⁰⁶ Эллипсометрия химически осажденных пленок PbS—ZnS

© В.В. Сальников, В.Ф. Марков, Н.М. Барбин, Л.Н. Маскаева, М.П. Миронов

Институт высокотемпературной электрохимии УрО РАН, Екатеринбург Уральский государственный технический университет — УПИ, Екатеринбург Уральский институт ГПС МЧС России, Екатеринбург E-mail: NMBarbin@uralweb.ru; mln@ural.ru

Поступило в Редакцию 23 марта 2009 г.

Методом эллипсометрии изучены оптические, диэлектрические характеристики гидрохимически осажденных пленок индивидуального сульфида свинца, а также пленок, содержащих пересыщенный твердый раствор замещения в системе PbS—ZnS. Установлено, что формирование твердых растворов приводит к увеличению показателя преломления пленок и уменьшению значений мнимой части диэлектрической постоянной. Увеличение содержания ZnS в твердом растворе сопровождается существенным уменьшением тангенса угла диэлектрических потерь.

PACS: 68.37.-d

Сульфид свинца, технология гидрохимического осаждения пленок которого хорошо отработана, является одним из наиболее чувствительных материалов для фотодетекторов, используемых в видимой и ближней ИК-области спектра, в том числе при изготовлении пожарных извещателей [1,2]. Замещение в кристаллической решетке PbS свинца на цинк, учитывая широкозонную природу сульфида цинка ($E_g = 3.55 \text{ eV}$), сдвигает спектральный диапазон чувствительности PbS в коротковолновую область, значительно расширяя номенклатуру фоточувствительных материалов, перспективных для использования в качестве солнечных элементов [3], а также фоточувствительных сенсорных материалов [4],

Из-за неблагоприятных условий изоморфной смесимости в системе PbS–ZnS следует отметить ничтожно малую равновесную растворимость ZnS в сульфиде свинца при температурах ниже 373 K [5]. Однако использование для синтеза пленок PbS–ZnS гидрохимического

34

осаждения, при котором формирование кристаллической структуры происходит через коллоидно-химическую стадию с ее наноразмерными особенностями, обеспечивает возможность получения пересыщенных по замещающему компоненту твердых растворов. Нами ранее [6] совместным гидрохимическим осаждением PbS и ZnS были получены слои пересыщенных по цинку твердых растворов $Zn_x Pb_{1-x}S$ кубической структуры *B*1 с содержанием замещающего компонента до 2.4 mol.%. Образование твердого раствора приводит к сенсибилизации малочувствительных пленок сульфида свинца к видимому и ИК-излучению в диапазоне $0.4-2.8 \, \mu$ m.

Значительный интерес представляют получение пересыщенных твердых растворов Zn_xPb_{1-x}S с более высоким содержанием цинка в структуре PbS и исследование взаимосвязи их структуры, морфологии и оптических характеристик. Пленки в системе PbS-ZnS в настоящей работе осаждали из водных растворов при 368 К на обезжиренные подложки из ситалла (СТ-50). Раствор для осаждения содержал соли металлов (ацетат свинца Pb(CH₃COO₂) и сульфат цинка ZnSO₄), тиомочевину, комплексообразующие агенты и щелочь [7]. Кристаллическую структуру пленок исследовали методом рентгеновского анализа на дифрактометре ДРОН-УМ1. Использовали медное излучение с пиролитическим графитом в качестве монохроматора для выделения CuKa₁ 2дублета из сплошного спектра. Измерения проводили в интервале углов 2θ от 10 до 100° в режиме пошагового сканирования с $\Delta(2\theta) = 0.02^{\circ}$ и временем накопления 5 s. Элементный анализ полупроводниковых пленок выполнен на микроанализаторе Camebax. Анализ дифракционных отражений показал, что все полученные пленки принадлежат к кристаллической структуре В1, соответствующей сульфиду свинца со сдвигом рефлексов в область дальних углов, что было интерпретировано как результат образования твердых растворов замещения $Zn_r Pb_{1-r}S$. Максимально достигнутое при варьировании состава реакционной смеси содержание ZnS в твердом растворе составило 4.25 mol.%, что значительно превышает равновесную растворимость сульфида цинка в PbS в области температур синтеза. Установлена экстремальная зависимость содержания замещающего компонента в составе твердого раствора от его концентрации в реакционной смеси, что, вероятно, является характерной особенностью гидрохимического синтеза твердых растворов замещения [7]. Однако общее содержание цинка в тонких пленках по данным элементного анализа превышало его концентрацию

