  и в рассматриваемом для простоты случае низких (нулевых) температур этот метод дает выражение

$$j_{\alpha} = q n_0 \nu_{\alpha}(p_x, p_y), \tag{6}$$

где  $p_x$ ,  $p_y$  — решения (5) с начальными условиями  $p_{x0} = p_{y0} = 0$ . Здесь низкие температуры понимаются в смысле выполнения условия  $k_BT \ll \Delta$ , что позволяет избавиться от усреднения в методе "среднего электрона" по начальным импульсам. Отметим, что в случае высоких температур в формуле (6) необходимо использовать решения уравнений (5) с произвольными начальными условиями, а потом произвести усреднение с равновесной функцией распределения, в которой роль импульсов будут играть начальные условия для  $p_x$ ,  $p_y$ .

В общем случае, для закона дисперсии, задаваемого рядом (1), получить решение затруднительно во всем диапазоне переменного электрического и постоянного магнитного полей. Для косинусоидального закона дисперсии и для параболического закона дисперсии известны,

например, решения, приведенные в [14,17]. Воспользуемся тем, что для предельно коротких оптических импульсов их амплитуда достаточно велика и можно искать решение в виде ряда по степеням *h*. Тогда, оставляя ведущие слагаемые, можно получить:

$$p_{x} = -\frac{q}{c}A_{x} + qh \int_{0}^{t} dt \frac{\partial \varepsilon \left(-\frac{q}{c}A_{x}, -\frac{q}{c}A_{y}\right)}{\partial \left(-\frac{q}{c}A_{y}\right)},$$

$$p_{y} = -\frac{q}{c}A_{y} - qh \int_{0}^{t} dt \frac{\partial \varepsilon \left(-\frac{q}{c}A_{x}, -\frac{q}{c}A_{y}\right)}{\partial \left(-\frac{q}{c}A_{x}\right)}.$$
(7)

Таким образом, вычисляя ток согласно (6) с импульсами, определенными в (7), и подставляя полученные значения в (2), получаем замкнутую самосогласованную систему двух уравнений относительно величин  $A_x$ ,  $A_y$ , решая которую, можно получить описание пространственного распределения поля предельно короткого оптического импульса и описание его поляризации.

Все это и послужило стимулом для дальнейшего численного исследования уравнения (2), (6), (7), которое было получено без каких-либо ограничений на минимальную длительность импульса электрического поля.

Исследуемые уравнения решались численно при помощи прямой разностной схемы типа крест [18]. Шаги по времени и координате определялись из стандартных условий устойчивости. Шаги разностной схемы уменьшались последовательно в два раза, до тех пор пока решение не изменялось в 8-м значащем знаке. Уравнения были обезразмерены стандартным образом, и далее все данные приводятся в условных единицах. Для определенности закон дисперсии был выбран в виде

$$\varepsilon(p_x, p_y) = \Delta(1 - \cos p_x - \sigma \cos 2p_x) + \Delta(1 - \cos p_y - \sigma \cos 2p_y), \quad (8)$$

где  $\sigma < 1$  — малый параметр, характеризующий спектр с учетом выхода за рамки ближайших соседей [19,20]. Начальное условие выбиралось

в виде хорошо известного кинк-решения для уравнения sin-Gordon:

$$A_{x}(z, 0) = 4 \operatorname{arctg}(\exp(z/\gamma)),$$

$$\frac{dA_{x}(z, t)}{dt}\Big|_{t=0} = -\frac{2\nu}{\gamma}ch^{-1}z/\gamma,$$

$$\gamma = (1 - \nu^{2})^{1/2},$$

$$A_{y}(z, 0) = \frac{dA_{y}(z, t)}{dt}\Big|_{t=0} = 0.$$
(9)

Данное начальное условие соответствует тому, что на образец подается предельно короткий импульс плоской поляризации, состоящий из одного "полуколебания" электрического поля. Возникающая с течением времени эволюция электромагнитного поля представлена на рис. 1.

Как видно из представленного результата, одновремено с распадом импульса первоначальной поляризации происходит генерация импульса ортогональной поляризации. Амплитуда этого импульса растет с течением времени, что обусловлено увеличением скорости носителей заряда под действием электрического поля и, следовательно, более эффективным действием постоянного магнитного поля. Импульс ортогональной поляризации имеет большую ширину, что, по-видимому, связано с наиболее эффективным ускорением более "быстрых" носителей заряда и, следовательно, сужением спектра.

Зависимость формы предельно коротких оптических импульсов от величины приложенного магнитного поля представлена на рис. 2.

Отметим: 1) величина максимума напряженности электрического поля импульса ортогональной поляризации пропорциональна величине постоянного магнитного поля, что согласуется со сделанными предположениями и заложено в (7); 2) при увеличении постоянного магнитного поля наблюдается изменение формы импульса первоначальной поляризации, что можно связать с обратным действием поля имульса ортогональной поляризации на носители заряда, обусловливающие ток, ведущий к появлению поля первоначальной поляризации. В силу симметрии задачи причина этого состоит в явлении, аналогичном эффекту Холла, — в отклонении движущихся под действием электромагнитного поля импульса ортогональной поляризации электронов внешним магнитным полем.



