08,01 Механизмы объемной диффузии при "высоких" и "низких" температурах

© В.Н. Чувильдеев, Е.С. Смирнова

Научно-исследовательский физико-технический институт Нижегородского государственного университета им. Н.И. Лобачевского, Нижний Новгород, Россия

E-mail: nokhrin@nifti.unn.ru

(Поступила в Редакцию 20 апреля 2010 г. В окончательной редакции 9 сентября 2010 г.)

Предложена феноменологическая модель объемной самодиффузии и диффузии атомов внедрения в области высоких $(T > T_D)$ и низких температур $(T < T_D)$ $(T_D$ — температура Дебая). Показано, что механизмы диффузии в области высоких и низких температур существенно различаются. В области высоких температур диффузия обеспечивается флуктуациями, которые могут быть описаны в терминах локального плавления — образования "жидкого диффузионного коридора". В области низких температур, когда плавление в силу ряда причин затруднено, диффузия осуществляется путем флуктуационного образования "полого диффузионного коридора". Расчет энергии активации указанных процессов для случая самодиффузии дает хорошее соответствие с экспериментом в области $T > T_D$ и показывает существенное повышение энергии активации при $T < T_D$. Расчет для энергии активации диффузии атомов внедрения в ОЦК-металлах дает хорошее согласие с экспериментом во всем температурном интервале и позволяет объяснить эффект снижения энергии активации диффузии активации интервале и позволяет объяснить эффект снижения энергии активации диффузи.

Работа поддержана РФФИ (гранты № 09-02-01368-а, 09-03-01152-а, 09-02-97086-р_поволжье_а, 09-08-97044-р_поволжье_а), фондом U.S. CRDF и Минообразования РФ (грант № RUX0-001-NN-06/BP3C01), АВЦП Минобрнауки РФ "Развитие научного потенциала высшей школы (2009–2010 гг.)", ФЦП "Научные и научно-педагогические кадры инновационной России на 2009–2013 гг.".

1. Введение

К настоящему времени накоплен обширный экспериментальный материал по объемной самодиффузии в различных металлических системах при высоких температурах $T \ge 0.5T_m$ [1,2]. Экспериментальные значения энергии активации объемной самодиффузии Q_{vs} , полученные, как правило, при исследовании диффузионной проницаемости в области температур $0.4-0.9T_m$, лежат в интервале $18-20 kT_m$ (T_m — температура плавления материала) [1,2].

Для теоретического описания объемной самодиффузии и диффузии атомов замещения традиционно используют "вакансионный" механизм. В соответствии с классическими представлениями о механизмах диффузионного массопереноса в кристаллической решетке диффундирующий атом должен совершить "перескок" в образующуюся вакансию. В этом представлении выражение для коэффициента объемной самодиффузии имеет вид [2]

$$D_{vs} = D_{vs0} \left(-(Q_{1s} + Q_{2s})/kT \right), \tag{1}$$

$$D_{vs0} = f z a^2 v_0 \exp(S_{1s} + S_{2s})/k.$$
 (2)

Здесь D_{sv0} — предэкспоненциальный множитель, $f \sim 1$ — корреляционный фактор, z — координационное число, v_0 — частота атомных колебаний, Q_{1s} и S_{1s} энергия и энтропия образования вакансии, Q_{2s} и S_{2s} энергия и энтропия миграции вакансии соответственно.

В отличие от объемной самодиффузии диффузия атомов внедрения в ОЦК-металлах экспериментально изучается в более широком температурном интервале: кроме температур $T \ge 0.4 - 0.5T_m$, обычно используемых для изучения диффузии, диффузия атомов внедрения исследована и при более низких температурах ($\sim 0.2T_m$). Для этого, как правило, используются "косвенные" методы, один из которых основывается на изучении закономерностей внутреннего трения [3,4]. Согласно традиционным представлениям, диффузия атомов внедрения является причиной возникновения двух пиков внутреннего трения в ОЦК-металлах: при температурах вблизи 0.2*T_m* — пика Снука, и при температурах 0.3–0.4*T_m* пика Снука-Кестера [3,4]. При этом стандартными методами определяется энергия активации диффузии атомов внедрения и в некоторых случаях концентрация атомов примеси в твердом растворе [1,2]. Заметим, однако, что значения энергий активации диффузии атомов одной и той же примеси внедрения, полученные для этих областей температур, существенно различаются [4]. Так, для атомов углерода в железе [4] при изучении поведения релаксации Снука получены значения энергии активации диффузии атомов внедрения в интервале $Q_{vi} \sim 5.1 - 5.5 kT_m$, а для релаксации Снука-Кестера более высокие значения $Q_{vi} \sim 8-9 kT_m$.

