09 Пенодиэлектрическая линзовая линия передач миллиметрового и субмиллиметрового диапазона длин волн

© Л.Б. Князьков, Н.В. Руженцев

Радиоастрономический институт НАН Украины, Харьков E-mail: rush@rian.kharkov.ua

Поступило в Редакцию 3 марта 2008 г.

Впервые сформулированы принципы построения линии передач на основе линз с близкой к единице величиной коэффициента преломления материала (пенодиэлектрической линзовой линии передач). Исследованы передаточные характеристики двух вариантов пенодиэлектрической линзовой линии передач в 3-х mm диапазоне длин волн. Продемонстрирована низкая величина затухания линии передач и одномодовый режим распространения волны.

PACS: 07.57.-c, 42.82.Et, 84.40.-x

В квазиоптических устройствах миллиметрового и субмиллиметрового диапазона длин волн имеется возможность использовать линзы из пенодиэлектрика для фокусировки гауссова пучка в процессе его распространения [1,2]. Потери на отражение в таких линзах пренебрежимо малы, благодаря близкой к единице величине коэффициента преломления материала. Это позволяет обеспечить низкие потери квазиоптических устройств (что особенно важно для малошумящих приемников) и значительно упростить их конструкцию и изготовление. В настоящей работе рассмотрены принципы построения пенодиэлектрической линзовой линии передач, продемонстрирован низкий коэффициент затухания и одномодовый режим распространения волны на примере двух вариантов ее реализации.

В типичных линзовых линиях передач используются так называемые тонкие линзы, толщина которых в несколько раз меньше радиуса. Радиус кривизны фазового фронта фокусируемого гауссового пучка R_a в месте расположения такой линзы во много раз больше радиуса линзы r. С помощью простых геометрических построений, используя известные

59

выражения для параметров гауссова пучка [3], можно показать, что толщина тонкой линзы *t* достаточно точно равна:

$$t = \frac{r^2}{R_a(n-1)} = \frac{r^2 \lambda^2 a}{w_a^2 w_0^2 \pi^2 (n-1)},$$
(1)

где λ — длина волны; *а* — половина расстояния между линзами; *n* — коэффициент преломления материала линзы; w_a , w_0 — радиусы гауссова пучка в месте расположения линзы и в перетяжке, соответственно.

Как следует из выражения (1), относительная длина пути в диэлектрике $\frac{t}{2a}$, определяющая потери на поглощение линзовой линии передач, не зависит от количества линз на единицу длины $\frac{1}{2a}$ для заданного уровня ограничения гауссова пучка апертурой линзы $\frac{r}{w_0}$. Наименьшие потери на поглощение при этом для заданного *r* обеспечиваются при условии $w_0 = w_a$ (наибольшее значение w_0), т.е. когда пучок практически не меняет своего поперечного размера при распространении (рис. 1, *a*). Однако количество линз на единицу длины при этом велико,

Рис. 1. Линзовая линия передач гауссова пучка постоянного радиуса (a), эквивалентная ей неоднородная диэлектрическая среда (b), пенодиэлектрическая линия передач на основе конических линз (c) и на основе шарообразных линз (d).

и линзовая линия передач имеет большие потери на отражение (кроме трудно реализуемого на практике варианта сверхтонких ($t \ll \frac{\lambda}{4n}$) линз).

С другой стороны, в представлении линз в качестве фазовых корректоров, линзовая линия передач гауссова пучка постоянного радиуса $(w_0 = w_a)$ может рассматриваться как неоднородная диэлектрическая среда (рис. 1, *b*). Коэффициент преломления такой диэлектрической среды n(x) уменьшается от оси (*x*-расстояние до оси) по параболическому закону (в силу $t \ll r$) и с учетом выражения (1) равен:

$$n(x) = 1 + \frac{(n-1)t}{2a} \left(1 - \left(\frac{x}{r}\right)^2 \right) = 1 + \frac{r^2 \lambda^2}{2w_0^4 \pi^2} \left(1 - \left(\frac{x}{r}\right)^2 \right).$$
(2)

Для характерных размеров линзовой линии передач $\frac{r}{\lambda} = 5 - 10$ и рациональном уровне ограничения пучка апертурой линзы $\frac{r}{w_0} \cong 2$ [3] наибольший (на оси) коэффициент преломления n(0) диэлектрической среды равен 1.01-1.03 (следует из выражения (2)). Такие значения коэффициента преломления соответствуют пенодиэлектрикам (пенополистирол, пенополиэтилен и др.) предельно достижимой на практике низкой плотности. Поэтому возможность реализовать неоднородную диэлектрическую среду (рис. 1, b) ограничена технологическими трудностями изготовления пеноматериала сколь угодно низкой плотности. В то же время представляется возможным обеспечить условия распространения пучка в такой неоднородной диэлектрической среде, задав соответствующую (подобную линзовой) геометрию стержню из однородного пенодиэлектрика с коэффициентом преломления n(0). Причем, в силу малости n(0), можно не учитывать влияние отражений на передаточные характеристики и допустима относительная свобода в выборе геометрии линии передач.

