от Определение геометрических параметров диффузно рассеивающих объектов

© В.И. Малюгин, Д.В. Кизеветтер, Е.О. Болдырева, А.В. Моданов

Санкт-Петербургский государственный политехнический университет

Поступило в Редакцию 21 января 2008 г.

Спектрально-корреляционный метод диагностики применен для определения линейных размеров неоднородностей в оптических средах с диффузно рассеивающей поверхностью. Полученные экспериментальные данные находятся в хорошем соответствии с результатами численного моделирования и теоретическими представлениями. Метод реализован на простой технической базе и показана возможность его практического использования.

PACS: 06.60.mr, 42.25.fx, 42.30.ms, 78.20.bh

Для решения различных прикладных задач представляет интерес дистанционное определение высотных параметров рельефа и геометрических размеров оптических объектов с рассеивающей поверхностью. Во многих случаях диагностика таких объектов вызывает значительные технические трудности.

Принцип спектрально-корреляционного метода, представленного в данной работе, заключается в установлении корреляционных связей между распределениями интенсивности I(x, y) (спекл-картин) расеянного объектом когерентного излучения при изменении длины волны [1]. Спекл-картины регистрировались матричной телевизионной камерой, и вычислялась функция взаимной корреляции (*CCF*) по следующей формуле:

$$CCF(\Delta\lambda, x_0, y_0) = N \iint_{(S)} (I(\lambda, x, y) - \overline{I}) (I(\lambda + \delta\lambda, x + x_0, y + y_0) - \overline{I}) dx dy,$$

где $I(\lambda, x, y)$ — интенсивности рассеянного света на длинах волн при длине волны излучения, λ , \overline{I} — среднее значение интенсивности по площади интегрирования, N — нормировочный множитель, x, y —

Рис. 1. Зависимости изменения нормированной взаимной корреляционной функции CCF/CCF_{max} спекл-картин от диапазона перестройки длины волны $\Delta\lambda$, полученные методом численного моделирования: a — поверхности с различными среднеквадратическими высотами шероховатостей $1 - 40 \,\mu$ m, $2 - 78 \,\mu$ m, $3 - 190 \,\mu$ m; b — для стеклянной пластины толщиной $H = 100 \,\mu$ m с диффузнорассеивающей поверхностью.

координаты в плоскости наблюдения. Зависимость максимального значения взаимных корреляционных функций от длины волны $CCF_{max}(\lambda)$ позволяет определить диапазон перестройки длины волны $\Delta\lambda_n$, при котором наступает декорреляция спекл-структур, и затем оценить высотные параметры объекта по формуле

$$\sigma \geqslant \lambda^2 / 2\Delta \lambda_n. \tag{1}$$

Следует отметить, что важной особенностью данного метода является возможность дистанционного измерения высот шероховатости, больших длины волны излучения ($\sigma \gg \lambda$), что не удается другими известными оптическими способами [2].

Было проведено численное моделирование пространственного распределения интенсивности при рассеянии пучка когерентного излучения шероховатой поверхностью. Рельеф поверхности формировался с использованием методики, предложенной в работе [3]. На рис. 1, *а* приведена нормированная корреляционная функция $CCF/CCF_{max}(\lambda)$ спеклкартин, возникающих при отражении света с длиной волны $\lambda = 1.0 \, \mu m$ от поверхности с различными среднеквадратическими высотами шероховатостей. Приняв за величину $\Delta \lambda_n$ значение, при котором функция

 $CCF_{max}(\lambda)$ имеет "излом" (т. е. резкое изменение производной), высоту шероховатости определяем по формуле (1). Следует отметить, что функция $CCF_{max}(\lambda)$ зависит также от плотности вероятности распределения высот шероховатой поверхности, и если статистические свойства поверхности априори не известны, то формула (1) дает приближенную оценку.

Рассматривался также случай рассеяния излучения на плоскопараллельной прозрачной пластинке с шероховатой входной поверхностью. При моделировании предполагалось, что спекл-структуру формируют две волны: падающая волна, рассеянная от входной поверхности (первой поверхности), и волна, прошедшая плоскопараллельную пластинку, обратноотраженная от второй ее поверхности и далее рассеянная первой поверхностью. Предполагалось, также, что диффузным рассеянием, отраженным от второй поверхности, можно пренебречь. Корреляционная функция $CCF/CCF_{max}(\lambda)$ для пластины толщиной $H = 100 \,\mu$ m имела периодический характер (рис. 1, *b*). Период спектральных биений $\Delta \lambda_s$ этой функции связан с толщиной пластинки для случая нормального падения луча $\gamma = 0$ соотношением $H = \lambda_0^2/2\Delta \lambda_s n$, где n — показатель преломления пластинки. В общем случае, при $\gamma \neq 0$:

$$H = \lambda^2 \left(1 - (\sin^2 \gamma)/n^2 \right)^{1/2} / \left(2\Delta \lambda_s (n - (\sin^2 \gamma)/n) \right).$$
(2)