Для теоретического описания диффузии атомов внедрения используют междоузельный механизм [2]. Предполагается, что для диффузионного перескока атома

Мате- риал	$b \cdot 10^{-10}, m$ [10]	T_D, \mathbf{K} [11], [12]	$\frac{K\Omega/kT_m}{[11]}$	$r_s \cdot 10^{-10}, m$ [11]*	<i>T_m</i> , K [11]	$\frac{\lambda \rho b^3 / kT_m}{[6]}$	$\frac{\gamma_{S/L}b^2/kT_m}{[6]}$	Q_L/kT_m [6] [6]	$Q_{1s}kT_m$ [5]	$\frac{\gamma_S b^2/kT_m}{[11]}$	$r_p \cdot 10^{-10}, \mathrm{m}^{**}$
Cu	2.56	310 [12]	95.9	1.28	1356	1.64	0.9	3.6	8.6	6	_
Al	2.86	347 [11] 433 [11] 380 [12]	102.4	1.43	933	1.96	1.16	3.8	8.25	7.2	_
α-Fe	2.5	477 [11]	81.4	1.26	1810	1.19***	0.764***	3.8	9	5.75	0.66 - 0.62
Mo	2.73	432 [12] 423 [11] 365 [12]	98	1.4	2895	1.99***	1.12***	4.9 4	10	4.1	0.728
Nb	2.86	276 [11]	68.6	1.45	2760	1.59	0.944	4	10	4.81	0.75
Cr	2.5	250 [12] 606 [11] 405 [12]	78.2	1.27	2133	1.2	1	4	10	2.95	0.66

Таблица 1. Основные параметры, используемые в расчетах

* Для расчетов были использованы атомные радиусы.

** В соответствии с [3] было принято, что атом внедрения диффундирует по большим по размеру октаэдрическим междоузлиям. Размер октаэдрической пустоты определяется по формуле $r_p \sim kr_s$ (здесь k = 0.46 - 0.52 — геометрический коэффициент, см., например, [13]). *** Расчеты величин проведены в соответствии с расчетами, предложенными в [6].

внедрения не нужны вакансии, и энергия тратится только на миграцию атома из одного междоузельного положения в соседнее. Выражение для коэффициента диффузии примеси внедрения имеет вид

$$D_{vi} = D_{0vi} \exp(-(Q_{2i})/kT),$$
 (3)

где D_{vi0} — предэкспоненциальный множитель, Q_{2i} — энергия миграции атомов внедрения.

Точные расчеты энергий образования вакансии Q_{1s} и энергий миграции Q_{2s} и Q_{2i} из первых принципов весьма сложны и, как правило, требуют введения большого числа недостаточно строго определенных подгоночных параметров [5]. Поэтому для оценки значений энергии активации диффузии предложен целый ряд феноменологических моделей. Однако, несмотря на большие усилия, до настоящего времени существующие методы не позволяют эффективно рассчитывать значения параметров объемной диффузии в чистых металлах [5].

В работе [6] был предложен способ теоретического описания зернограничной самодиффузии в области "высоких" температур на языке "плавления" (см. также более ранние работы [7,8]). В [6] было показано, что для осуществления диффузионного массопереноса в границе зерна достаточно флуктуационно расплавить небольшой (порядка межатомного расстояния) участок границы и совершить перемещение атома в "расплаве". В рамках этой модели удалось получить разумные значения энергий активации зернограничной самодиффузии для широкого круга чистых металлов.

