⁰⁷ Широкополосная фотолюминесценция в системе (CaO \cdot Al₂O₃ \cdot SiO₂) : Eu

© Н.Т. Гурин, К.В. Паксютов, М.А. Терентьев, А.В. Широков

Ульяновский государственный университет E-mail: gurinnt@sv.ulsu.ru

Поступило в Редакцию 13 февраля 2009 г.

Показано, что полученные методом прямого твердофазного синтеза при температуре 1300°С на воздухе люминофоры в системе $(CaO \cdot Al_2O_3 \cdot SiO_2)$: Еи при возбуждении азотным лазером дают широкополосную фотолюминесценцию, перекрывающую видимую область спектра. После отжига в вакууме люминофоров (CaO · Al_2O_3 · SiO_2) : Еи и (CaO · Al_2O_3 · 2SiO_2) : Еи интенсивность люминесценции возрастает в несколько раз, причем (CaO · Al_2O_3 · 2SiO_2) : Еи дает свечение, соответствующее синему цвету по МКО. Отжиг состава (CaO · Al_2O_3) : Еи приводит к изменению цвета свечения с красного, близкого к цветовому стандарту EBU, на синий, соответствующий этому же стандарту. Состав (CaO · 2Al_2O_3) : Еи дает излучение красного цвета, близкого к цветовому стандарту NTSC, а состав (2CaO · Al_2O_3) : Еи дает интенсивное пурпурное свечение.

PACS: 78.60.Fi, 78.66.Hf

Последнее десятилетие характеризуется появлением фото-, катодои электролюминофоров нового поколения на базе прежде всего тиоалюминатов, тиогаллатов, алюминатов, галлатов щелочно-земельных элементов, оксидов иттрия, галлия [1–3], излучающих во всем диапазоне видимой части спектра. Однако задача поиска новых люминофоров, имеющих высокую яркость, квантовый выход и светоотдачу, а также координаты цветности, соответствующие основным цветам телевизионных стандартов NTSC, EBU и стандартам МКО для световых систем сигнализации, является по-прежнему актуальной, особенно для синей и красной областей спектра.

Перестраиваемая двухцветная электролюминесценция в красной и синей областях спектра получена в МДП структуре *n*-Si-SiO₂ : Eu-SiON-ITO (прозрачный электрод) [4] и обусловлена переходами внутри центров Eu³⁺ и Eu²⁺. Смещение фотолюминесценции из красной

41

области в синюю при изменении температуры отжига и использования восстановительной атмосферы получено также в кварцевых стеклах и стеклах сплава $1Al_2O_3 + 99SiO_2(\% \text{ mol.})$, легированных Eu [5,6]. Интенсивная синяя и фиолетовая люминесценция наблюдались нами в системе $(B_2O_3 \cdot Al_2O_3 \cdot SiO_2) :$ Eu [7].

В то же время в силикатах некоторых щелочно-земельных металлов, в частности, CaSiO₃ (волластоните), легированных Eu³⁺, Bi³⁺, наблюдалась только красная фотолюминесценция с максимумом спектра 609 nm [8], а в моноалюминатах кальция CaAl₂O₄: Eu²⁺ — синяя фотолюминесценция с максимумом спектра излучения $\lambda_m = 440 - 447$ nm [9–11], причем до отжига в восстановительной атмосфере наблюдалась слабая красная фотолюминесценция ионов Eu³⁺ [11]. В алюмосиликате кальция (гелените) — Ca₂Al₂SiO₇: Eu³⁺ наблюдалась красная фотолюминесценция с максимумом спектра излучения 619 nm [12].

Целью работы является поиск новых люминофоров в системе $(CaO \cdot Al_2O_3 \cdot SiO_2)$: Еи и изучение влияния условий их синтеза на получение фотолюминесценции синего и красного цветов, соответствующих параметрам основных цветов цветовых стандартов.

Люминофоры получали путем прямой твердотельной реакции порошкообразных компонентов. Для приготовления люминофоров использовали следующие материалы: Al₂O₃ (марки "Ч" — содержание Al₂O₃ 99.5%), SiO₂ (кварцевое стекло с содержанием SiO₂ > 99.7%), CaO ("ОСЧ" — содержание CaO 99.999%), Eu₂O₃ (марка EвO-Ж 99.99%). Исходные компоненты перемешивали в течение 1 h для образования однородной смеси. Полученную смесь отжигали при 1300°C на воздухе в течение 1–2 h при атмосферном давлении. При снятии спектров для возбуждения фотолюминесценции использовали азотный лазер ИЛГИ-503 с длиной волны 337 nm. Спектры регистрировали в автоматическом режиме с шагом изменения длины волны $\lambda_m = 1$ nm. Координаты цветности *x*, *y* рассчитывали по методике [13]. Во всех составах люминофоров содержание Eu составляло 3% mol. Аппроксимация спектров фотолюминесценции производилась с помощью пакета программ "Peak Fit".