в кубическом твердом растворе. При этом отсутствие рефлексов сульфида цинка на рентгенограммах свидетельствовало о наличии в слоях рентгеноаморфной фазы этого соединения, содержание которой достигало 42 mol.%. Толщины полученных пленок при измерении с помощью интерференционного микроскопа МИИ-12 в зависимости от условий осаждения составили 120–340 nm.

Эллипсометрия пленок проводилась в воздушной атмосфере при комнатной температуре с использованием нуль-эллипсометра Gaertner L-117, работающего по схеме PCSA (Р — поляризатор, С — компенсатор, S — поверхность образца, А — анализатор). В качестве источника света служил Ne-He-лазер ($\lambda = 632.8$ nm). Угол падения света составлял 70°. Эллипсометрические углы Δ и Ψ, определяющие состояние поляризации, измерялись посредством поляризатора и анализатора прибора соответственно. Точность измерения углов Δ и Ψ составляла 0.05°. Оптические параметры системы рассчитывали с помощью пакета программ, в основе которых заложены фундаментальные уравнения эллипсометрии, включающие в себя уравнения Друдэ и Френеля. Изучение характеристик пленок PbS-ZnS проводили в измерительной камере, пристыкованной к эллипсометру. Измерительная камера была смонтирована на ХУ-позиционере, что позволяло перемещать поверхность образца в двух координатах (x, y). Кроме того, образец можно было перемещать в вертикальном направлении. Это давало возможность юстировать образец и получать максимальную величину сигнала на входе твердотельного детектора эллипсометра при отражении луча лазера от поверхности образца. Комплексный показатель преломления подложки N_s определяли на пластинке ситалла (CT-50). Для уменьшения ошибок в определении N_s измерения Δ и Ψ проводили в разных точках поверхности образца (10 измерений). Для каждой точки вычисляли свои значения вещественной и мнимой частей показателя преломления подложки, а затем рассчитывали среднее значение. Параметры Δ и Ψ характеризуют относительные изменения амплитуды и фазы, испытываемые при отражении p- и s-компонент колебаний электрического вектора световой волны. Таким образом, для пленок значение N_{film} может быть вычислено из измерений эллипсометрических параметров Δ и Ψ с помощью компьютерных методик. Расчет осуществляли посредством программы [8].

Для того чтобы изучить характеристики пленки, нанесенной на поверхность подложки, необходимо первоначально определить показатель

преломления подложки N_s:

$$N_s = n_s - ik_s. \tag{1}$$

37

 N_s может быть рассчитан посредством аналитической инверсии в двухфазную модель (окружающая среда-подложка). Для вычисления N_s необходимы три параметра — N_0 , Φ_0 и λ (показатель преломления окружающей среды, угол падения света и длина волны падающего света соответственно), а также экспериментально измеряемые Δ и Ψ материала подложки.

Эффективный показатель преломления материала пленки определяется выражением

$$N_{film} = n_{21} - in_{22}.$$
 (2)

Здесь n_{21} , n_{22} — вещественная и мнимая части показателя преломления материала слоя соответственно. Величину показателя преломления поверхностной пленки определяли в предполагаемой первоначальной области значений для n_{22} . Затем для экспериментально измеренных Δ и Ψ и заданного значения n_{22} , используя процесс итерации, вычисляли значение n_{21} , которое минимизирует мнимую часть толщины пленки. При этом вычисляется среднеквадратичная ошибка для рассчитанных значений n_{21} . Процесс вычислений повторяется для всей области предполагаемых значений n_{22} . Значение n_{22} , которое минимизирует среднеквадратичную ошибку для n_{21} , выбирается как мнимая часть N_{film} , а соответствующее вычисленное значение для n_{21} выбирается как вещественная часть N_{film} . Таким образом, область значений n_{21} должна быть задана и проверена, чтобы найти решение для n_{21} , существующее в данной области.