Основная идея настоящей работы состоит в том, чтобы применить подход, развитый в [6], для описания объемной самодиффузии и диффузии атомов внедрения и на его основе рассчитать энергии активации объемной самодиффузии в чистых ГЦК- и ОЦК-металлах и диффузии примесных атомов внедрения в ОЦК-металлах.

2. Модель объемной диффузии при высоких температурах (*T* > *T*_D)

2.1. Объемная самодиффузия. По аналогии с тем, как это было сделано в [6], предположим, что для осуществления диффузионного перемещения собственного атома в кристалле на расстояние порядка параметра кристаллической решетки необходимо, во-первых, образовать в соседнем узле решетки вакансию, во-вторых, расплавить "диффузионный коридор" между диффундирующим атомом и вакансией и, в-третьих, обеспечить миграцию диффундирующего атома по образовавшемуся участку "расплава".

Величину энергии активации процесса диффузии в этом случае можно представить в виде

$$Q_{vs}^{1} = Q_{1s} + Q_{ms} + Q_{Ls}, \qquad (4)$$

где Q_{1s} — энергия образования вакансии, Q_{ms} — энергия плавления диффузионного коридора, Q_{Ls} — энергия активации диффузии по расплаву. Для определения значений Q_{1s} и Q_{Ls} можно использовать табличные данные, приведенные в [5] и [6,9] соответственно. Для оценки Q_{ms} , следуя подходам, развитым в [6], представим энтальпию образования диффузионного коридора в виде двух слагаемых: объемной энергии плавления и поверхностной энергии

$$Q_{ms} = \lambda \rho V^* + \gamma_{S/L} S^*. \tag{5}$$

Здесь λ — удельная теплота плавления, ρ — плотность вещества, $\gamma_{S/L}$ — энергия поверхности жидкость-кристалл [6], V^* и S^* — объем и площадь поверхности коридора.

Предположим, что расплавленная область имеет форму цилиндра атомного радиуса r_s и длины, соответствующей межатомному расстоянию *b*. В этом случае $V^* = \pi r_s^2 b$ и $S^* = 2\pi (r_s^2 + r_s b)$.

Материал	$T < T_D, K$	$Q_v^{ m th}/kT_m$ (формула (11))	$T > T_D, K$	$Q_v^{ m th}/kT_m$ (формула (4))	$Q_v^{ m ex}/kT_m$
Cu	200	26.0	992-1355	177	18.8 [1] 16.2 [1]
Cu	500	50.9	975-1101	17.7	21.6 [2]
			673-883		18.6 [2]
Al	300	42.2	603-733	19.1	16.5 [1]
			1200-1500		16.9 [2]
α-Fe	300	32.3	1023-1163	17.4	19.8 [8]
			1873-2473		17.5 [2]
Мо	300	30	2428-2813	19.3	19.1 [1]
			1151-2668		17.5 [1]
Nb	200	31.8	1973-2373	19.8	20.1 [1]
			1973-2373		21 [1]
			1473-1873		17.3 [2]
Cr	300	24.2	1273-2023	19.8	19.1 [1]

Таблица 2. Теоретические Q_v^{th} и экспериментальные Q_v^{ex} энергии активации объемной самодиффузии в различных металлических системах

Подставляя (5) в (4) с учетом указанных выше соотношений для V^* и S^* , получим

$$Q_{ms} = \pi r_s^2 b\lambda \rho + 2\pi (r_s^2 + r_s b) \gamma_{S/L}.$$
 (6)

Рассчитанные по формуле (4) значения каждого из входящих в формулу (4) слагаемых, а также значения энергий активации объемной диффузии для ряда чистых металлов представлены в табл. 1 и 2 соответственно. Как видно из табл. 2, наблюдается хорошее соответствие экспериментальных и рассчитанных по формуле (4) значений энергии объемной самодиффузии.

2.2. Диффузия атомов внедрения. Применим указанный выше подход для описания объемной диффузии атомов внедрения. Пусть, как и в случае объемной самодиффузии, для осуществления переноса атома необ-ходимо образовать "жидкий" диффузионный коридор с радиусом порядка размера атома внедрения r_i и длиной, равной расстоянию между соседними междоузлиями. (Обычно это расстояние порядка межатомного b).