Для проверки возможности применения описанной выше методики проводились измерения на образцах с шероховатой поверхностью и прозрачных оптических пластинах с диффузно рассеивающей поверхностью. Источником излучения служил инжекционный лазер с центральной длиной волны излучения $\lambda = 1.05 \,\mu\text{m}$ и мощностью излучения 20 mW. Коллиматор создавал пучок инфракрасного излучения эллиптической формы размером 5 × 8 mm с угловой расходимостью 0.1°. Перестройка длины волны излучения достигалась за счет изменения температуры гетеропереходного лазера, установленного на микрохолодильнике, в интервале от -15 до $+25^{\circ}$ C. При точности регистрации изменения температуры $\Delta T = 0.1^{\circ}$ С максимальный размер измеряемых неоднородностей составлял приближенно $550 \,\mu$ m. Учитывая, что интервал перестройки длины волны при использованном температурном диапазоне $\Delta T \approx 30^{\circ}$ С составлял $\Delta \lambda \approx 21$ nm, имелась возможность регистрировать неоднородности рельефа только с размерами более $26 \,\mu$ m.

Изготавливались образцы поверхности со степенью шероховатости более 30 µm методом продавливания алюминиевой фольги шлифовальными шкурками. Измеренное на профилометре среднеквадратическое

отклонение высоты профиля $\sigma = 62 \,\mu m$ не позволяет в полной мере характеризовать микрорельеф, так как плотность распределения высот профиля образца имела многомодальный характер. Исходя их графика плотности высот профиля поверхности были получены оценки наиболее вероятных высот шероховатости, которые составляли $\sigma_1 \approx 115 \,\mu m$ и $\sigma_2 \approx 32 \,\mu m$.

Для определения высоты шероховатости поверхности образца из профилированной фольги спектрально-корреляционным методом измерялось распределение интенсивности отраженного от поверхности лазерного излучения при изменении длины волны и рассчитывалась зависимость максимальных значений корреляционной функции $CCF_{max}(\lambda)$ (рис. 2, *a*). Как следует из графика, имеются две области слабой корреляционной зависимости $CCF_{max}(\lambda)$, возникающие при $\lambda_{n1} \approx 1044$ nm, спектральный интервал $\Delta\lambda_1 = \lambda - \lambda_{n1} = 4.8$ nm и $\lambda_{n2} \approx 1033$ nm с $\Delta\lambda_2 = \lambda - \lambda_{n2} = 16$ nm. Используя выражение (1), получаем характерные размеры высот шероховатостей $\sigma_{n1} \cong \lambda^2/2\Delta\lambda_1 = 114 \,\mu$ m и $\sigma_{n2} \cong \lambda^2/2\Delta\lambda_2 = 34 \,\mu$ m. Различие высот шероховатостей, полученных из плотности распределения высот, по данным профилометрических измерений и спектрально-корреляционным методом составляло около 10%.

В качестве объекта для измерения толщины оптических элементов с рассеивающей излучение поверхностью было выбрано покровное оптическое стекло с нанесенным на переднюю поверхность диффузно рассеивающим покрытием. Спекл-структура отраженного от пластины света формировалась излучением, отраженным от передней и задней поверхностей пластины. Толщина пластины *H* по ее длине изменялась в пределах $170-200\,\mu$ m. Полученная зависимость $CCF_{max}(\lambda)$ имела ярко выраженную периодичность (рис. 2, *b*), обусловленную наличием периодичности в динамике изменения структуры спекла. Период зависимости $CCF_{max}(\lambda)$, полученной при угле наблюдения телевизионной камеры $\varphi = 15^{\circ}$ относительно нормали, рассчитывался по формуле (2) и составлял 195 μ m. При выборе угла наблюдения телевизионной камеры в направлении зеркального угла отраженного излучения вид зависимостей $CCF_{max}(\lambda)$ качественно не изменялся в широком диапазоне углов наблюдения 0 < $\varphi \leq 25^{\circ}$.

Как показали проведенные исследования, спектрально-корреляционный метод с достаточно высокой точностью позволяет получить информацию о высотных параметрах различных типов микрорельефов и линейных размерах как прозрачных объектов, так и объектов с

Рис. 2. Зависимость максимальных значений функции взаимной корреляции спекл-картин от длины волны: *а* — для шероховатой поверхности, *b* — для стеклянной пластины с диффузно рассеивающей поверхностью.

диффузно рассеивающей поверхностью. Интервал измеряемых размеров определяется возможностью перестройки спектрального диапазона излучателя и позволяет измерять высоты неоднородностей, существенно больших длины волны излучения. Полученные экспериментальные данные находятся в хорошем соответствии с результатами численного моделирования и теоретическими представлениями. Достоинством предложенного метода является использование недорогого серийно выпускаемого оборудования, возможность диагностики прозрачных сред с загрязненными или дефектными поверхностями, рассеивающих сред, а также определения параметров рельефа поверхностей, расположенных в труднодоступных местах.

Список литературы

- [1] Франсон М. Оптика спеклов. М.: Мир, 1980. 171 с.
- [2] Топорец А.С. Оптика шероховатой поверхности. Л.: Машиностроение, 1988. 191 с.
- [3] Кармалита В.А. Цифровая обработка случайных колебаний. М.: Машиностроение, 1986. 80 с.