Алюминаты кальция $(CaO \cdot Al_2O_3)$: Eu, $(CaO \cdot 2Al_2O_3)$: Eu (1, 2 в табл. 1) в отличие от [11] показали яркую фотолюминесценцию в красной области спектра с максимумами полос излучения 450, 562, 590, 615, 630, 643, 655, 666, 679 nm (состав 1) и 562, 593, 643, 656,

Таблица 1. Максимумы спектров и координаты цветности фотолюминесценции системы (CaO-Al₂O₃-SiO₂):Eu

N₂	Состав	λ_m , nm	Координаты цветности	
п/п			X	Y
1	$(CaO \cdot Al_2O_3)$: Eu	678	0.6305	0.2939
2	$(CaO \cdot 2Al_2O_3)$: Eu	657	0.6914	0.3031
3	$(2CaO \cdot Al_2O_3) : Eu$	678	0.4980	0.1857
4	$(CaO \cdot SiO_2)$: Eu	492	0.2095	0.2039
5	$(CaO \cdot Al_2O_3 \cdot SiO_2):Eu$	617	0.2692	0.1434
6	$(\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2) : \text{Eu}$	418	0.2339	0.2209

667, 680 nm (состав 2) (рис. 1). При этом состав 1 давал излучение с цветовыми координатами, близкими к координатам основного красного цвета в системе EBU (x = 0.64, y = 0.33), а состав 2 — в системе NTSC (x = 0.67, y = 0.33) [13]. Состав (2CaO · Al₂O₃) : Eu (3 в табл. 1) имел в спектре излучения полосы с максимумами 451, 563, 644, 656, 670, 683, 692, 698 nm и за счет широкой полосы излучения в области 400-500 nm обладал пурпурным цветом свечения.

Составы $(3CaO \cdot SiO_2)$: Еu (алит), $(3CaO \cdot 2SiO_2)$: Еu (ранкинит) показывали слабую фотолюминесценцию, а состав $(CaO \cdot SiO_2)$: Eu (4 в табл. 1) обладал широкополосной светло-синей люминесценцией с максимумами полос 464, 562, 613, 670, 682 nm, однако интенсивность его свечения несколько уступала составам 1–3 (рис. 1).

Алюмосиликаты кальция составов $(CaO \cdot Al_2O_3 \cdot SiO_2) : Eu$, $(CaO \cdot Al_2O_3 \cdot 2SiO_2) : Eu$ (5, 6 в табл. 1) давали интенсивную широкополосную люминесценцию в фиолетовой, синей, оранжевой и красной областях спектра (рис. 2) с координатами цветности, соответствующими фиолетовому и светло-синему цветам (табл. 1), причем с увеличением содержания SiO₂ в составе увеличивалась интенсивность излучения в синей области и уменышалась в красной области, что согласуется с возрастанием содержания в составе (CaO · SiO₂) : Eu²⁺ (рис. 1, 2).

Аппроксимация спектров излучения показала, что широкополосная часть спектров составов в системе $(CaO\cdot Al_2O_3\cdot SiO_2)$: Еu (рис. 2) состоит из трех полос с максимумами \sim 407, 434, 462 nm (состав 1),

Рис. 1. Спектр излучения систем $(CaO - Al_2O_3)$: Еи и $(CaO - SiO_2)$: Еи с различным содержанием компонентов. ($\lambda_{ex} = 337 \text{ nm}$): $I - (CaO \cdot Al_2O_3)$: Eu; $2 - (CaO \cdot Al_2O_3)$: Eu; $3 - (2CaO \cdot Al_2O_3)$: Eu; $4 - (CaO \cdot SiO_2)$: Eu.

406, 433 и 475 nm (состав 2), причем интенсивности первой и третьей полос в спектре состава 2 возрастали. В красной области максимумы полос излучения имели значения 594, 615, 647, 657, 668, 682, 696 nm (состав 1) и 594, 615, 649, 657, 667, 682, 695 nm (состав 2).