Величина энергии активации процесса диффузии атома внедрения Q_{vi}^1 может быть записана в виде

$$Q_{vi}^1 = Q_{mi} + Q_{Li} + W_e. (7)$$

Как и выше (см. (5)), энергия создания жидкого диффузионного коридора Q_{mi} может быть определена по формуле

$$Q_{mi} = \pi r_i^2 b\lambda \rho + 2\pi (r_i^2 + r_i b) \gamma_{S/L}.$$
 (8)

Здесь Q_{Li} — энергия активации диффузии атомов внедрения в расплаве, W_e — упругая энергия, связанная с размерным несоответствием атома внедрения радиуса r_i и междоузлия радиуса r_p , в которое атом помещен.

Величина W_e в первом приближении равна

$$W_e = K(\Delta V/V)_e^2/2, \tag{9}$$

где *К* — модуль всестороннего сжатия [9].

Физика твердого тела, 2011, том 53, вып. 4

Значения $(\Delta V/V)_e$ в свою очередь складываются из трех слагаемых: геометрического вклада $(\Delta V/V)_g$, вклада, связанного с тепловым расширением $(\Delta V/V)_T$, и вклада, связанного со скачком объема при плавлении: $(\Delta V/V)_e = (\Delta V/V)_g - (\Delta V/V)_T - (\Delta V/V)_M$.

Геометрический вклад $(\Delta V/V)_g$ равен разности объемов октаэдрического (тетраэдрического) междоузлия V_p и объема атома внедрения в ОЦК-решетке V_i при нулевой температуре $(\Delta V/V)_e = (V_p - V_i)/V_p = 1 - (r_i/r_p)^3$. Вклад, связанный с тепловым расширением вещества, в первом приближении может быть представлен в виде $(\Delta V/V)_T = N^*\beta\Delta T$, где β — коэффициент объемного теплового расширения, N^* — число атомов, окружающих междоузельный атом.

Вклад $(\Delta V/V)_M$, связанный со скачком объема вещества при плавлении $\Delta V_m/V$ (который для металлов составляет несколько процентов, $\Delta V_m/V \sim 4-6\%$ [6]), в области жидкого диффузионного коридора равен $N^*\Delta V_m/V$. В этом случае выражение для $(\Delta V/V)_e$ имеет вид

$$(\Delta V/V)_e = (\Delta V/V)_g - N^* (\beta \Delta T + \Delta V_m/V).$$
(10)

При $T = 0.5T_m$ и значениях $N^* = 6$, $r_i = 0.77$ nm, $r_p = 0.66$ nm, $V_m = 0.05$, $\beta \Delta T \sim 0.05$ получим $(\Delta V/V)_e \sim 0.01$. При таком значении $(\Delta V/V)_e$ величина W_e , вычисленная по формуле (9) с учетом (10), при $K\Omega/kT_m \sim 80$ [11] оказывается очень мала: $\sim 10^{-3}kT_m$. Это означает, что при образовании диффузионного коридора путем плавления вкладом упругой энергии W_e в величину Q_{vi}^1 можно пренебречь.

В этом случае энергия активации диффузии атомов внедрения будет определяться двумя слагаемыми: энергией, необходимой для создания диффузионного коридора Q_{mi} , и энергией активации миграции атома внедрения в расплаве Q_{Li} .

Материал	$r_i \cdot 10^{-10}, \mathrm{m} \ [14]^*$	$(\Delta V/V)_e$	W_e/kT_m	$T < T_D, K$	$Q_v^{ m th}/kT_m$ (формула (12))	$Q_v^{\rm ex}/kT_m$	$T > T_D, K$	$Q_v^{ m th}/kT_m$ (формула (7))	$Q_v^{\rm ex}/kT_m$
Fe-C	0.83	0.49	9.8	312.5-314	5.5	5.2–5.3 [4]	470 470–480	7.5	8.2 [4] 7.2**
Fe-N	0.77	0.36	5.4	296–298 290	5	4.9 [4]	508	7.1	9.2 [4]
Mo-O	0.8	0.33	5.3	393	4.4	5.2 [4] 4.4 [15]	473	6.3 7.2	6.4** 5.4

Таблица 3. Теоретические и экспериментальные энергии активации объемной диффузии атомов внедрения в различных металлических системах

* Для расчета использовались ковалентные радиусы атомов внедрения.

