05 Мессбауэровские исследования аморфных TbFeCo пленок для "перпендикулярной" магнитной записи информации

© А.С. Камзин, Akimitsu Morisako, Xiaoxi Liu

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

Department of Information Engineering, Faculty of Engineering, Shinshu University, Nagano 380-8553, Japan E-mail: Kamzin@mail.ioffe.ru

В окончательной редакции 12 мая 2008 г.

Методом магнетронного распыления получены (при различных давлениях аргона ($P_{\rm Ar}$) в камере) аморфные пленки Tb_xFe_(100-x-y)Co_y толщиной ~ 200 nm. Установлено, что ось легкого намагничивания в пленках Tb₂₉Fe₆₁Co₁₀ ориентирована под углом 15 ± 4 градуса относительно нормали к поверхности пленки, тогда как в Tb₂₆Fe₆₅Co₉ — параллельна нормали. Свойства пленки Tb₂₆Fe₆₅Co₉, осажденной при $P_{\rm Ar} = 5$ mTorr, удовлетворяют требованиям "перпендикулярной" магнитной записи.

PACS: 75.50.Ss

Повышение плотности магнитной записи информации в десятки раз возможно только при переходе от традиционной продольной записи (намагничивание в плоскости пленки) к перпендикулярной (намагничивание по нормали к плоскости пленки). Для "перпендикулярной" записи информации требуются магнитные пленки с большой магнитокристаллической анизотропией, ориентированной перпендикулярно плоскости пленки, а также высокой химической и антикоррозийной стойкостью. Большой интерес вызывают аморфные пленки TbFeCo, микроструктура которых зависит от условий осаждения и от состава, что позволяет создавать пленки TbFeCo, обладающие требуемыми свойствами [1]. Известен ряд работ, в которых исследовались методы получения и свойства пленок TbFeCo (см. [2] и ссылки там). Однако влияние условий синтеза, а также состава на свойства пленок TbFeCo изучены недостаточно.

21

В данной работе исследованы свойства пленок TbFeCo в зависимости от состава и давления газа в камере распыления. Пленки TbFeCo осаждены методом магнетронного распыления составной мишени в атмосфере Ar в камере распыления при давлениях (P_{Ar}) 5 или 30 mTorr на неподогреваемые подложки из А1-фольги толщиной 30 µm. Мишень состоит из чистого железа, часть площади которой закрывалась фольгами из Тb и Co, что позволяет строго дозировать состав напыляемых систем изменением соотношения площадей пластинок, из которых компонуется мишень [3]. В качестве подложек был выбран А1 потому, что подслой из Al должен приводить к увеличению перпендикулярной анизотропии пленки TbFeCo [4]. Полученные пленки Tb_xFe_(100-x-y)Co_y (где 15 < x < 37 at.%, 5 < y < 25 at.%) были толщиной ~ 200 mm. Состав пленок был определен с помощью электронного микроанализатора (ЭМ). Магнитные характеристики были измерены с использованием магнитометра с вибрирующим образцом при максимальных значениях магнитного поля 15 kOe. Для исследований структуры пленок и фазового анализа использовались рентгеновский дифрактометр и мессбауэровская спектроскопия. Волновой вектор гамма-излучения источника Co⁵⁷(Rd) был направлен по нормали к поверхности исследуемой пленки.

На рис. 1 показаны экспериментальные мессбауэровские спектры (MC) пленок $Tb_{29}Fe_{61}Co_{10}$ и $Tb_{26}Fe_{65}Co_9$, осажденных при P_{Ar} , равном 30 и 5 mTorr соответственно. МС пленок TbFeCo (рис. 1) представляют собой типичные спектры аморфных сплавов и состоят из набора зеемановских секстиплетов, возникающих из-за различий при переходе от одной позиции, занимаемой мессбауэровским изотопом Fe^{57} , к другой. Это приводит к квазинепрерывному изменению параметов сверхтонких взаимодействий, определяемых из MC аморфного вещества.

МС пленок TbFeCo (рис. 1) состоят из широких зеемановских линий поглощения гамма-квантов ионами железа, находящимися в магнитной фазе. Интенсивность 3-й линии МС (рис. 1) больше, чем 2-й, что указывает на присутствие в спектре дополнительной (кроме зеемановских) линии.