Для установления влияния отжига в вакууме на фотолюминесценцию образцы составов $(CaO \cdot Al_2O_3 \cdot SiO_2) : Eu,$ $(CaO \cdot Al_2O_3 \cdot 2SiO_2) : Eu, (CaO \cdot Al_2O_3) : Eu (5, 6, 4 в табл. 1), а$ $также <math>(3CaO \cdot 2SiO_2) : Eu u (3CaO \cdot SiO_2) : Eu отжигались в течение$ $1 h в вакууме при давлении <math>10^{-5}$ Torr и температуре 1300° С. Отжиг

45

N₂	Состав	λ_m , nm	$\Delta\lambda_{0.5}, nm$	Координаты цветности	
п/п				X	Y
1	$(CaO \cdot Al_2O_3 \cdot SiO_2)Eu$	450	165	0.2172	0.2815
2	$(CaO \cdot Al_2O_3 \cdot 2SiO_2) : Eu$	453	133	0.1685	0.1948
3	$(CaO \cdot Al_2O_3) : Eu$	427	80	0.1511	0.0696
4	$(3CaO \cdot 2SiO_2)$: Eu	580	122	0.2355	0.3227
5	$(3CaO \cdot SiO_2)$: Eu	519	150	0.2712	0.3765

Таблица 2. Максимумы спектров и координаты цветности фотолюминесценции системы (CaO-Al₂O₃-SiO₂):Еи после отжига в вакууме

привел к существенному изменению спектров фотолюминесценции и возрастанию ее интенсивности в несколько раз.

Люминофоры составов $(CaO \cdot Al_2O_3 \cdot SiO_2) : Eu$, $(CaO \cdot Al_2O_3 \cdot 2SiO_2) : Eu$ (1 и 2 соответственно в табл. 2) имели широкий спектр излучения: для состава $1 - \lambda_m = 450$ nm, полуширина пика $-\lambda_{\Delta 0.5} = 165$ nm, для состава $2 - \lambda_m = 453$ nm, $\lambda_{\Delta 0.5} = 133$ nm. Состав 1 давал светло-синий цвет, а состав 2 — синий цвет свечения, соответствующий полю синего цвета световой сигнализации по МКО [13].

Структура составов при наблюдении под микроскопом МБС-2 выглядела неоднородной стеклокристаллической белого цвета с блоками синего и зеленого цвета свечения, причем с увеличением содержания SiO₂ увеличивались доля кристаллической фазы и размеры кристаллов.

Аппроксимация спектров составов 1, 2 дает несколько полос с максимумами 401, 420, 437, 468, 505, 585 nm (состав 1) и 401, 426, 447, 457, 499, 554, 613 nm (состав 2).

Особо следует отметить состав (CaO · Al₂O₃) : Eu (3 в табл. 2), для которого отжиг в вакууме хоть и немного снизил интенсивность излучения, но при этом привел к изменению цвета свечения с красного, близкого к стандарту EBU, на синий с $\lambda_m = 427$ nm, $\lambda_{\Delta 0.5} = 80$ nm с координатами цветности, соответствующими этому же стандарту (x = 0.15, y = 0.06) [13].

Этот результат близок к данным [11], но в отличие от него, при синтезе на воздухе, т.е. без использования восстановительной

Рис. 2. Спектр излучения системы $(CaO - Al_2O_3 - SiO_2)$: Eu с различным содержанием компонентов. $(\lambda_{ex} = 337 \text{ nm})$: $I - (CaO \cdot Al_2O_3 \cdot SiO_2)$: Eu; $2 - (CaO \cdot Al_2O_3 \cdot 2SiO_2)$: Eu.

атмосферы, получена интенсивная красная фотолюминесценция, а после отжига в вакууме — интенсивная синяя фотолюминесценция.

Аппроксимация спектра люминесценции состава 3 дает три полосы, лежащие в фиолетовой и синей областях с максимумами 413, 442, 456 nm.

Составы (3CaO · 2SiO₂) : Еи и (3CaO · SiO₂) : Еи (4 и 5 в табл. 2) также показали увеличение интенсивности фотолюминесценции. Состав 4 давал светло-синий цвет с $\lambda_m = 500$ nm, а состав 5 — светло-зеленый цвет с $\lambda_m = 525$ nm. Аппроксимация спектров указанных составов дает

Рис. 3. Спектры излучения системы $(CaO - Al_2O_3 - SiO_2)$: Еu с различным содержанием компонентов, отожженной в вакууме $(\lambda_{ex} = 337 \text{ nm})$: $1 - (CaO \cdot Al_2O_3 \cdot SiO_2)$: Eu; $2 - (CaO \cdot Al_2O_3 \cdot 2SiO_2)$: Eu; $3 - (CaO \cdot Al_2O_3)$: Eu; $4 - (3CaO \cdot 2SiO_2)$: Eu; $5 - (3CaO \cdot SiO_2)$: Eu.

ряд полос с максимумами 458, 496, 529, 592 nm (состав 4) и 387, 458, 525, 589 nm (состав 5).