** Средние значения энергии активации диффузии атомов углерода и азота для всех ОЦК-металлов, указанных в литературе [1,2,4].

Таблица 4. Теоретические и экспериментальные энергии активации объемной диффузии атомов внедрения в различных металлических системах при высоких температурах $T > T_D$

Материал	<i>Т</i> ,К	$Q_v^{ m th}/kT_m$ (формула (7))	$Q_v^{ m ex}/kT_m$
Mo-C	1473-1873	7.4	7.1 [2]
Mo-N	1100-2500	7.1	5.7 [1]
	1100-2500		8.3 [1]
Та-С	1473-1873	6.6	6.6 [1]
Ta-N	484-512	6.3	5.8 [1]
V-C	1118-1403	6.4	6.3 [1]
NB-C	1203-2073	6.7	6.9 [2]
NB-N	423-568	6.4	6.4 [1]
	548-561		6.4 [1]
Cr-N	300-1573	6	6 [16]

Теоретические значения энергии активации диффузии, рассчитанной по формуле (7), для атомов внедрения в различных металлических системах представлены в табл. 3, 4. Как видно из таблиц, они удовлетворительно согласуются с известными экспериментальными данными по диффузии примесных атомов при высокой температуре [1–4].

2.3. Обсуждение модели "жидкого диффузионного коридора". Обсудим условия применимости изложенной выше модели. В соответствии с моделью Линдемана [17] для плавления кристалла энергия колебаний атомов массы m_a в кристалле $W \sim m_a x^2 v^2/2$ должна достичь некоторого предельного значения W^* . Как показано в [17], это возможно, когда и частота колебаний атомов v достигает своего предельного значения x достигает некоторой предельной величины x_{max} .

Возможность достижения максимальной частоты и максимальной амплитуды колебаний существенно зависит от температуры. При температурах T ниже температуры Дебая T_D амплитуда колебаний атомов минимальна $x \ll x_{\text{max}}$, а тепловая энергия, сообщаемая атомам, расходуется главным образом на увеличение частоты колебаний, достигающей при $T = T_D$ максимального значения v_D . При температурах выше температуры Дебая $(T > T_D)$, когда максимальная частота колебаний v_D достигнута, по мере повышения температуры происходит увеличение их амплитуды, достигающей значения x_{max} при температуре плавления T_m .

Из модели Линдемана следуют очевидные условия применимости модели "плавления": достижение условия $W = W^*$ возможно только в области температур выше температуры Дебая, когда частота, а затем и амплитуда колебаний достигают своего максимального значения. В случае низких температур ($T \le T_D$), когда выполнение условия Линдемана затруднено, флуктуация плавления оказывается маловероятной и описанная модель диффузии путем образования жидкого диффузионного коридора не может быть использована.

3. Модель объемной диффузии при низких температурах (*T* < *T*_D)

3.1. Модель объемной самодиффузии. Для описания объемной диффузии в области низких температур $T < T_D$ используем модель образования диффузионного коридора в виде "полого" цилиндра. Предположим, что перемещение атома внутри такого коридора происходит безактивационно. Предположим далее, что геометрические параметры полого цилиндра полностью совпадают с параметрами аналогичного "жидкого" цилиндра.

При этих предположениях выражение для энергии активации объемной диффузии примет вид

$$Q_{vs}^{h} = 2\pi (r_{s}^{2} + r_{s}b)\gamma_{s} + Q_{1s}.$$
 (11)

Здесь γ_s — энергия свободной поверхности.

Теоретические значения энергии активации объемной самодиффузии Q_{vs}^h в этом случае представлены в табл. 2. Как видно из табл. 2, значения Q_{vs}^h , полученные по формуле (11), почти в 2 раза превосходят экспериментальные значения Q_{vs} , полученные при высокой температуре. Это означает, что реализация объемной диффузии при низких температурах $T < T_D$ по механизму образования полого цилиндра весьма затруднена.