Математический анализ экспериментальных МС проведен с использованием программы, созданной В.С. Русаковым с соавторами [5]. При обработке спектров аморфного вещества, в первую очередь, анализируется распределение эффективных магнитных полей (H_{hf}) , возникающих из-за пространственной неоднородности окружения мессбауэровского изотопа Fe⁵⁷. Затем определяются функция распределения

Рис. 1. Мессбауэровские спектры: a — пленки $Tb_{29}Fe_{61}Co_{10}$, b — пленки $Tb_{26}Fe_{65}Co_{9}$.

квадрупольного смещения (КС) и функция распределения химических сдвигов (ХС) в предположении о возможной линейной корреляции между H_{hf} и КС, а также H_{hf} и ХС. Величина КС — это квадрупольное расщепление, деленное пополам. При анализе МС было установлено, что максимальное соответствие "модельного" спектра экспериментальному имеет место только в случае описания последнего двумя типами парциальных спектров (рис. 1). Один — это вклад парциальных спектров с зеемановским расщеплением, описывающих магнитную фазу пленки. Площади этих спектров представляеты на рис. 1 зачерненными. Второй представляет собой парамагнитный спектр (рис. 1) ионов железа, находящихся в неупорядоченном состоянии. Анализ величин ХС указывает на то, что парамагнитная составляющая

Рис. 2. Функции распределения эффективных магнитных полей (H_{hf}) для пленки Tb₂₉Fe₆₁Co₁₀, осажденной при $P_{Ar} = 30$ mTorr (a) и Tb₂₆Fe₆₅Co₉, осажденной при $P_{Ar} = 5$ mTorr (b).

возникает от ионов железа, находящихся в окисном состоянии. Из МС пленок $Tb_{29}Fe_{61}Co_{10}$ и $Tb_{26}Fe_{65}Co_9$ установлено, что доля магнитной фазы составляет $94 \pm 1.0\%$, а парамагнитной — $6 \pm 1.0\%$. Эти результаты согласуются с данными, полученными методом рентгеновской дифракции.

Из экспериментальных МС были получены функции распределения (ФР) величин H_{hf} , КС и ХС. На рис. 2 приведены ФР величины H_{hf} . Функции распределения КС и ХС для магнитной фазы очень узкие. Это указывает на незначительность корреляции параметров H_{hf} и КС, а также H_{hf} и ХС.

Максимальное значение H_{hf} с случае Tb₂₉Fe₆₁Co₁₀, составляет 15.57 Т, полуширина кривой $P(H_{hf})$ равна 25.84 Т. Максимум ФР эффективных полей $P(H_{hf})$ в Tb₂₆Fe₆₅Co₉ смещен в область низких значений H_{hf} .

В случае пленок Tb₂₆Fe₆₅Co₉ максимум ФР $P(H_{hf})$ смещен к существенно большим величинам, чем в Tb₂₉Fe₆₁Co₁₀, и достигает 22.25 Т. Это значение близко к максимуму $H_{hf} = 22.5$ Т для сплавов Tb(Fe,Co)_{1.5}, обладающих магнитострикцией, а также к максимальному

значению 21 Т для аморфных TbFe₂ сплавов [6]. Такая величина максимума $H_{hf} = 22.25$ Т подразумевает сильное 3d-3d обменное взаимодействие. Магнитный момент 3d ионов (M_{3d}) можно определить путем масштабирования, принимая $\langle H_{hf} \rangle = 33$ Т и $M_{3d} = 2.2$ mB/at для α -Fe. В результате получаем $M_{3d} = 1.48$ mB/at. Такое большое значение 3d магнитного момента при комнатной температуре указывает на то, что в рассматриваемом сплаве как содержание Со достаточно для хорошего ферромагнитного взаимодействия, так и количество ионов Fe достаточно для наведения большого магнитного момента.

