06 Легирование структурно-неоднородных эпитаксиальных слоев фосфида галлия. Диффузионное перераспределение цинка

© Е.А. Панютин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: Eugeny.Panyutin@pop.ioffe.rssi.ru

Поступило в Редакцию 29 января 2009 г.

Приведены результаты компьютерного моделирования распределений цинка, которые устанавливаются в процессе его диффузии, сопутствующей легированию в ходе эпитаксиального осаждения фосфида галлия. Внутреннее перераспределение вводимого цинка, обусловленное присутствием структурного макродефекта, в частности винтовой дислокации, трактуется в рамках диссоциативной модели межузельно-узловой диффузии, предполагающей существование ионов цинка в двух состояниях с различной подвижностью, активно взаимодействующих с вакансиями галлия. Результаты анализа решений нелинейной граничной задачи, демонстрирующие существование резко неоднородных распределений концентраций ионов цинка, позволяют объяснить ряд экспериментально наблюдаемых аномалий обратного тока GaP-*p*-*n*-переходов.

PACS: 85.40.Ry, 81.15.Kk, 66.30.Dn, 61.72.uj, 61.72sh, 61.72.Dd

Эпитаксиальные p-n-структуры, получаемые на основе GaP и предназначенные для потребностей высокотемпературной электроники, традиционно имеют Mg-легированный p-слой, что обеспечивает приемлемый уровень их обратных токов, однако они не всегда обладают удовлетворительными инжекционными свойствами [1–3]. В отличие от "магниевых" цинксодержащие p-n-переходы менее подвержены указанным ограничениям, но их получение с сохранением необходимых параметров обратной ветви BAX — в том числе и газофазным методом в хлоридной системе — сопряжено с рядом технологических сложностей. Их преодоление, применительно к фосфиду галлия, требует понимания ряда особенностей диффузии цинка, происходящей в ходе его легирования в процессе эпитаксии.

Результаты исследования ВАХ структур с p-n-переходом, получаемых (на n-подложках, при температуре $\sim 780^\circ{\rm C})$ путем последователь-

33

ного введения теллура (донор) и цинка, демонстрировали в ряде случаев появление туннельной компоненты, что не характерно для переходов с использованием магния [4,5]. В то же время прямые измерения концентраций легированных слоев (использовался метод Холла) всегда приводили к значениям средней концентрации акцептора, лежащим в пределах $2 \cdot 10^{17} - 10^{18} \text{ cm}^{-3}$. Это обстоятельство косвенно указывает на существование в слое локализованных областей с аномально высоким содержанием цинка, на 1-2 порядка превышающим средние значения его концентрации; при этом расположение этих областей часто совпадало с декорируемыми выходами винтовых дислокаций. Наличие столь значительных перепадов концентрации акцептора между ее средними и пиковыми значениями, возникающих в результате диффузионного перераспределения ионов цинка в течение высокотемпературной фазы (процесса роста), трудно поддается объяснению в рамках простого (с учетом возможного наличия стоков) механизма диффузии (см., например, [6]). В то же время привлечение представлений, основывающихся на более сложных механизмах диффузии, и в частности на модели Лонжини [7,8], как предполагается, позволит существенно расширить класс допустимых концентрационных профилей и в случае соответствия эксперименту может послужить дополнительным аргументом в пользу ее применимости для GaP. Согласно этой модели, ионы цинка могут пребывать в двух состояниях (занимая междоузлие Zn_{i}^{+} или замещая ион галлия Zn_{s}^{-}), где имеют различный заряд и существенно различающиеся коэфициенты диффузии $(D_{Zn_i} \gg D_{Zn_s})$ и активно взаимодействуют с малоподвижными $(D_V < D_{Zn_s})$ вакансиями галлия V_{Ga}.

Аналогичный подход привлекался для объяснения аномалий диффузионных профилей цинка, получаемых в GaAs при введении его из однородного поверхностного источника в материал, предварительно обогащенный вакансиями V_{Ga} [9], и заключался в формулировании и исследовании системы однородных уравнений баланса для концентраций N_V , N_{Zn_i} и N_{Zn_s} ; в итоге были получены концентрационные профили неклассического типа. В отличие от рассмотренной модельной ситуации диффузионные процессы, сопровождающие реальную эпитаксию, неоднородны в плоскости, нормальной направлению роста: структурные нарушения в растущем эпитаксиальном слое, вызываемые прорастанием дислокаций из подложки, провоцируют процесс локальной генерации и диффузионного перераспределения собственных точечных дефектов, в том числе и вакансий V_{Ga} . Последние, помимо прочего, являются

активными участниками процессов миграции и смены состояний ионов цинка.