3.2. Диффузия атомов внедрения. Применим для описания низкотемпературной диффузии атомов внедрения процедуру, аналогичную изложенной в предыдущем разделе.

Предположим, что, как и в случае объемной самодиффузии, диффузия атомов внедрения из одного междоузлия в соседнее может осуществиться путем образования "полого" диффузионного коридора. В этом случае выражение для Q_{vi}^{h} имеет вид, аналогичный (11).

Как уже отмечалось (см. (9)), с атомом внедрения связана, упругая энергия We, высвобождение которой уменьшает энергию, необходимую для атомного перескока. При низких температурах энергия W_e гораздо выше, чем при высоких. Это связано по крайней мере с двумя причинами. Во-первых, при низких температурах $T < T_D$ и коэффициент теплового расширения β , и величина теплового расширения заметно ниже, чем при высоких $(T > T_D)$ [11]. Во-вторых, при $T < T_D$ практически "не работает" вклад $\Delta V_m/V$, связанный с расширением решетки при плавлении, так как в соответствии с приведенным выше описанием плавление затруднено. Таким образом, величина $(\Delta V/V)_e$ оказывается примерно равной $\sim (\Delta V/V)_g$ (см. (10)), и упругий вклад в энергию активации объемной диффузии становится весьма значительным (величина W_e достигает $5kT_m$) (табл. 3). (Оценки значений всех слагаемых, входящих в (8), также приведены в табл. 3).

В этом случае выражение для энергии активации объемной диффузии атома примеси внедрения имеет вид

$$Q_{vi}^{h} = 2\pi (r_i^2 + r_i b) \gamma_s - W_e.$$
(12)

Значения энергии активации диффузии атома внедрения Q_{vi}^h , рассчитанные по формуле (12), приведены в табл. 3. Подчеркнем, что значения Q_{vi}^h , полученные по формуле (12), заметно меньше соответствующих значений Q_{vi}^1 , полученных по формуле (7) в модели жидкого диффузионного коридора. Это означает, что в отличие от объемной самодиффузии диффузия атомов внедрения может осуществляться и при низких температурах, когда "плавление" практически невозможно.

4. Обсуждение результатов

На рисунке схематически изображены температурные зависимости значений энергии активации объемной диффузии, рассчитанные по формулам (6), (7), (11), (12). Как видно из рисунка, объемная самодиффузия при низких температурах ($T < T_D$) весьма затруднена. В то же время диффузия атомов внедрения при низких температурах ($T < T_D$) осуществляется заметно легче, чем при высоких температурах ($T > T_D$).

Как показано выше, энергия активации самодиффузии при низких температурах зависит только от поверхностной энергии "диффузионного коридора". Поскольку энергия, необходимая для образования поверхности раздела жидкость-кристалл при образовании жидкого

Температурная зависимость энергии активации объемной самодиффузии Q_{vs} и диффузии примесей внедрения Q_{vi} при низких $(T < T_D)$ и высоких $(T > T_D)$ температурах (схема).

диффузионного коридора, примерно вдвое ниже, чем энергия образования свободной поверхности для полого диффузионного коридора, энергия активации объемной самодиффузии в модели жидкого коридора ниже, чем в модели полого коридора. Однако при низких температурах $T < T_D$, когда "плавление" затруднено, энергия активации объемной самодиффузии оказывается весьма высокой, что означает практически полное отсутствие самодиффузии при $T < T_D$.

При диффузии атомов внедрения важную роль играет упругая энергия. При высоких температурах в силу существенного теплового расширения решетки ее вклад невелик. Но при низких температурах роль упругой энергии становится весьма заметной, и при образовании полого диффузионного коридора упругая энергия способствует существенному уменьшению энергии активации объемной диффузии. Это позволяет сделать важный вывод, что при $T < T_D$ диффузия атомов внедрения не только возможна, но и имеет меньшую энергию активации, чем при высоких температурах $T > T_D$.

5. Сопоставление с экспериментом

В табл. 2 представлены теоретические и экспериментальные значения энергий активации объемной самодиффузии, а в табл. 3, 4 — данные по объемной диффузии примесей внедрения при низких и высоких температурах.