Полученные результаты можно объяснить следующим образом. Полосы излучения в оранжево-красной области вызваны внутрицентровыми переходами в ионе Eu³⁺ ⁵D₀ \rightarrow ⁷F_i (*i* = 0, 1, 2, 3, 4) аналогично [12,14]. Полосы излучения всех составов в синей области обусловлены внутрицентровыми переходами $4f^{6}5d \rightarrow 4f^{7}$ в ионе Eu²⁺ [5–7, 9–11].

В использованных условиях синтеза люминофоров на воздухе для алюминатов кальция обеспечивается насыщение составов кислородом

и преимущественное проявление трехвалентного состояния иона Eu^{3+} . При отжиге в вакууме возникает дефицит кислорода и происходит изменение валентности иона Eu^{3+} на Eu^{2+} , что согласуется с [11]. В моносиликате кальция (волластоните) с моноклинной решеткой при высокотемпературном синтезе на возлухе обеспечивается преимушественное встраивание ионов Eu³⁺ в кристаллическую решетку на позиции ионов Ca²⁺. В других силикатах кальция (алите и ранкините) с гексагональной и ромбической решетками низкая интенсивность фотолюминесценции может быть связана с неблагоприятными условиями для встраивания в решетку ионов Eu^{2+} из-за повышенного содержания Са в составе и с изменением максимума спектров возбуждения ионов ${\rm Eu}^{2+}$ и ${\rm Eu}^{3+}$. Широкая полоса излучения алюмосиликатов кальция до и после отжига в вакууме связана, вероятно, с фазовой неоднородностью составов, включающих наличие блоков различных алюминатов и силикатов кальция и обусловлена до ожига — переходами в ионах Eu^{2+} и Eu^{3+} (рис. 2), а после отжига в вакууме — переходами преимущественно в ионах Eu²⁺ (рис. 3). Возрастание интенсивности люминесценции после отжига может быть обусловлено как дополнительным увеличением количества ионов Eu²⁺ из-за изменения валентности ионов Eu³⁺ на Eu²⁺ вследствие обеднения составов кислородом, так и сдвигом максимума спектров возбуждения в сторону полосы излучения лазера (337 nm).

Исследованные люминофоры (CaO · Al₂O₃ · SiO₂) : Еи представляют значительный интерес и могут найти широкое применение при разработке средств отображения информации и цветовых систем сигнализации.

Список литературы

- Miura N., Kawanishi M., Matsumoto H., Nakano R. // Jpn. J. Appl. Phys. 1999.
 V. 38. Part 2. N 11B. P. L1291–L1292.
- [2] 11th International Workshop on Inorganic and organic electroluminescence and 2002 International conference on the Science and Technology of Emissive Displays and Lighting. Sept. 23–26, 2002. Ghent, Belgium, 2002. 582 p.
- [3] Mihami T., Miyata T., Shirai T., Nakatani T. // Mat. Res. Soc. Symp. Proc. 2000. V. 621. Material Research Society. P. Q4.3.1–Q4.3.6.
- [4] Prucnal S., Sun J.M., Skorupa W., Helm M. // Appl. Phys. Lett. 2007. V. 90. N 18. P. 181121.
- [5] Nogami M., Abe Y. // Appl. Phys. Lett. 1996. V. 69. N 25. P. 3776-3778.

- [6] Chen D., Miyoshi H., Akai T., Yazawa T. // Appl. Phys. Lett. 2005. V. 86. N 23. P. 231908.
- [7] Гурин Н.Т. Паксютов К.В., Терентьев М.А., Широков А.В. // Письма в ЖТФ. 2008. Т. 34. В. 21. С. 1–6.
- [8] Liu H., Yang J., Liu W., Yang L., Zhang Y. // J. Northeast Normal University (Natural Science Edition) 2007–03–27/(2007. 03–0075–04).
- [9] Aitasalo T., Holsa J., Janger H., Lastusaari M. et al. //Int. Conf. On Sol-Gel Method. Res. Technol. Applicaton № 2. Szklaska Poreba, Pologne, 2004. V. 26. N 2. P. 113–116.
- [10] Yoshimatsu R., Kunimoto T., Daud A., Ohmi K. et al. // ITE Techn. Report. 2000. V. 24. N 40. (20000707). P. 37–42.
- [11] Kunimoto T., Kakehi K., Yoshimatsu R., Ohmi K. et al. // Jpn. J. Appl. Phys. 2001. V. 40. Part 2. N 10B. P. 1126–1128.
- [12] Zhang Q, Wang J, Zhang M., Ding W., Su Q. // Appl. Phys. A. 2007. V. 88. P. 805–809.
- [13] *Мешков В.В., Матвеев А.Б.* Основы светотехники. Ч. 2. М.: Энергоатомиздат, 1989. 432 с.
- [14] Han X.M., Lin J., Zhou H.L., Yu M. et al. // J. Phys: Condens. Matter. 2004.
 V. 16. P. 2745–2755.