В данной работе предпринята попытка проанализировать — с точки зрения соответствия эксперименту — особенности диффузии ионов Zn_i^+ и Zn_s^- в окрестности ростового дефекта, протекающей согласно механизму межузельно-узловой миграции, а также произвести оценки значений некоторых трудноизмеримых параметров, отвечающих наблюдаемым соотношениям между максимальными и средними значениями концентрации акцепторного цинка $N_{Zn}(r) = N_{Zn_s} - N_{Zn_i}$. При этом считается, что ядро дислокации создает вокруг ее оси локальную область дисторсии решетки, в которой в ходе роста ($T = 780^{\circ}$ С) устанавливаются и сохраняются метастабильные значения энергии образования вакансии E_V и энергии активации иона узлового цинка E_{Zn} . На их основе будет определен и введен в систему уравнений фактор решеточной неоднородности, создаваемой дислокацией.

Деформация решетки приводит к локальному снижению равновесной энергии дефектообразования $E_{V\infty}$ до некоторой величины $E_{V\infty}(1 - \Phi(r))$, причем безразмерная пространственно-неоднородная компонента $\Phi(r)$ ($\Phi(r) < 1$), пропорциональная разности значений энергетических минимумов ионов идеальной и деформированной решетки, имеет максимальные значения в области ядра дислокации и монотонно спадает до нуля по мере удаления от ее оси. В континуальном приближении эта компонента может быть аппроксимирована монотонной функцией, обладающей на больших (по сравнению с постоянной решетки) расстояниях r аксиальной симметрией и убывающей по степенному закону с показателем $\gamma \approx 1-2$ и длиной характерного спада $r_0 < 100$ nm [5]; эта функция может быть представлена как $\Phi(r) \sim \alpha_V (1 + (r/r_0)^{\gamma})^{-1}$ с безразмерным коэффициентом $\alpha_V < 1$, характеризующим локальное понижение энергии $E_{V\infty}$. Соответственно

$$E_V(r) = E_{V\infty} \left(1 - \alpha_V [1 + (r/r_0)^{\gamma}]^{-1} \right)$$
(1)

и функция скорости термогенерации вакансий $G_V(r)$ в районе дислокации будет иметь вид

$$G_V(r) = G_{V_0} \exp\left(-\frac{E_V(r)}{kT}\right) = G_{V_0} \exp\left[\left(-\frac{E_{V\infty}}{kT}\right)\left(1 - \frac{\alpha_V}{1 + (r/r_0)^{\gamma}}\right)\right],\tag{2}$$

так что при $r \to \infty$ она переходит в пространственно однородную константу $G_{V\infty}$, определяемую в основном энергией $E_{V\infty}$.

Аналогичные рассуждения приводят к построению схожей функции локального изменения энергии термовыброса иона Zn_s из положения замещения в межузельное пространство:

$$G_{Zn}(r) = G_{Zn_0} \exp\left(-\frac{E(r)}{kT}\right)$$
$$= G_{Zn_0} \exp\left[\left(-\frac{E_{Zn\infty}}{kT}\right)\left(1 - \frac{\alpha_{Zn}}{1 + (r/r_0)^{\gamma}}\right)\right].$$
(3)

Система уравнений, отражающая баланс ансамблей заряженного диффузанта и присутствующих подвижных носителей, в общем случае должна включать и уравнение непрерывности для дырок, и уравнение Пуассона: однако большое отношение подвижностей дырок и ионов позволяет исключить эти два уравнения с одновременным введением концентрационно-зависимого D_{Zn_i} . Использование квазинейтрального приближения, а также условий $D_{Zn_i} \ll D_{Zn_s}$ и $N_V < 10^{20}$ сm⁻³ (подробнее см. [10]), приводит к появлению квадратичной зависимости типа $D_{Zn_i} \sim D_{Zn_i0}N_{Zn_s}^2$. Для стационарного случая такая система, описывающая радиальные распределения вакансий галлия $N_V(r)$, а также ионов $N_{Zn_i}(r)$ и $N_{Zn_s}(r)$, в круговой области, лежащей в плоскости эпитаксиального слоя, симметричной относительно оси дислокации и имеющей радиус R_0 , в полярной системе координат принимает следующий вид:

$$D_V \frac{d^2 N_V}{dr^2} + D_V \frac{1}{r} \frac{dN_V}{dr} - R_{Zn} N_V N_{Zn_i} - R_V N_V + G_{Zn}(r) N_{Zn_s} + G_V(r) (N_0 - N_V - N_{Zn_s}) = 0, \qquad (4)$$

$$D_{Zn_{i0}}(N_{Zn_s})^2 \frac{d^2 N_{Zn_i}}{dr^2} + D_{Zn_{i0}}(N_{Zn_s})^2 \frac{1}{r} \frac{dN_{Zn_i}}{dr} - R_{Zn} N_{Zn_i} N_V + G_{Zn}(r) N_{Zn_s} = 0,$$
(5)

$$D_{Zn_s} \frac{d^2 N_{Zn_s}}{dr^2} + D_{Zn_s} \frac{1}{r} \frac{dN_{Zn_s}}{dr} + R_{Zn} N_{Zn_i} N_V - G_{Zn}(r) N_{Zn_s} = 0$$
(6)

с граничными условиями $dN_V/dr|_{r=0+\varepsilon} = 0$, $dN_V/dr|_{r=R_0} = 0$; $dN_{\mathrm{Zn}_i}/dr|_{r=0+\varepsilon} = 0$, $N_{\mathrm{Zn}_i} + N_{\mathrm{Zn}_s}|_{r=R_0} = 10^{17} \mathrm{\,cm^{-3}}$; $dN_{\mathrm{Zn}_s}/dr|_{r=0+\varepsilon} = 0$, $dN_{\mathrm{Zn}_s}/dr + dN_{\mathrm{Zn}_s}/dr|_{r=R_0} = 0$. Здесь — $N_0 \sim 10^{23} \mathrm{\,cm^{-3}}$; подвижность

Рис. 1. Радиальные распределения концентраций $N_{Zn_i}(r)$, $N_{Zn_s}(r)$ и $N_{Zn}(r)$ для двух различных значений коэффициента локального уменьшения энергии дефектообразования ($1 - \alpha_V = 0.5$, $2 - \alpha_V = 0.6$).

вакансий галлия $D_V \sim 10^{-12} \,\mathrm{cm}^2 \cdot \mathrm{s}^{-1}$, а коэффициенты D_{Zn_s} и $D_{\mathrm{Zn}_i} = D_{\mathrm{Zn}_{i0}} N_{\mathrm{Zn}_s}^2$ при температуре процесса близки к значениям $\sim 10^{-11} \,\mathrm{cm}^2 \cdot \mathrm{s}^{-1}$ [8] и $\sim 10^{-8} \,\mathrm{cm}^2 \cdot \mathrm{s}^{-1}$ [9]. Функции термогенерации $G_V(r)$ и $G_{\mathrm{Zn}}(r)$, определяемые согласно (2) и (3), имеют характерную длину спада $r_0 = 0.1 \,\mu$ m, и для высоты барьеров $E_{V\infty} \sim 4 \,\mathrm{eV}$ и $E_{\mathrm{Zn}\infty} \sim 1.5 \,\mathrm{eV}$ (температура $T \sim 800^{\circ}\mathrm{C}$) их квазиравновесные значения при $r \to \infty$ равны соответственно $\sim 10^{-10} \,\mathrm{s}^{-1}$ и $\sim 10^{-4} \,\mathrm{s}^{-1}$; радиус R_0 — половина экспериментально наблюдаемого междислокационного расстояния ($R_0 \sim 1-50 \,\mu$ m). Кроме того, параметры α_V , $\alpha_{\mathrm{Zn}} \, R_{\mathrm{Zn}}$ пока не определены и считаются подгоночными (на основе данных, касающихся термостойкости GaP — $\alpha_V < 0.7$). Для решения системы (4)—(6) применялся алгоритм, разработанный на базе одной из версий, включенных в библиотеку среды MATLAB.

Рис. 2. Зависимости максимума (в области $S = \pi R_0^2$) концентрации акцептора $N_{\text{Zn} \text{ max}}$ и максимума концентрации вакансий галлия $N_{V\text{max}}$ от коэффициента α_V для двух различных значений α_{Zn} .