Как видно из табл. 3, 4 значительное число экспериментальных значений энергии активации объемной диффузии атомов внедрения Q_{vi} получено для области высоких температур $(T > T_D)$. Для области низких температур $(T < T_D)$ надежные данные по Q_v^i имеются только для трех металлических систем Fe–C, Fe–N и Mo–O.

В условиях "дефицита" экспериментальных данных в области низких температур в качестве дополнительного аргумента в подтверждение изложенной выше модели можно привлечь и связь величины Q_{vi} с температурой, экспериментально обнаруженную в ряде работ [18,19]. Так, в [18,19] было установлено, что в области низких температур величина энергии активации ниже, чем в области высоких температур. Это качественно соответствует полученные в указанных работах аномально низкие значения $Q_{vi} \leq 1 kT_m$ для области низких температур не соответствуют типичным значениям энергии активации диффузии атомов внедрения в металлах и не позволяют использовать их в численных расчетах).

Авторы выражают признательность за поддержку НОЦ "Физика твердотельных наноструктур" ННГУ и НОЦ "Нанотехнологии" ННГУ.

Список литературы

- [1] Л.Н. Лариков, В.И. Исаичев. Диффузия в металлах и сплавах. Справочник. Наук. думкка, Киев (1989). 510 с.
- [2] S. Mrowec. Defects and diffusion in solids: an introduction. Elsevier Sci. Publ. Company, Amsterdam–Oxford–N.Y. (1980). 466 p.
- [3] А. Новик, Б. Бери. Релаксационные явления в кристаллах / Пер. с англ. под ред. Э.М. Нагорного, Я.М. Сойфера. Атомиздат, М. (1975). 472 с.
- [4] М.С. Блантер, Ю.В. Пигузов, Г.М. Ашмарин. Метод внутреннего трения в металловедческих исследованиях. Справочник. Металлургия, М. (1991). 248 с.
- [5] А.Н. Орлов, Ю.В. Трушин. Энергия точечных дефектов в металлах. Энергоатомиздат, М. (1983). 80 с.
- [6] В.Н. Чувильдеев. Неравновесные границы зерен в металлах. Теория и приложения. Физматлит, М. (2004). 304 с.
- [7] Л.М. Клингер. Диффузия и гетерофазные флуктуации. Металлофизика 6, 11 (1984).
- [8] К.А. Осипов. Некоторые активируемые процессы в твердых металлах и сплавах. Изд-во АН СССР, М. (1962). 131 с.
- [9] Транспортные свойства металлических и шлаковых расплавов. Справочник / Под ред. Н.А. Ватолина. Металлургия, М. (1995). 649 с.
- [10] Г.Дж. Фрост, М.Ф. Эшби. Карты механизмов деформации / Пер с англ. Л.М. Берштейна. Металлургия, Челябинск (1989). 328 с.
- [11] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [12] Е.М. Соколовская, Л.С. Гузей. Металлохимия. Изд-во МГУ, М. (1986). 264 с.
- [13] Е.В. Чупрунов, А.Ф. Хохлов, М.А. Фадеев. Основы кристаллографии. Учебник для вузов. Физматлит, М. (2004). 500 с.
- [14] С.С. Бацанов. Структурная химия. Факты и зависимости. Диалог-МГУ, М. (2000). 292 с.
- [15] В.И. Баранова, С.А. Головин, М.А. Криштал, М.И. Лернер. Физика и химия обраб. материалов 2, 61 (1968).

- [16] Константы взаимодействия металлов с газами. Справочник / Под ред. Б.А. Колачева, Ю.В. Левинского. Металлургия, М. (1987). 368 с.
- [17] А.Р. Уббелоде. Расплавленное состояние вещества / Пер. с англ. под ред. Ю.Н. Танана. Металлургия, М. (1982). 376 с.
- [18] А.А. Васильев, П.Л. Грузин, Ю.Д. Жаров, Е.С. Мачурин. ФММ 2, 319 (1967).
- [19] Р. Чалмерс. Физическая акустика. Т. III А / Пер. с англ. под ред. Э.М. Нагорного. Мир, М. (1969). 749 с.