Для демонстрации указанной возможности были изготовлены два варианта пенодиэлектрической линии передач и исследованы их передаточные характеристики в 3 mm диапазоне длин волн. Первая линия передач (рис. 1, c) состояла из двух двояковыпуклых линз конической формы и представляла собой стержень из пенополистирола 30 mm с кольцевыми углублениями треугольного сечения. Вторая линия передач (рис. 1, d) состояла из пенополистироловых шаров диаметром 30 mm, установленных на одной оси в непосредственной близости друг от друга. Коэффициент преломления пенополистирола обоих вариантов линии передач составлял 1.02.

Рис. 2. Схема и фотография измерительной установки.

Исследования предаточных характеристик пенодиэлектрической линзовой линии передач проводились посредством поляризационного резонатора с регулируемой связью [4]. Поляризационный резонатор (рис. 2) представлял собой отрезок исследуемой линии передач длиной l = 0.3 m, установленный между двумя одномерными проволочными решетками (поляризационными отражателями). Угол взаимного поворота (связь резонатора) проволочных решеток α устанавливался с помощью механизма поворота одной из них в пределах $0...\pm 90^{0}$. В качестве облучателей использовались, согласованные по поляризации с решетками, волноводные переходы с отрезком волновода типа "канал в диэлектрике". Последний служил для формирования волны EH_{11} , близкой по распределению поля гауссовому пучку, и представлял собой эбонитовую трубу с внутренним диаметром 30 mm и ребристой внешней поверхностью.

В приближении малых омических потерь на проволочных решетках коэффициент передачи по мощности поляризационного резонатора на частоте его резонанса равен [2,4]:

$$T(\alpha) = L\cos^{2}\alpha \frac{(1 - \sqrt{L} + (\sqrt{L} - L)\cos^{2}\alpha)^{2}}{(1 - L\cos^{2}\alpha)^{2}}$$
(3)

$$c = \frac{10 \lg \cos^2 \alpha}{l}.$$
 (4)

Частотные зависимости коэффициента затухания представлены на рис. 3. Для обоих вариантов пенодиэлектрической линии передач коэффициент затухания практически совпадал и составлял 0.7 \pm 0.05 dB/m в середине частотного диапазона изменений (80–110 GHz) и увеличивался до 0.85 \pm 0.05 dB/m к низкочастотному и высокочастотному

Рис. 3. Частотные зависимости коэффициента затухания пенодиэлектрической линии передач на основе конических линз (квадраты) и на основе шарообразных линз (круги).

краям. Такой характер частотной зависимости коэффициента затухания можно объяснить разной зависимостью радиационных потерь и потерь на поглощение от частоты. Искажения формы резонансной кривой и паразитных резонансов при измерениях посредством поляризационного резонатора не наблюдалось, что свидетельствует об одномодовом режиме распространения волны.

Таким образом, использование пенодиэлектриков в качестве материала линзовой линии передач гауссова пучка постоянного радиуса обеспечивает малый коэффициент затухания и одномодовый режим распространения волны. Эти достоинства, а также простота изготовления и использования позволяют рассматривать пенодиэлектрическую линзовую линию передач как наиболее перспективную для создания на ее основе квазиоптических систем mm и суб mm диапазонов длин волн.

Список литературы

- [1] *Kniazkov L.B., Ruzhentsev N.V.* // International Journal of Infrared and Millimeter Waves. 2006. V. 27. N 2. P. 211-217.
- [2] Князьков Л.Б., Руженцев Н.В. // Письма в ЖТФ. 2007. Т. 33. В. 18. С. 1-7.
- [3] Goldsmith P.F. In Infrared and Millimeter Waves, K.J. Button, Ed. New York: Academic. 1982. V. 6. P. 277-343.
- [4] Kniazkov L.B., Ruzhentsev N.V. Proceeding of 7-th Int. Kharkov Symp. On Physics and Engineering of Microwaves, MM and sub-MM Waves and Workshop on Terahertz Technologies, June 25–30, Kharkov, Ukraine, 2007. P. 258–259.