**Рис. 1.** Электрическое поле, определяемое уравнениями (2), (6), (7) в разные моменты времени. Здесь и на последующих рисунках по оси x — обезразмеренная координата (единица соответствует  $3 \cdot 10^{-4}$  m), по оси y — обезразмеренная величина электрического поля (единица соответствует  $10^7$  V/m). a — поле первоначальной поляризации, b — поле ортогональной поляризации. Для кривой 1 время в 2 раза больше, чем для кривой 2, для кривой 3 время в 3 раза больше, чем для кривой 1. v/c = 0.95.

Как показали результаты численных расчетов, зависимость формы предельно коротких оптических импульсов от параметра, характеризующего спектр с учетом выхода за рамки ближайших соседей, имеет вид, как на рис. 3.



**Рис. 2.** Электрическое поле, определяемое уравнениями (2), (6), (7) в зависимости от постоянного магнитного поля. a — поле первоначальной поляризации, b — поле ортогональной поляризации. Для кривой 2 магнитное поле в 2 раза больше, чем для кривой I, для кривой 3 магнитное поле в 4 раза больше, чем для кривой 1. v/c = 0.95.

Подобные зависимости могут быть объяснены, учитывая то обстоятельство, что слагаемое с  $\sigma$  делает уравнения (2) неинтегрируемыми уже в случае нулевого магнитного поля, а значит, происходит образование "хвоста" за предельно коротким импульсом. Увеличение же величины максимума напряженности электрического поля импульса



**Рис. 3.** Электрическое поле, определяемое уравнениями (2), (6), (7) в зависимости от параметра спектра  $\sigma$ . a — поле первоначальной поляризации, b — поле ортогональной поляризации. Для кривой 2  $\sigma$  в 2 раза больше, чем для кривой 1, для кривой 3  $\sigma$  в 3 раза больше, чем для кривой 1. v/c = 0.95.

ортогональной поляризации при увеличении  $\sigma$  можно связать с тем, что при этом увеличивается подвижность носителй заряда, что, в свою очередь, приводит к более эффективному их отклонению постоянным магнитным полем и, следовательно, к росту соответствующего тока, который приводит к появлению импульса другой поляризации.

Из проведенного исследования можно сделать следующие основные выводы:

1. Получено уравнение, описывающее динамику электромагнитного поля в системе квантовых точек с приложенным постоянным магнитным полем.

2. Численно проанализировано полученное эффективное уравнение и обнаружено устойчивое распространение предельно коротких оптических импульсов ненулевой площади и образование импульса ортогональной поляризации.

3. Величина постоянного магнитного поля играет определяющую роль в образовании импульса ортогональной поляризации, и ее изменение позволяет менять форму и амплитуду импульса.

4. Увеличение величины постоянного магнитного поля влечет за собой как генерацию импульса ортогональной поляризации, так и изменение формы импульса первоначальной поляризации.

5. Динамика и форма импульса устойчивы по отношению к изменениям параметра, характеризующего спектр с учетом выхода за рамки ближайших соседей.

## Список литературы

- [1] Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешетками. М.: Наука, 1989. 288 с.
- [2] Херман М. Полупроводниковые сверхрешетки. М.: Мир, 1989. 207 с.
- [3] Воронов М.М., Ивченко Е.Л. // ФТТ. 2005. Т. 47. В. 7. С. 1327–1332.
- [4] Воронов М.М., Ивченко Е.Л. // ФТТ. 2003. Т. 45. В. 1. С. 168–173.
- [5] Валиев К.А., Кокин А.А. Квантовые компьютеры: надежды и реальность. Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001.
- [6] Tanamoto T. // Phys. Rev. A. 2000. V. 61. P. 022305.
- [7] Игнатов А.А., Романов Ю.А. // ФТТ. 1975. Т. 17. В. 11. С. 3388-3389.
- [8] Эпштейн Э.М. // ФТТ. 1977. Т. 19. В. 11. С. 3456–3458.
- [9] Кособукин В.А. // ФТТ. 2009. Т. 51. В. 2. С. 377–384.
- [10] Кособукин В.А. // ФТТ. 2006. Т. 48. В. 11. С. 2089–2094.
- [11] Ландау Л.Д., Лифици Е.М. Теоретическая физика. Т. II. Теория поля. М.: Наука, 1988. 512 с.
- [12] Belonenko M.D., Demushkina E.V., Lebedev N.G. // Russian Laser Research. 2006. V. 27. P. 457.
- [13] Romanov Yu.A., Romanova J.Yu. // Solid State Phys. 2004. V. 46. P. 164.
- [14] Поляновский В.М. // ФТП. 1980. Т. 14. В. 6. С. 1215–1217.
- 4 Письма в ЖТФ, 2009, том 35, вып. 16

- [15] Эпштейн Э.М. // Изв. вузов. Радиофизика. 1979. Т. 22. С. 373.
- [16] Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука, 1990. 865 с.
- [17] Lebwohl P.A., Tsu R. // Appl. Phys. 1970. V. 41. P. 2664.
- [18] Бахвалов Н.С. Численные методы. (Анализ, алгебра, обыкновенные дифференциальные уравнения). М.: Наука, 1975.
- [19] Yong-Woo Son, Marvin L. Cohen, Steve G. Louie // Phys. Rev. Lett. 2006. V. 97. B. 21. P. 216803.
- [20] Крючков С.В., Федоров Э.Г. // ФТП. 2002. Т. 36. В. 3. С. 326–329.