Примеры распределений $N_{Zn_i}(r)$ и $N_{Zn_s}(r)$, а также распределений цинка как акцептора, т.е. $N_{Zn} = N_{Zn_s} - N_{Zn_i}$, для некоторых типичных значений параметров представлены на рис. 1. Однако основная задача работы — исследование поведения решений системы в ракурсе выяснения возможности реализации достаточно больших отношений между пиковыми и средними значениями $N_{Zn}(r)$. С этой целью был использован функционал Q_{Zn} , введенный для численного оценивания неоднородности радиальных распределений и определяемый как

$$Q_{\rm Zn} = \frac{1}{s} \int_{s=\pi r_0^2} (N_{\rm Zn_s} - N_{\rm Zn_i}) dr \left(\frac{1}{s} \int_{s=\pi R_0^2} (N_{\rm Zn_s} - N_{\rm Zn_i}) dr\right)^{-1}, \quad (7)$$

т.е. равный отношению средних концентраций N_{Zn} с усреднением по "большой" ($S = \pi R_0^2$) и "малой" ($s = \pi r_0^2$) областям, а также иссле-

Рис. 3. Зависимость коэффициента неоднородности концентрации Q_{Zn} (в области $S = \pi R_0^2$) от коэффициента локального уменьшения энергии дефектообразования α_V для трех различных значений α_{Zn} .

дована его зависимость от таких малоизвестных параметров, как α_V , $\alpha_{Zn} R_{Zn}$. Семейства кривых, демонстрирующих зависимости максимума концентрации $N_{Zn max}$ (рис. 2) и коэффициента ее неоднородности Q_{Zn} (рис. 3) от параметров α_V и α_{Zn} , позволяют сделать вывод о допустимых интервалах значений, которые они могут принимать для GaP. Условие соответствия эксперименту, обеспечивающее при обычной температуре (~ 300°C) возможность появления туннельного тока перехода ($N_{Zn max} = 10^{19} - 10^{20}$ сm⁻³ при $Q_{Zn} > 10^2$), выполняется при $\alpha_V > 0.45$ и 0 < α_{Zn} < 0.7, причем лишь для тех значений R_{Zn} , которые лежат в промежутке 10^{-19} s⁻¹ · cm³ < $R_{Zn} < 10^{-17}$ s⁻¹ · cm³.

Следует иметь в виду, что числовые значения для $N_{Zn \max}$ и Q_{Zn} были получены на основе исследования установившихся режимов и поэтому ограничивают их возможную величину "сверху"; в технологическом

цикле эти значения могут и не достигаться из-за недостаточной длительности его высокотемпературной фазы. Отметим также, что для гипотетического случая $D_{Zn_i} = D_{Zn_s}$, соответствующего классическому механизму диффузии, условие для необходимой величины значений Q_{Zn} не выполняется. Вместе с тем использование представлений о двухкомпонентной диффузии, согласно межузельно-узловому механизму с существенно различающимися коэффициентами диффузии компонентов, позволяет, применительно к GaP, достаточно хорошо объяснить появление резко неоднородных распределений концентрации цинка $N_{Zn}(r)$, в том числе и при его однородном введении в ходе эпитаксиального легирования.

Список литературы

- [1] Chaffin R.J., Dawson L.R. // Proc. IEEE Conf. On High-Temperature Electronics (Tusson, 1981). New York, 1981. P. 39–42.
- [2] Thomas E.Z., Roger J.C., Dawson L.R. // Proc. IEEE. V. IE-29. N 2. May 1982.
 P. 129–135.
- [3] Zipperian T.E., Thomas E., Dawson L.R. // IEEE Tr. El. Devices. 1982. V. 29. N 10. P. 1690.
- [4] Жиляев Ю.В., Панютин Е.А., Федоров Л.М. // Письма в ЖТФ. 1994. В. 20. С. 26.
- [5] Жиляев Ю.В., Панютин Е.А., Федоров Л.М. // Письма в ЖТФ. 2008. В. 20. С. 80–87.
- [6] *Трушин Ю.В.* // Радиационные процессы в многокомпонентных материалах. СПб., 2002. 384 с.
- [7] Longini R.L. // Sol. St. Electron. 1962. N 5. P. 127.
- [8] Малкович Р.Ш. // Математика диффузии в полупроводниках. СПб., 1999. 390 с.
- [9] Григорьев Н.Н., Кудыкина Т.А. // ФТП. 1997. Т. 31. № 7. С. 697.
- [10] Кейзи Х. // Атомная диффузия в полупроводниках. Сб. статей / Под ред. Д. Шоу. М.: Мир, 1975. 684 с.