В таблице приведены расчетные величины вещественной n и мнимой частей k комплексного эффективного показателя преломления гидрохимически осажденных пленок PbS—ZnS различного состава, а также значения вещественной и мнимой частей диэлектрической постоянной ε' , ε'' соответственно и тангенс угла диэлектрических потерь tg δ .

Для анализа диэлектрических свойств материала принято использовать понятие $tg \delta$ — тангенса угла диэлектрических потерь и его частотную зависимость. Анализ этой зависимости позволяет сделать вывод о структурных изменениях в кристалле. Диэлектрические потери можно разделить на две категории: внутренние и внешние [9]. Внутренние потери зависят от симметрии кристалла. Внешние потери связаны

Оптические и диэлектрические характеристики химически осажденных пленок PbS-ZnS в зависимости от содержания в структуре твердого раствора сульфида цинка

№ образца	Содержание ZnS в твердом растворе, mol. %	n	k	arepsilon'	arepsilon''	tgδ
1	0	1.4638	0.9718	1.1982	2.8451	2.3744
2	0.5	1.3833	1.0244	0.8642	2.8341	3.2794
3	1.48	1.4980	1.0556	1.1298	3.1625	2.7991
4	4.25	1.5810	0.4650	2.2832	1.4705	0.6440
5	2.1	1.5839	0.42567	2.3275	1.3484	0.5793
6	1.7	1.5518	0.2239	2.3578	0.6948	0.2947
	-	-	-	•		

с несовершенствами в структуре кристалла, например, примесями, микроструктурными дефектами, наличием границ зерен, пористостью, случайной ориентацией кристаллитов. Поскольку исследованные нами пленки являются относительно толстыми и имеют кристаллическую структуру, то можно предположить, что для исследуемых пленок диэлектрические потери связаны с внешними факторами.

Из таблицы видно, что величины измеренных оптических и диэлектрических характеристик пленок значительно различаются. Это объясняется изменением их состава не только по содержанию сульфида цинка в твердом растворе $Zn_x Pb_{1-x}S$, но и, как было установлено, уменьшением от второго к шестому образцу доли твердого раствора в составе пленок (образец N^o 1 — индивидуальный сульфид свинца). Соответственно согласно данным рентгеновских исследований и элементного анализа пленок PbS–ZnS, в них возрастает содержание фазы рентгеноаморфного сульфида цинка [9,10]. С увеличением содержания ZnS в пленке уменьшается также микрошероховатость ее поверхности, а отдельные зерна пленок сформированы из субмикронных фрагментов [10].

Полученные результаты представляют практический интерес и могут быть использованы для целенаправленного синтеза пленок твердых растворов PbS—ZnS с требуемыми свойствами в качестве новых функциональных материалов для сенсорной техники.

39

Список литературы

- [1] *Марков В.Ф., Маскаева Л.Н., Китаев Г.А.* // Неорган. материалы. 2000. Т. 36. № 7. С. 792–795.
- [2] Миронов М.П., Дьяков В.Ф., Мухамедьяров Р.Д., Мухамедзянов Х.Н., Маскаева Л.Н. // Пожарная безопасность. 2008. № 3. С. 103–106.
- [3] Nair P.K., Nair M.T.S., Garcia V.M. // J. Solar Energy and Solar Cells. 1998. V. 52. P. 313–344.
- [4] Vidal J., de Melo O., Vigil O. // Thin Solid Films. 2002. V. 419. Is. 1–2. P. 118– 123.
- [5] Урусов В.С., Таусон В.Л., Акимов В.В. Геометрия твердого тела. М.: ГЕОС, 1997. 500 с.
- [6] Маскаева Л.Н., Марков В.Ф., Гусев А.И. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2004. № 2. С. 100–109.
- [7] Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 210 с.
- [8] Lozer R.V., Larson D.T. A Fortran Program for Ellipsometry Measurements of Surface Films // RFT-1392 UC-32 Mathematic and Computer. The Dow. Chemical Comp. 1968. 35 p.
- [9] Alford McN., Penn S.J. // J. Appl. Phys. 1996. V. 80. P. 5895-5898.
- [10] Маскаева Л.Н., Марков В.Ф., Морозова И.М., Барбин Н.М., Шур В.Я., Шишкин Е.И. // Письма в ЖТФ. 2008. Т. 34. В. 11. С. 39–45.