Направление магнитных моментов, и соответственно ориентация магнитной анизотропии, определяется в мессбауэровской спектроскопии из соотношения интенсивностей 2-х (5-х) и 1-х (6-х) линий $(A_{2.5}/A_{1.6})$ зеемановского секстиплета, используя формулу $A_{2.5}/A_{1.6} = 3(1 - \cos \Theta)/(4\sin \Theta)$. Здесь Θ — угол, определяющий ориентацию H_{hf} (магнитного момента) на ядре мессбауэровского изотопа относительно направления волнового вектора гамма-излучения. Так как в наших экспериментах волновой вектор гамма-излучения был ориентирован по нормали к поверхности исследуемого образца, то здесь Θ — угол отклонения магнитных моментов от нормали к поверхности пленки.

Из данных математической обработки МС пленок было найдено, что в случае Tb₂₉Fe₆₁Co₁₀ отношение $A_{2.5}/A_{1.6} = 0.047 \pm 0.026$. Этому значению соответствуют три варианта ориентации магнитных моментов, а именно: 1) средний угол $\langle \Theta \rangle$ составляет $15 \pm 4^{\circ}$; 2) максимальный угол Θ в случае его равновероятного по направлению распределения в виде "зонтика" равен $21 \pm 6^{\circ}$; 3) основная доля ($93 \pm 4\%$) магнитных моментов ионов железа в пленке параллельна нормали к поверхности пленки Tb₂₉Fe₆₁Co₁₀, а остальная часть ($7 \pm 4\%$) моментов ориентирована параллельно поверхности пленки.

В случае пленок Tb₂₆Fe₆₅Co₉ отношение $A_{2.5}/A_{1.6} = 0.0 \pm 0.02$ и этому значению соответствует только величина $\Theta = 0$. Следовательно, магнитные моменты в Tb₂₆Fe₆₅Co₉ ориентированы параллельно нормали к поверхности пленки. Полученное в [7] усредненное значение $\Theta = 18^{\circ}$ для аморфных пленок TbNFe_{0.55}Co_{0.45}O_{1.5}, совпадает с величиной $\Theta = 15^{\circ}$, полученной нами для Tb₂₉Fe₆₁Co₁₀. Данные о структурных особенностях и фазовых состояниях пленок, полученные из мессбауэровской спектроскопии, согласуются с результатами РД.

Таким образом, методом магнетронного распыления при давлении Ar в камере распыления ~ 5 mTorr получены аморфные пленки

Рис. 3. Петли гистерезиса M-H пленки $Tb_{29}Fe_{61}Co_{10}$ (*a*) и $Tb_{26}Fe_{65}Co_9$ (*b*), полученные при комнатной температуре в магнитном поле, приложенном параллельно плоскости (пунктирная линия) и перпендикулярно плоскости (сплошная линия) пленки.

 $Tb_xFe_{(100-x-y)}Co_y$, обладающие высокими магнитными характеристиками и осью легкого намагничивания, ориентированной по нормали к поверхности пленки. Это подтверждается полученными для исследованных пленок петлями гистерезиса, приведенными на рис. 3. Синтезированные пленки $Tb_{26}Fe_{65}Co_9$ удовлетворяют требованиям к материалам для магнитной записи "перпендикулярного" типа.

Список литературы

- Saga H., Nemoto H., Sukeda H., Takahashi M. // J. Magn. Soc. Jpn. 1999.
 V. 23. P. 225.
- Tofizur Rahman M., Xiaoxi Liu, Mitsunori Matsumoto, Akimitsu Morisako // J. Appl. Phys. 2005. V. 97. P. 10C515.
- [3] Камзин А.С., Григорьев Л.А., Шерман А.Б., Бараш И.С. // Сверхпроводимость: Физика, Химия, Технология, 1993. Т. 6. С. 64.
- [4] Miyanishi S., Kojima K., Sato J., Takayama J., Fuji H., Takahashi A., Ohta K. // J. Appl. Phys. 2003. V. 93. P. 7801.
- [5] Rusakov V.S. // Bulletin of the Rissian Academy of Sciences. Physics. 1999. V. 63. N 7. P. 1093.
- [6] Viret M., Vignoles D., Cole D., Coey J.M.D., Allen W., Daniel D.S., Gregg J.F. // Phys. Rev. B. Condens. Mater. 1996. V. 53. P. 8464.
- [7] Danh T.M., Duc T.M., Thanh H.N., Teillet J. // J. Appl. Phys. 2000. V. 87. P. 7208.